Properties

Label 800.3.g.h.751.7
Level $800$
Weight $3$
Character 800.751
Analytic conductor $21.798$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [800,3,Mod(751,800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("800.751");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 800 = 2^{5} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 800.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.7984211488\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.53824000000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 6x^{6} + 36x^{4} - 96x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{14} \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 751.7
Root \(-1.48020 - 1.34500i\) of defining polynomial
Character \(\chi\) \(=\) 800.751
Dual form 800.3.g.h.751.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.79002 q^{3} -7.67752i q^{7} +13.9443 q^{9} +0.472136 q^{11} -4.10995i q^{13} +2.26154 q^{17} +26.3607 q^{19} -36.7754i q^{21} +9.73249i q^{23} +23.6832 q^{27} -41.6971i q^{29} +22.0104i q^{31} +2.26154 q^{33} -51.7449i q^{37} -19.6867i q^{39} +15.0557 q^{41} +9.31310 q^{43} -8.76226i q^{47} -9.94427 q^{49} +10.8328 q^{51} -39.9002i q^{53} +126.268 q^{57} -77.1935 q^{59} +14.7650i q^{61} -107.057i q^{63} +75.8395 q^{67} +46.6188i q^{69} +81.0705i q^{71} +83.4249 q^{73} -3.62483i q^{77} +100.757i q^{79} -12.0557 q^{81} -0.266939 q^{83} -199.730i q^{87} -85.5542 q^{89} -31.5542 q^{91} +105.430i q^{93} -99.1297 q^{97} +6.58359 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 40 q^{9} - 32 q^{11} + 32 q^{19} + 192 q^{41} - 8 q^{49} - 128 q^{51} - 224 q^{59} - 168 q^{81} - 112 q^{89} + 320 q^{91} + 160 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/800\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(577\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 4.79002 1.59667 0.798336 0.602212i \(-0.205714\pi\)
0.798336 + 0.602212i \(0.205714\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) − 7.67752i − 1.09679i −0.836220 0.548394i \(-0.815239\pi\)
0.836220 0.548394i \(-0.184761\pi\)
\(8\) 0 0
\(9\) 13.9443 1.54936
\(10\) 0 0
\(11\) 0.472136 0.0429215 0.0214607 0.999770i \(-0.493168\pi\)
0.0214607 + 0.999770i \(0.493168\pi\)
\(12\) 0 0
\(13\) − 4.10995i − 0.316150i −0.987427 0.158075i \(-0.949471\pi\)
0.987427 0.158075i \(-0.0505287\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.26154 0.133032 0.0665159 0.997785i \(-0.478812\pi\)
0.0665159 + 0.997785i \(0.478812\pi\)
\(18\) 0 0
\(19\) 26.3607 1.38740 0.693702 0.720262i \(-0.255978\pi\)
0.693702 + 0.720262i \(0.255978\pi\)
\(20\) 0 0
\(21\) − 36.7754i − 1.75121i
\(22\) 0 0
\(23\) 9.73249i 0.423152i 0.977362 + 0.211576i \(0.0678595\pi\)
−0.977362 + 0.211576i \(0.932140\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 23.6832 0.877154
\(28\) 0 0
\(29\) − 41.6971i − 1.43783i −0.695097 0.718916i \(-0.744639\pi\)
0.695097 0.718916i \(-0.255361\pi\)
\(30\) 0 0
\(31\) 22.0104i 0.710013i 0.934864 + 0.355007i \(0.115521\pi\)
−0.934864 + 0.355007i \(0.884479\pi\)
\(32\) 0 0
\(33\) 2.26154 0.0685315
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 51.7449i − 1.39851i −0.714872 0.699256i \(-0.753515\pi\)
0.714872 0.699256i \(-0.246485\pi\)
\(38\) 0 0
\(39\) − 19.6867i − 0.504787i
\(40\) 0 0
\(41\) 15.0557 0.367213 0.183606 0.983000i \(-0.441223\pi\)
0.183606 + 0.983000i \(0.441223\pi\)
\(42\) 0 0
\(43\) 9.31310 0.216584 0.108292 0.994119i \(-0.465462\pi\)
0.108292 + 0.994119i \(0.465462\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 8.76226i − 0.186431i −0.995646 0.0932156i \(-0.970285\pi\)
0.995646 0.0932156i \(-0.0297146\pi\)
\(48\) 0 0
\(49\) −9.94427 −0.202944
\(50\) 0 0
\(51\) 10.8328 0.212408
\(52\) 0 0
\(53\) − 39.9002i − 0.752834i −0.926450 0.376417i \(-0.877156\pi\)
0.926450 0.376417i \(-0.122844\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 126.268 2.21523
\(58\) 0 0
\(59\) −77.1935 −1.30836 −0.654182 0.756337i \(-0.726987\pi\)
−0.654182 + 0.756337i \(0.726987\pi\)
\(60\) 0 0
\(61\) 14.7650i 0.242050i 0.992649 + 0.121025i \(0.0386181\pi\)
−0.992649 + 0.121025i \(0.961382\pi\)
\(62\) 0 0
\(63\) − 107.057i − 1.69932i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 75.8395 1.13193 0.565966 0.824428i \(-0.308503\pi\)
0.565966 + 0.824428i \(0.308503\pi\)
\(68\) 0 0
\(69\) 46.6188i 0.675635i
\(70\) 0 0
\(71\) 81.0705i 1.14184i 0.821006 + 0.570919i \(0.193413\pi\)
−0.821006 + 0.570919i \(0.806587\pi\)
\(72\) 0 0
\(73\) 83.4249 1.14281 0.571403 0.820669i \(-0.306399\pi\)
0.571403 + 0.820669i \(0.306399\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 3.62483i − 0.0470757i
\(78\) 0 0
\(79\) 100.757i 1.27541i 0.770281 + 0.637704i \(0.220116\pi\)
−0.770281 + 0.637704i \(0.779884\pi\)
\(80\) 0 0
\(81\) −12.0557 −0.148836
\(82\) 0 0
\(83\) −0.266939 −0.00321613 −0.00160806 0.999999i \(-0.500512\pi\)
−0.00160806 + 0.999999i \(0.500512\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) − 199.730i − 2.29575i
\(88\) 0 0
\(89\) −85.5542 −0.961283 −0.480641 0.876917i \(-0.659596\pi\)
−0.480641 + 0.876917i \(0.659596\pi\)
\(90\) 0 0
\(91\) −31.5542 −0.346749
\(92\) 0 0
\(93\) 105.430i 1.13366i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −99.1297 −1.02196 −0.510978 0.859594i \(-0.670716\pi\)
−0.510978 + 0.859594i \(0.670716\pi\)
\(98\) 0 0
\(99\) 6.58359 0.0665009
\(100\) 0 0
\(101\) 105.405i 1.04361i 0.853065 + 0.521805i \(0.174741\pi\)
−0.853065 + 0.521805i \(0.825259\pi\)
\(102\) 0 0
\(103\) 101.863i 0.988958i 0.869190 + 0.494479i \(0.164641\pi\)
−0.869190 + 0.494479i \(0.835359\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 32.9962 0.308376 0.154188 0.988042i \(-0.450724\pi\)
0.154188 + 0.988042i \(0.450724\pi\)
\(108\) 0 0
\(109\) 181.554i 1.66563i 0.553552 + 0.832814i \(0.313272\pi\)
−0.553552 + 0.832814i \(0.686728\pi\)
\(110\) 0 0
\(111\) − 247.859i − 2.23296i
\(112\) 0 0
\(113\) −76.6403 −0.678233 −0.339116 0.940744i \(-0.610128\pi\)
−0.339116 + 0.940744i \(0.610128\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) − 57.3102i − 0.489831i
\(118\) 0 0
\(119\) − 17.3630i − 0.145908i
\(120\) 0 0
\(121\) −120.777 −0.998158
\(122\) 0 0
\(123\) 72.1172 0.586319
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 142.962i 1.12569i 0.826564 + 0.562843i \(0.190292\pi\)
−0.826564 + 0.562843i \(0.809708\pi\)
\(128\) 0 0
\(129\) 44.6099 0.345813
\(130\) 0 0
\(131\) −110.138 −0.840746 −0.420373 0.907351i \(-0.638101\pi\)
−0.420373 + 0.907351i \(0.638101\pi\)
\(132\) 0 0
\(133\) − 202.385i − 1.52169i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 225.398 1.64524 0.822620 0.568592i \(-0.192512\pi\)
0.822620 + 0.568592i \(0.192512\pi\)
\(138\) 0 0
\(139\) 97.4164 0.700837 0.350419 0.936593i \(-0.386039\pi\)
0.350419 + 0.936593i \(0.386039\pi\)
\(140\) 0 0
\(141\) − 41.9714i − 0.297669i
\(142\) 0 0
\(143\) − 1.94045i − 0.0135696i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −47.6332 −0.324036
\(148\) 0 0
\(149\) − 191.397i − 1.28454i −0.766477 0.642271i \(-0.777992\pi\)
0.766477 0.642271i \(-0.222008\pi\)
\(150\) 0 0
\(151\) − 68.3549i − 0.452682i −0.974048 0.226341i \(-0.927324\pi\)
0.974048 0.226341i \(-0.0726763\pi\)
\(152\) 0 0
\(153\) 31.5355 0.206115
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 155.235i − 0.988756i −0.869247 0.494378i \(-0.835396\pi\)
0.869247 0.494378i \(-0.164604\pi\)
\(158\) 0 0
\(159\) − 191.123i − 1.20203i
\(160\) 0 0
\(161\) 74.7214 0.464108
\(162\) 0 0
\(163\) 90.4765 0.555070 0.277535 0.960715i \(-0.410482\pi\)
0.277535 + 0.960715i \(0.410482\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 100.778i 0.603461i 0.953393 + 0.301730i \(0.0975642\pi\)
−0.953393 + 0.301730i \(0.902436\pi\)
\(168\) 0 0
\(169\) 152.108 0.900049
\(170\) 0 0
\(171\) 367.580 2.14959
\(172\) 0 0
\(173\) − 54.6556i − 0.315928i −0.987445 0.157964i \(-0.949507\pi\)
0.987445 0.157964i \(-0.0504930\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −369.758 −2.08903
\(178\) 0 0
\(179\) −106.807 −0.596684 −0.298342 0.954459i \(-0.596434\pi\)
−0.298342 + 0.954459i \(0.596434\pi\)
\(180\) 0 0
\(181\) 144.778i 0.799879i 0.916542 + 0.399939i \(0.130969\pi\)
−0.916542 + 0.399939i \(0.869031\pi\)
\(182\) 0 0
\(183\) 70.7248i 0.386474i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 1.06775 0.00570992
\(188\) 0 0
\(189\) − 181.828i − 0.962052i
\(190\) 0 0
\(191\) 210.809i 1.10371i 0.833939 + 0.551857i \(0.186081\pi\)
−0.833939 + 0.551857i \(0.813919\pi\)
\(192\) 0 0
\(193\) −108.176 −0.560496 −0.280248 0.959928i \(-0.590417\pi\)
−0.280248 + 0.959928i \(0.590417\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 308.300i 1.56497i 0.622667 + 0.782487i \(0.286049\pi\)
−0.622667 + 0.782487i \(0.713951\pi\)
\(198\) 0 0
\(199\) − 247.859i − 1.24552i −0.782412 0.622761i \(-0.786011\pi\)
0.782412 0.622761i \(-0.213989\pi\)
\(200\) 0 0
\(201\) 363.272 1.80733
\(202\) 0 0
\(203\) −320.130 −1.57700
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 135.712i 0.655616i
\(208\) 0 0
\(209\) 12.4458 0.0595494
\(210\) 0 0
\(211\) −230.584 −1.09281 −0.546407 0.837520i \(-0.684005\pi\)
−0.546407 + 0.837520i \(0.684005\pi\)
\(212\) 0 0
\(213\) 388.329i 1.82314i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 168.985 0.778734
\(218\) 0 0
\(219\) 399.607 1.82469
\(220\) 0 0
\(221\) − 9.29480i − 0.0420579i
\(222\) 0 0
\(223\) − 177.782i − 0.797229i −0.917118 0.398615i \(-0.869491\pi\)
0.917118 0.398615i \(-0.130509\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −203.301 −0.895601 −0.447800 0.894134i \(-0.647792\pi\)
−0.447800 + 0.894134i \(0.647792\pi\)
\(228\) 0 0
\(229\) 81.0705i 0.354020i 0.984209 + 0.177010i \(0.0566425\pi\)
−0.984209 + 0.177010i \(0.943358\pi\)
\(230\) 0 0
\(231\) − 17.3630i − 0.0751645i
\(232\) 0 0
\(233\) 56.2864 0.241573 0.120786 0.992679i \(-0.461458\pi\)
0.120786 + 0.992679i \(0.461458\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 482.629i 2.03641i
\(238\) 0 0
\(239\) 360.235i 1.50726i 0.657300 + 0.753629i \(0.271699\pi\)
−0.657300 + 0.753629i \(0.728301\pi\)
\(240\) 0 0
\(241\) −197.495 −0.819483 −0.409741 0.912202i \(-0.634381\pi\)
−0.409741 + 0.912202i \(0.634381\pi\)
\(242\) 0 0
\(243\) −270.896 −1.11480
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 108.341i − 0.438627i
\(248\) 0 0
\(249\) −1.27864 −0.00513510
\(250\) 0 0
\(251\) 178.361 0.710600 0.355300 0.934752i \(-0.384379\pi\)
0.355300 + 0.934752i \(0.384379\pi\)
\(252\) 0 0
\(253\) 4.59506i 0.0181623i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −453.183 −1.76336 −0.881679 0.471849i \(-0.843587\pi\)
−0.881679 + 0.471849i \(0.843587\pi\)
\(258\) 0 0
\(259\) −397.272 −1.53387
\(260\) 0 0
\(261\) − 581.436i − 2.22772i
\(262\) 0 0
\(263\) − 21.0921i − 0.0801981i −0.999196 0.0400990i \(-0.987233\pi\)
0.999196 0.0400990i \(-0.0127673\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −409.806 −1.53485
\(268\) 0 0
\(269\) − 92.4148i − 0.343549i −0.985136 0.171775i \(-0.945050\pi\)
0.985136 0.171775i \(-0.0549501\pi\)
\(270\) 0 0
\(271\) 188.799i 0.696675i 0.937369 + 0.348337i \(0.113254\pi\)
−0.937369 + 0.348337i \(0.886746\pi\)
\(272\) 0 0
\(273\) −151.145 −0.553645
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 70.1251i − 0.253159i −0.991956 0.126580i \(-0.959600\pi\)
0.991956 0.126580i \(-0.0403999\pi\)
\(278\) 0 0
\(279\) 306.919i 1.10007i
\(280\) 0 0
\(281\) −506.269 −1.80167 −0.900835 0.434161i \(-0.857045\pi\)
−0.900835 + 0.434161i \(0.857045\pi\)
\(282\) 0 0
\(283\) 501.350 1.77156 0.885778 0.464110i \(-0.153626\pi\)
0.885778 + 0.464110i \(0.153626\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 115.591i − 0.402755i
\(288\) 0 0
\(289\) −283.885 −0.982303
\(290\) 0 0
\(291\) −474.833 −1.63173
\(292\) 0 0
\(293\) 324.026i 1.10589i 0.833218 + 0.552945i \(0.186496\pi\)
−0.833218 + 0.552945i \(0.813504\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 11.1817 0.0376487
\(298\) 0 0
\(299\) 40.0000 0.133779
\(300\) 0 0
\(301\) − 71.5015i − 0.237546i
\(302\) 0 0
\(303\) 504.890i 1.66630i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −9.84697 −0.0320748 −0.0160374 0.999871i \(-0.505105\pi\)
−0.0160374 + 0.999871i \(0.505105\pi\)
\(308\) 0 0
\(309\) 487.924i 1.57904i
\(310\) 0 0
\(311\) 200.417i 0.644429i 0.946667 + 0.322214i \(0.104427\pi\)
−0.946667 + 0.322214i \(0.895573\pi\)
\(312\) 0 0
\(313\) 261.582 0.835727 0.417863 0.908510i \(-0.362779\pi\)
0.417863 + 0.908510i \(0.362779\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 322.341i − 1.01685i −0.861107 0.508425i \(-0.830228\pi\)
0.861107 0.508425i \(-0.169772\pi\)
\(318\) 0 0
\(319\) − 19.6867i − 0.0617138i
\(320\) 0 0
\(321\) 158.053 0.492376
\(322\) 0 0
\(323\) 59.6157 0.184569
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 869.645i 2.65946i
\(328\) 0 0
\(329\) −67.2724 −0.204475
\(330\) 0 0
\(331\) 61.0883 0.184557 0.0922783 0.995733i \(-0.470585\pi\)
0.0922783 + 0.995733i \(0.470585\pi\)
\(332\) 0 0
\(333\) − 721.545i − 2.16680i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −114.960 −0.341129 −0.170564 0.985347i \(-0.554559\pi\)
−0.170564 + 0.985347i \(0.554559\pi\)
\(338\) 0 0
\(339\) −367.108 −1.08292
\(340\) 0 0
\(341\) 10.3919i 0.0304748i
\(342\) 0 0
\(343\) − 299.851i − 0.874201i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 143.967 0.414892 0.207446 0.978246i \(-0.433485\pi\)
0.207446 + 0.978246i \(0.433485\pi\)
\(348\) 0 0
\(349\) 35.9526i 0.103016i 0.998673 + 0.0515080i \(0.0164028\pi\)
−0.998673 + 0.0515080i \(0.983597\pi\)
\(350\) 0 0
\(351\) − 97.3365i − 0.277312i
\(352\) 0 0
\(353\) −252.536 −0.715400 −0.357700 0.933837i \(-0.616439\pi\)
−0.357700 + 0.933837i \(0.616439\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 83.1691i − 0.232967i
\(358\) 0 0
\(359\) 594.152i 1.65502i 0.561452 + 0.827509i \(0.310243\pi\)
−0.561452 + 0.827509i \(0.689757\pi\)
\(360\) 0 0
\(361\) 333.885 0.924890
\(362\) 0 0
\(363\) −578.524 −1.59373
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 88.9062i − 0.242251i −0.992637 0.121126i \(-0.961350\pi\)
0.992637 0.121126i \(-0.0386504\pi\)
\(368\) 0 0
\(369\) 209.941 0.568946
\(370\) 0 0
\(371\) −306.334 −0.825699
\(372\) 0 0
\(373\) − 83.6542i − 0.224274i −0.993693 0.112137i \(-0.964230\pi\)
0.993693 0.112137i \(-0.0357696\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −171.373 −0.454570
\(378\) 0 0
\(379\) −135.135 −0.356556 −0.178278 0.983980i \(-0.557053\pi\)
−0.178278 + 0.983980i \(0.557053\pi\)
\(380\) 0 0
\(381\) 684.791i 1.79735i
\(382\) 0 0
\(383\) 498.526i 1.30164i 0.759234 + 0.650818i \(0.225574\pi\)
−0.759234 + 0.650818i \(0.774426\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 129.864 0.335567
\(388\) 0 0
\(389\) − 308.420i − 0.792854i −0.918066 0.396427i \(-0.870250\pi\)
0.918066 0.396427i \(-0.129750\pi\)
\(390\) 0 0
\(391\) 22.0104i 0.0562926i
\(392\) 0 0
\(393\) −527.562 −1.34240
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 297.682i 0.749828i 0.927060 + 0.374914i \(0.122328\pi\)
−0.927060 + 0.374914i \(0.877672\pi\)
\(398\) 0 0
\(399\) − 969.426i − 2.42964i
\(400\) 0 0
\(401\) 148.663 0.370729 0.185365 0.982670i \(-0.440653\pi\)
0.185365 + 0.982670i \(0.440653\pi\)
\(402\) 0 0
\(403\) 90.4616 0.224470
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 24.4306i − 0.0600261i
\(408\) 0 0
\(409\) −442.387 −1.08163 −0.540815 0.841141i \(-0.681884\pi\)
−0.540815 + 0.841141i \(0.681884\pi\)
\(410\) 0 0
\(411\) 1079.66 2.62691
\(412\) 0 0
\(413\) 592.654i 1.43500i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 466.626 1.11901
\(418\) 0 0
\(419\) 536.184 1.27968 0.639838 0.768510i \(-0.279001\pi\)
0.639838 + 0.768510i \(0.279001\pi\)
\(420\) 0 0
\(421\) 514.582i 1.22228i 0.791521 + 0.611142i \(0.209290\pi\)
−0.791521 + 0.611142i \(0.790710\pi\)
\(422\) 0 0
\(423\) − 122.183i − 0.288850i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 113.359 0.265477
\(428\) 0 0
\(429\) − 9.29480i − 0.0216662i
\(430\) 0 0
\(431\) 86.8151i 0.201427i 0.994915 + 0.100714i \(0.0321126\pi\)
−0.994915 + 0.100714i \(0.967887\pi\)
\(432\) 0 0
\(433\) 494.017 1.14092 0.570458 0.821327i \(-0.306766\pi\)
0.570458 + 0.821327i \(0.306766\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 256.555i 0.587082i
\(438\) 0 0
\(439\) − 524.700i − 1.19522i −0.801789 0.597608i \(-0.796118\pi\)
0.801789 0.597608i \(-0.203882\pi\)
\(440\) 0 0
\(441\) −138.666 −0.314435
\(442\) 0 0
\(443\) 496.575 1.12094 0.560469 0.828176i \(-0.310621\pi\)
0.560469 + 0.828176i \(0.310621\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) − 916.795i − 2.05099i
\(448\) 0 0
\(449\) 332.158 0.739773 0.369886 0.929077i \(-0.379397\pi\)
0.369886 + 0.929077i \(0.379397\pi\)
\(450\) 0 0
\(451\) 7.10835 0.0157613
\(452\) 0 0
\(453\) − 327.421i − 0.722785i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 252.788 0.553147 0.276574 0.960993i \(-0.410801\pi\)
0.276574 + 0.960993i \(0.410801\pi\)
\(458\) 0 0
\(459\) 53.5604 0.116689
\(460\) 0 0
\(461\) − 832.716i − 1.80633i −0.429299 0.903163i \(-0.641239\pi\)
0.429299 0.903163i \(-0.358761\pi\)
\(462\) 0 0
\(463\) − 854.205i − 1.84494i −0.386074 0.922468i \(-0.626169\pi\)
0.386074 0.922468i \(-0.373831\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −102.726 −0.219970 −0.109985 0.993933i \(-0.535080\pi\)
−0.109985 + 0.993933i \(0.535080\pi\)
\(468\) 0 0
\(469\) − 582.259i − 1.24149i
\(470\) 0 0
\(471\) − 743.577i − 1.57872i
\(472\) 0 0
\(473\) 4.39705 0.00929608
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) − 556.379i − 1.16641i
\(478\) 0 0
\(479\) 268.772i 0.561111i 0.959838 + 0.280556i \(0.0905187\pi\)
−0.959838 + 0.280556i \(0.909481\pi\)
\(480\) 0 0
\(481\) −212.669 −0.442139
\(482\) 0 0
\(483\) 357.917 0.741028
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 504.065i − 1.03504i −0.855671 0.517520i \(-0.826855\pi\)
0.855671 0.517520i \(-0.173145\pi\)
\(488\) 0 0
\(489\) 433.384 0.886266
\(490\) 0 0
\(491\) −130.020 −0.264807 −0.132403 0.991196i \(-0.542269\pi\)
−0.132403 + 0.991196i \(0.542269\pi\)
\(492\) 0 0
\(493\) − 94.2997i − 0.191277i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 622.421 1.25236
\(498\) 0 0
\(499\) 664.184 1.33103 0.665515 0.746384i \(-0.268212\pi\)
0.665515 + 0.746384i \(0.268212\pi\)
\(500\) 0 0
\(501\) 482.728i 0.963529i
\(502\) 0 0
\(503\) − 550.015i − 1.09347i −0.837306 0.546735i \(-0.815871\pi\)
0.837306 0.546735i \(-0.184129\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 728.602 1.43708
\(508\) 0 0
\(509\) 349.843i 0.687314i 0.939095 + 0.343657i \(0.111666\pi\)
−0.939095 + 0.343657i \(0.888334\pi\)
\(510\) 0 0
\(511\) − 640.496i − 1.25342i
\(512\) 0 0
\(513\) 624.304 1.21697
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 4.13698i − 0.00800189i
\(518\) 0 0
\(519\) − 261.801i − 0.504434i
\(520\) 0 0
\(521\) 29.7771 0.0571537 0.0285769 0.999592i \(-0.490902\pi\)
0.0285769 + 0.999592i \(0.490902\pi\)
\(522\) 0 0
\(523\) −603.023 −1.15301 −0.576504 0.817094i \(-0.695584\pi\)
−0.576504 + 0.817094i \(0.695584\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 49.7774i 0.0944543i
\(528\) 0 0
\(529\) 434.279 0.820943
\(530\) 0 0
\(531\) −1076.41 −2.02713
\(532\) 0 0
\(533\) − 61.8782i − 0.116094i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −511.605 −0.952710
\(538\) 0 0
\(539\) −4.69505 −0.00871066
\(540\) 0 0
\(541\) − 163.368i − 0.301974i −0.988536 0.150987i \(-0.951755\pi\)
0.988536 0.150987i \(-0.0482451\pi\)
\(542\) 0 0
\(543\) 693.490i 1.27714i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 524.218 0.958350 0.479175 0.877719i \(-0.340936\pi\)
0.479175 + 0.877719i \(0.340936\pi\)
\(548\) 0 0
\(549\) 205.888i 0.375023i
\(550\) 0 0
\(551\) − 1099.16i − 1.99485i
\(552\) 0 0
\(553\) 773.566 1.39885
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 589.515i − 1.05837i −0.848505 0.529187i \(-0.822497\pi\)
0.848505 0.529187i \(-0.177503\pi\)
\(558\) 0 0
\(559\) − 38.2763i − 0.0684728i
\(560\) 0 0
\(561\) 5.11456 0.00911687
\(562\) 0 0
\(563\) −557.763 −0.990698 −0.495349 0.868694i \(-0.664960\pi\)
−0.495349 + 0.868694i \(0.664960\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 92.5581i 0.163242i
\(568\) 0 0
\(569\) 542.715 0.953805 0.476903 0.878956i \(-0.341759\pi\)
0.476903 + 0.878956i \(0.341759\pi\)
\(570\) 0 0
\(571\) 476.695 0.834842 0.417421 0.908713i \(-0.362934\pi\)
0.417421 + 0.908713i \(0.362934\pi\)
\(572\) 0 0
\(573\) 1009.78i 1.76227i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 865.659 1.50027 0.750137 0.661282i \(-0.229987\pi\)
0.750137 + 0.661282i \(0.229987\pi\)
\(578\) 0 0
\(579\) −518.164 −0.894929
\(580\) 0 0
\(581\) 2.04943i 0.00352741i
\(582\) 0 0
\(583\) − 18.8383i − 0.0323127i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −567.091 −0.966083 −0.483041 0.875597i \(-0.660468\pi\)
−0.483041 + 0.875597i \(0.660468\pi\)
\(588\) 0 0
\(589\) 580.209i 0.985075i
\(590\) 0 0
\(591\) 1476.76i 2.49875i
\(592\) 0 0
\(593\) −421.774 −0.711254 −0.355627 0.934628i \(-0.615733\pi\)
−0.355627 + 0.934628i \(0.615733\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 1187.25i − 1.98869i
\(598\) 0 0
\(599\) 120.444i 0.201075i 0.994933 + 0.100538i \(0.0320563\pi\)
−0.994933 + 0.100538i \(0.967944\pi\)
\(600\) 0 0
\(601\) 340.158 0.565986 0.282993 0.959122i \(-0.408673\pi\)
0.282993 + 0.959122i \(0.408673\pi\)
\(602\) 0 0
\(603\) 1057.53 1.75377
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 115.621i − 0.190479i −0.995454 0.0952396i \(-0.969638\pi\)
0.995454 0.0952396i \(-0.0303617\pi\)
\(608\) 0 0
\(609\) −1533.43 −2.51795
\(610\) 0 0
\(611\) −36.0124 −0.0589401
\(612\) 0 0
\(613\) − 1095.63i − 1.78733i −0.448738 0.893663i \(-0.648126\pi\)
0.448738 0.893663i \(-0.351874\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −716.775 −1.16171 −0.580855 0.814007i \(-0.697282\pi\)
−0.580855 + 0.814007i \(0.697282\pi\)
\(618\) 0 0
\(619\) 118.584 0.191573 0.0957864 0.995402i \(-0.469463\pi\)
0.0957864 + 0.995402i \(0.469463\pi\)
\(620\) 0 0
\(621\) 230.496i 0.371169i
\(622\) 0 0
\(623\) 656.844i 1.05432i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 59.6157 0.0950809
\(628\) 0 0
\(629\) − 117.023i − 0.186046i
\(630\) 0 0
\(631\) 1168.62i 1.85201i 0.377515 + 0.926004i \(0.376779\pi\)
−0.377515 + 0.926004i \(0.623221\pi\)
\(632\) 0 0
\(633\) −1104.50 −1.74486
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 40.8704i 0.0641608i
\(638\) 0 0
\(639\) 1130.47i 1.76912i
\(640\) 0 0
\(641\) −244.158 −0.380902 −0.190451 0.981697i \(-0.560995\pi\)
−0.190451 + 0.981697i \(0.560995\pi\)
\(642\) 0 0
\(643\) 868.847 1.35124 0.675620 0.737250i \(-0.263876\pi\)
0.675620 + 0.737250i \(0.263876\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 35.1333i 0.0543019i 0.999631 + 0.0271510i \(0.00864348\pi\)
−0.999631 + 0.0271510i \(0.991357\pi\)
\(648\) 0 0
\(649\) −36.4458 −0.0561569
\(650\) 0 0
\(651\) 809.443 1.24338
\(652\) 0 0
\(653\) − 580.068i − 0.888313i −0.895949 0.444157i \(-0.853503\pi\)
0.895949 0.444157i \(-0.146497\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 1163.30 1.77062
\(658\) 0 0
\(659\) −992.788 −1.50651 −0.753253 0.657731i \(-0.771517\pi\)
−0.753253 + 0.657731i \(0.771517\pi\)
\(660\) 0 0
\(661\) − 719.647i − 1.08872i −0.838850 0.544362i \(-0.816772\pi\)
0.838850 0.544362i \(-0.183228\pi\)
\(662\) 0 0
\(663\) − 44.5223i − 0.0671528i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 405.817 0.608421
\(668\) 0 0
\(669\) − 851.580i − 1.27291i
\(670\) 0 0
\(671\) 6.97110i 0.0103891i
\(672\) 0 0
\(673\) 189.591 0.281711 0.140855 0.990030i \(-0.455015\pi\)
0.140855 + 0.990030i \(0.455015\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 327.192i 0.483297i 0.970364 + 0.241649i \(0.0776882\pi\)
−0.970364 + 0.241649i \(0.922312\pi\)
\(678\) 0 0
\(679\) 761.070i 1.12087i
\(680\) 0 0
\(681\) −973.817 −1.42998
\(682\) 0 0
\(683\) −673.539 −0.986148 −0.493074 0.869987i \(-0.664127\pi\)
−0.493074 + 0.869987i \(0.664127\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 388.329i 0.565254i
\(688\) 0 0
\(689\) −163.988 −0.238008
\(690\) 0 0
\(691\) −237.036 −0.343033 −0.171516 0.985181i \(-0.554867\pi\)
−0.171516 + 0.985181i \(0.554867\pi\)
\(692\) 0 0
\(693\) − 50.5456i − 0.0729374i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 34.0491 0.0488510
\(698\) 0 0
\(699\) 269.613 0.385712
\(700\) 0 0
\(701\) 476.306i 0.679466i 0.940522 + 0.339733i \(0.110337\pi\)
−0.940522 + 0.339733i \(0.889663\pi\)
\(702\) 0 0
\(703\) − 1364.03i − 1.94030i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 809.246 1.14462
\(708\) 0 0
\(709\) 964.778i 1.36076i 0.732860 + 0.680380i \(0.238185\pi\)
−0.732860 + 0.680380i \(0.761815\pi\)
\(710\) 0 0
\(711\) 1404.99i 1.97607i
\(712\) 0 0
\(713\) −214.216 −0.300443
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 1725.53i 2.40660i
\(718\) 0 0
\(719\) − 899.974i − 1.25170i −0.779943 0.625851i \(-0.784752\pi\)
0.779943 0.625851i \(-0.215248\pi\)
\(720\) 0 0
\(721\) 782.053 1.08468
\(722\) 0 0
\(723\) −946.006 −1.30845
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 908.888i − 1.25019i −0.780549 0.625095i \(-0.785060\pi\)
0.780549 0.625095i \(-0.214940\pi\)
\(728\) 0 0
\(729\) −1189.09 −1.63113
\(730\) 0 0
\(731\) 21.0619 0.0288125
\(732\) 0 0
\(733\) − 433.283i − 0.591109i −0.955326 0.295554i \(-0.904496\pi\)
0.955326 0.295554i \(-0.0955043\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 35.8065 0.0485842
\(738\) 0 0
\(739\) −886.138 −1.19910 −0.599552 0.800336i \(-0.704655\pi\)
−0.599552 + 0.800336i \(0.704655\pi\)
\(740\) 0 0
\(741\) − 518.955i − 0.700344i
\(742\) 0 0
\(743\) 895.305i 1.20499i 0.798124 + 0.602493i \(0.205826\pi\)
−0.798124 + 0.602493i \(0.794174\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −3.72226 −0.00498295
\(748\) 0 0
\(749\) − 253.329i − 0.338223i
\(750\) 0 0
\(751\) − 1297.13i − 1.72720i −0.504176 0.863601i \(-0.668204\pi\)
0.504176 0.863601i \(-0.331796\pi\)
\(752\) 0 0
\(753\) 854.351 1.13460
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 421.694i − 0.557060i −0.960428 0.278530i \(-0.910153\pi\)
0.960428 0.278530i \(-0.0898471\pi\)
\(758\) 0 0
\(759\) 22.0104i 0.0289992i
\(760\) 0 0
\(761\) 1415.76 1.86039 0.930196 0.367063i \(-0.119637\pi\)
0.930196 + 0.367063i \(0.119637\pi\)
\(762\) 0 0
\(763\) 1393.88 1.82684
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 317.261i 0.413639i
\(768\) 0 0
\(769\) 414.210 0.538635 0.269318 0.963051i \(-0.413202\pi\)
0.269318 + 0.963051i \(0.413202\pi\)
\(770\) 0 0
\(771\) −2170.76 −2.81551
\(772\) 0 0
\(773\) 727.056i 0.940564i 0.882516 + 0.470282i \(0.155848\pi\)
−0.882516 + 0.470282i \(0.844152\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −1902.94 −2.44909
\(778\) 0 0
\(779\) 396.879 0.509473
\(780\) 0 0
\(781\) 38.2763i 0.0490094i
\(782\) 0 0
\(783\) − 987.519i − 1.26120i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −1030.11 −1.30890 −0.654451 0.756104i \(-0.727100\pi\)
−0.654451 + 0.756104i \(0.727100\pi\)
\(788\) 0 0
\(789\) − 101.032i − 0.128050i
\(790\) 0 0
\(791\) 588.407i 0.743878i
\(792\) 0 0
\(793\) 60.6835 0.0765239
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 371.202i − 0.465750i −0.972507 0.232875i \(-0.925187\pi\)
0.972507 0.232875i \(-0.0748132\pi\)
\(798\) 0 0
\(799\) − 19.8162i − 0.0248013i
\(800\) 0 0
\(801\) −1192.99 −1.48938
\(802\) 0 0
\(803\) 39.3879 0.0490509
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) − 442.668i − 0.548536i
\(808\) 0 0
\(809\) −77.7771 −0.0961398 −0.0480699 0.998844i \(-0.515307\pi\)
−0.0480699 + 0.998844i \(0.515307\pi\)
\(810\) 0 0
\(811\) 1407.90 1.73600 0.868000 0.496564i \(-0.165405\pi\)
0.868000 + 0.496564i \(0.165405\pi\)
\(812\) 0 0
\(813\) 904.350i 1.11236i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 245.500 0.300489
\(818\) 0 0
\(819\) −440.000 −0.537241
\(820\) 0 0
\(821\) − 820.275i − 0.999116i −0.866280 0.499558i \(-0.833496\pi\)
0.866280 0.499558i \(-0.166504\pi\)
\(822\) 0 0
\(823\) 1385.41i 1.68336i 0.539976 + 0.841681i \(0.318433\pi\)
−0.539976 + 0.841681i \(0.681567\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −258.898 −0.313057 −0.156529 0.987673i \(-0.550030\pi\)
−0.156529 + 0.987673i \(0.550030\pi\)
\(828\) 0 0
\(829\) − 1299.31i − 1.56732i −0.621190 0.783660i \(-0.713351\pi\)
0.621190 0.783660i \(-0.286649\pi\)
\(830\) 0 0
\(831\) − 335.901i − 0.404213i
\(832\) 0 0
\(833\) −22.4894 −0.0269980
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 521.276i 0.622791i
\(838\) 0 0
\(839\) − 804.961i − 0.959429i −0.877425 0.479715i \(-0.840740\pi\)
0.877425 0.479715i \(-0.159260\pi\)
\(840\) 0 0
\(841\) −897.650 −1.06736
\(842\) 0 0
\(843\) −2425.04 −2.87668
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 927.268i 1.09477i
\(848\) 0 0
\(849\) 2401.48 2.82859
\(850\) 0 0
\(851\) 503.607 0.591782
\(852\) 0 0
\(853\) 470.811i 0.551948i 0.961165 + 0.275974i \(0.0890003\pi\)
−0.961165 + 0.275974i \(0.911000\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −266.105 −0.310508 −0.155254 0.987875i \(-0.549620\pi\)
−0.155254 + 0.987875i \(0.549620\pi\)
\(858\) 0 0
\(859\) 1442.02 1.67872 0.839360 0.543576i \(-0.182930\pi\)
0.839360 + 0.543576i \(0.182930\pi\)
\(860\) 0 0
\(861\) − 553.681i − 0.643067i
\(862\) 0 0
\(863\) 364.495i 0.422358i 0.977447 + 0.211179i \(0.0677303\pi\)
−0.977447 + 0.211179i \(0.932270\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −1359.82 −1.56842
\(868\) 0 0
\(869\) 47.5711i 0.0547424i
\(870\) 0 0
\(871\) − 311.696i − 0.357860i
\(872\) 0 0
\(873\) −1382.29 −1.58338
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 77.4289i − 0.0882883i −0.999025 0.0441442i \(-0.985944\pi\)
0.999025 0.0441442i \(-0.0140561\pi\)
\(878\) 0 0
\(879\) 1552.09i 1.76574i
\(880\) 0 0
\(881\) 724.932 0.822851 0.411426 0.911443i \(-0.365031\pi\)
0.411426 + 0.911443i \(0.365031\pi\)
\(882\) 0 0
\(883\) 493.342 0.558711 0.279356 0.960188i \(-0.409879\pi\)
0.279356 + 0.960188i \(0.409879\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1514.47i 1.70741i 0.520758 + 0.853705i \(0.325649\pi\)
−0.520758 + 0.853705i \(0.674351\pi\)
\(888\) 0 0
\(889\) 1097.59 1.23464
\(890\) 0 0
\(891\) −5.69194 −0.00638826
\(892\) 0 0
\(893\) − 230.979i − 0.258655i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 191.601 0.213602
\(898\) 0 0
\(899\) 917.771 1.02088
\(900\) 0 0
\(901\) − 90.2359i − 0.100151i
\(902\) 0 0
\(903\) − 342.493i − 0.379284i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −851.570 −0.938887 −0.469443 0.882963i \(-0.655545\pi\)
−0.469443 + 0.882963i \(0.655545\pi\)
\(908\) 0 0
\(909\) 1469.79i 1.61693i
\(910\) 0 0
\(911\) − 517.728i − 0.568308i −0.958779 0.284154i \(-0.908287\pi\)
0.958779 0.284154i \(-0.0917127\pi\)
\(912\) 0 0
\(913\) −0.126031 −0.000138041 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 845.585i 0.922121i
\(918\) 0 0
\(919\) − 657.730i − 0.715701i −0.933779 0.357851i \(-0.883510\pi\)
0.933779 0.357851i \(-0.116490\pi\)
\(920\) 0 0
\(921\) −47.1672 −0.0512130
\(922\) 0 0
\(923\) 333.195 0.360992
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 1420.40i 1.53226i
\(928\) 0 0
\(929\) −1206.28 −1.29847 −0.649237 0.760586i \(-0.724912\pi\)
−0.649237 + 0.760586i \(0.724912\pi\)
\(930\) 0 0
\(931\) −262.138 −0.281566
\(932\) 0 0
\(933\) 960.003i 1.02894i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −216.730 −0.231302 −0.115651 0.993290i \(-0.536895\pi\)
−0.115651 + 0.993290i \(0.536895\pi\)
\(938\) 0 0
\(939\) 1252.98 1.33438
\(940\) 0 0
\(941\) 749.322i 0.796304i 0.917320 + 0.398152i \(0.130348\pi\)
−0.917320 + 0.398152i \(0.869652\pi\)
\(942\) 0 0
\(943\) 146.530i 0.155387i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 114.160 0.120549 0.0602743 0.998182i \(-0.480802\pi\)
0.0602743 + 0.998182i \(0.480802\pi\)
\(948\) 0 0
\(949\) − 342.872i − 0.361298i
\(950\) 0 0
\(951\) − 1544.02i − 1.62358i
\(952\) 0 0
\(953\) 820.680 0.861154 0.430577 0.902554i \(-0.358310\pi\)
0.430577 + 0.902554i \(0.358310\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) − 94.2997i − 0.0985368i
\(958\) 0 0
\(959\) − 1730.50i − 1.80448i
\(960\) 0 0
\(961\) 476.542 0.495881
\(962\) 0 0
\(963\) 460.109 0.477787
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 1108.56i − 1.14639i −0.819420 0.573194i \(-0.805704\pi\)
0.819420 0.573194i \(-0.194296\pi\)
\(968\) 0 0
\(969\) 285.560 0.294696
\(970\) 0 0
\(971\) 1372.41 1.41340 0.706698 0.707516i \(-0.250184\pi\)
0.706698 + 0.707516i \(0.250184\pi\)
\(972\) 0 0
\(973\) − 747.916i − 0.768670i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −927.224 −0.949052 −0.474526 0.880241i \(-0.657381\pi\)
−0.474526 + 0.880241i \(0.657381\pi\)
\(978\) 0 0
\(979\) −40.3932 −0.0412597
\(980\) 0 0
\(981\) 2531.63i 2.58066i
\(982\) 0 0
\(983\) − 354.106i − 0.360230i −0.983646 0.180115i \(-0.942353\pi\)
0.983646 0.180115i \(-0.0576469\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −322.236 −0.326480
\(988\) 0 0
\(989\) 90.6396i 0.0916478i
\(990\) 0 0
\(991\) 537.545i 0.542427i 0.962519 + 0.271213i \(0.0874249\pi\)
−0.962519 + 0.271213i \(0.912575\pi\)
\(992\) 0 0
\(993\) 292.614 0.294677
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 441.759i − 0.443088i −0.975150 0.221544i \(-0.928890\pi\)
0.975150 0.221544i \(-0.0711096\pi\)
\(998\) 0 0
\(999\) − 1225.48i − 1.22671i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 800.3.g.h.751.7 8
4.3 odd 2 200.3.g.h.51.3 8
5.2 odd 4 160.3.e.c.79.2 8
5.3 odd 4 160.3.e.c.79.7 8
5.4 even 2 inner 800.3.g.h.751.2 8
8.3 odd 2 inner 800.3.g.h.751.8 8
8.5 even 2 200.3.g.h.51.4 8
15.2 even 4 1440.3.p.g.559.2 8
15.8 even 4 1440.3.p.g.559.8 8
20.3 even 4 40.3.e.c.19.2 yes 8
20.7 even 4 40.3.e.c.19.7 yes 8
20.19 odd 2 200.3.g.h.51.6 8
40.3 even 4 160.3.e.c.79.8 8
40.13 odd 4 40.3.e.c.19.8 yes 8
40.19 odd 2 inner 800.3.g.h.751.1 8
40.27 even 4 160.3.e.c.79.1 8
40.29 even 2 200.3.g.h.51.5 8
40.37 odd 4 40.3.e.c.19.1 8
60.23 odd 4 360.3.p.g.19.7 8
60.47 odd 4 360.3.p.g.19.2 8
80.3 even 4 1280.3.h.m.1279.14 16
80.13 odd 4 1280.3.h.m.1279.2 16
80.27 even 4 1280.3.h.m.1279.16 16
80.37 odd 4 1280.3.h.m.1279.4 16
80.43 even 4 1280.3.h.m.1279.3 16
80.53 odd 4 1280.3.h.m.1279.15 16
80.67 even 4 1280.3.h.m.1279.1 16
80.77 odd 4 1280.3.h.m.1279.13 16
120.53 even 4 360.3.p.g.19.1 8
120.77 even 4 360.3.p.g.19.8 8
120.83 odd 4 1440.3.p.g.559.1 8
120.107 odd 4 1440.3.p.g.559.7 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.3.e.c.19.1 8 40.37 odd 4
40.3.e.c.19.2 yes 8 20.3 even 4
40.3.e.c.19.7 yes 8 20.7 even 4
40.3.e.c.19.8 yes 8 40.13 odd 4
160.3.e.c.79.1 8 40.27 even 4
160.3.e.c.79.2 8 5.2 odd 4
160.3.e.c.79.7 8 5.3 odd 4
160.3.e.c.79.8 8 40.3 even 4
200.3.g.h.51.3 8 4.3 odd 2
200.3.g.h.51.4 8 8.5 even 2
200.3.g.h.51.5 8 40.29 even 2
200.3.g.h.51.6 8 20.19 odd 2
360.3.p.g.19.1 8 120.53 even 4
360.3.p.g.19.2 8 60.47 odd 4
360.3.p.g.19.7 8 60.23 odd 4
360.3.p.g.19.8 8 120.77 even 4
800.3.g.h.751.1 8 40.19 odd 2 inner
800.3.g.h.751.2 8 5.4 even 2 inner
800.3.g.h.751.7 8 1.1 even 1 trivial
800.3.g.h.751.8 8 8.3 odd 2 inner
1280.3.h.m.1279.1 16 80.67 even 4
1280.3.h.m.1279.2 16 80.13 odd 4
1280.3.h.m.1279.3 16 80.43 even 4
1280.3.h.m.1279.4 16 80.37 odd 4
1280.3.h.m.1279.13 16 80.77 odd 4
1280.3.h.m.1279.14 16 80.3 even 4
1280.3.h.m.1279.15 16 80.53 odd 4
1280.3.h.m.1279.16 16 80.27 even 4
1440.3.p.g.559.1 8 120.83 odd 4
1440.3.p.g.559.2 8 15.2 even 4
1440.3.p.g.559.7 8 120.107 odd 4
1440.3.p.g.559.8 8 15.8 even 4