Properties

Label 800.3.g.h.751.2
Level $800$
Weight $3$
Character 800.751
Analytic conductor $21.798$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [800,3,Mod(751,800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("800.751");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 800 = 2^{5} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 800.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.7984211488\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.53824000000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 6x^{6} + 36x^{4} - 96x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{14} \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 751.2
Root \(1.48020 + 1.34500i\) of defining polynomial
Character \(\chi\) \(=\) 800.751
Dual form 800.3.g.h.751.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.79002 q^{3} +7.67752i q^{7} +13.9443 q^{9} +0.472136 q^{11} +4.10995i q^{13} -2.26154 q^{17} +26.3607 q^{19} -36.7754i q^{21} -9.73249i q^{23} -23.6832 q^{27} -41.6971i q^{29} +22.0104i q^{31} -2.26154 q^{33} +51.7449i q^{37} -19.6867i q^{39} +15.0557 q^{41} -9.31310 q^{43} +8.76226i q^{47} -9.94427 q^{49} +10.8328 q^{51} +39.9002i q^{53} -126.268 q^{57} -77.1935 q^{59} +14.7650i q^{61} +107.057i q^{63} -75.8395 q^{67} +46.6188i q^{69} +81.0705i q^{71} -83.4249 q^{73} +3.62483i q^{77} +100.757i q^{79} -12.0557 q^{81} +0.266939 q^{83} +199.730i q^{87} -85.5542 q^{89} -31.5542 q^{91} -105.430i q^{93} +99.1297 q^{97} +6.58359 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 40 q^{9} - 32 q^{11} + 32 q^{19} + 192 q^{41} - 8 q^{49} - 128 q^{51} - 224 q^{59} - 168 q^{81} - 112 q^{89} + 320 q^{91} + 160 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/800\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(577\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −4.79002 −1.59667 −0.798336 0.602212i \(-0.794286\pi\)
−0.798336 + 0.602212i \(0.794286\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 7.67752i 1.09679i 0.836220 + 0.548394i \(0.184761\pi\)
−0.836220 + 0.548394i \(0.815239\pi\)
\(8\) 0 0
\(9\) 13.9443 1.54936
\(10\) 0 0
\(11\) 0.472136 0.0429215 0.0214607 0.999770i \(-0.493168\pi\)
0.0214607 + 0.999770i \(0.493168\pi\)
\(12\) 0 0
\(13\) 4.10995i 0.316150i 0.987427 + 0.158075i \(0.0505287\pi\)
−0.987427 + 0.158075i \(0.949471\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −2.26154 −0.133032 −0.0665159 0.997785i \(-0.521188\pi\)
−0.0665159 + 0.997785i \(0.521188\pi\)
\(18\) 0 0
\(19\) 26.3607 1.38740 0.693702 0.720262i \(-0.255978\pi\)
0.693702 + 0.720262i \(0.255978\pi\)
\(20\) 0 0
\(21\) − 36.7754i − 1.75121i
\(22\) 0 0
\(23\) − 9.73249i − 0.423152i −0.977362 0.211576i \(-0.932140\pi\)
0.977362 0.211576i \(-0.0678595\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −23.6832 −0.877154
\(28\) 0 0
\(29\) − 41.6971i − 1.43783i −0.695097 0.718916i \(-0.744639\pi\)
0.695097 0.718916i \(-0.255361\pi\)
\(30\) 0 0
\(31\) 22.0104i 0.710013i 0.934864 + 0.355007i \(0.115521\pi\)
−0.934864 + 0.355007i \(0.884479\pi\)
\(32\) 0 0
\(33\) −2.26154 −0.0685315
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 51.7449i 1.39851i 0.714872 + 0.699256i \(0.246485\pi\)
−0.714872 + 0.699256i \(0.753515\pi\)
\(38\) 0 0
\(39\) − 19.6867i − 0.504787i
\(40\) 0 0
\(41\) 15.0557 0.367213 0.183606 0.983000i \(-0.441223\pi\)
0.183606 + 0.983000i \(0.441223\pi\)
\(42\) 0 0
\(43\) −9.31310 −0.216584 −0.108292 0.994119i \(-0.534538\pi\)
−0.108292 + 0.994119i \(0.534538\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 8.76226i 0.186431i 0.995646 + 0.0932156i \(0.0297146\pi\)
−0.995646 + 0.0932156i \(0.970285\pi\)
\(48\) 0 0
\(49\) −9.94427 −0.202944
\(50\) 0 0
\(51\) 10.8328 0.212408
\(52\) 0 0
\(53\) 39.9002i 0.752834i 0.926450 + 0.376417i \(0.122844\pi\)
−0.926450 + 0.376417i \(0.877156\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −126.268 −2.21523
\(58\) 0 0
\(59\) −77.1935 −1.30836 −0.654182 0.756337i \(-0.726987\pi\)
−0.654182 + 0.756337i \(0.726987\pi\)
\(60\) 0 0
\(61\) 14.7650i 0.242050i 0.992649 + 0.121025i \(0.0386181\pi\)
−0.992649 + 0.121025i \(0.961382\pi\)
\(62\) 0 0
\(63\) 107.057i 1.69932i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −75.8395 −1.13193 −0.565966 0.824428i \(-0.691497\pi\)
−0.565966 + 0.824428i \(0.691497\pi\)
\(68\) 0 0
\(69\) 46.6188i 0.675635i
\(70\) 0 0
\(71\) 81.0705i 1.14184i 0.821006 + 0.570919i \(0.193413\pi\)
−0.821006 + 0.570919i \(0.806587\pi\)
\(72\) 0 0
\(73\) −83.4249 −1.14281 −0.571403 0.820669i \(-0.693601\pi\)
−0.571403 + 0.820669i \(0.693601\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 3.62483i 0.0470757i
\(78\) 0 0
\(79\) 100.757i 1.27541i 0.770281 + 0.637704i \(0.220116\pi\)
−0.770281 + 0.637704i \(0.779884\pi\)
\(80\) 0 0
\(81\) −12.0557 −0.148836
\(82\) 0 0
\(83\) 0.266939 0.00321613 0.00160806 0.999999i \(-0.499488\pi\)
0.00160806 + 0.999999i \(0.499488\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 199.730i 2.29575i
\(88\) 0 0
\(89\) −85.5542 −0.961283 −0.480641 0.876917i \(-0.659596\pi\)
−0.480641 + 0.876917i \(0.659596\pi\)
\(90\) 0 0
\(91\) −31.5542 −0.346749
\(92\) 0 0
\(93\) − 105.430i − 1.13366i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 99.1297 1.02196 0.510978 0.859594i \(-0.329284\pi\)
0.510978 + 0.859594i \(0.329284\pi\)
\(98\) 0 0
\(99\) 6.58359 0.0665009
\(100\) 0 0
\(101\) 105.405i 1.04361i 0.853065 + 0.521805i \(0.174741\pi\)
−0.853065 + 0.521805i \(0.825259\pi\)
\(102\) 0 0
\(103\) − 101.863i − 0.988958i −0.869190 0.494479i \(-0.835359\pi\)
0.869190 0.494479i \(-0.164641\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −32.9962 −0.308376 −0.154188 0.988042i \(-0.549276\pi\)
−0.154188 + 0.988042i \(0.549276\pi\)
\(108\) 0 0
\(109\) 181.554i 1.66563i 0.553552 + 0.832814i \(0.313272\pi\)
−0.553552 + 0.832814i \(0.686728\pi\)
\(110\) 0 0
\(111\) − 247.859i − 2.23296i
\(112\) 0 0
\(113\) 76.6403 0.678233 0.339116 0.940744i \(-0.389872\pi\)
0.339116 + 0.940744i \(0.389872\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 57.3102i 0.489831i
\(118\) 0 0
\(119\) − 17.3630i − 0.145908i
\(120\) 0 0
\(121\) −120.777 −0.998158
\(122\) 0 0
\(123\) −72.1172 −0.586319
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 142.962i − 1.12569i −0.826564 0.562843i \(-0.809708\pi\)
0.826564 0.562843i \(-0.190292\pi\)
\(128\) 0 0
\(129\) 44.6099 0.345813
\(130\) 0 0
\(131\) −110.138 −0.840746 −0.420373 0.907351i \(-0.638101\pi\)
−0.420373 + 0.907351i \(0.638101\pi\)
\(132\) 0 0
\(133\) 202.385i 1.52169i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −225.398 −1.64524 −0.822620 0.568592i \(-0.807488\pi\)
−0.822620 + 0.568592i \(0.807488\pi\)
\(138\) 0 0
\(139\) 97.4164 0.700837 0.350419 0.936593i \(-0.386039\pi\)
0.350419 + 0.936593i \(0.386039\pi\)
\(140\) 0 0
\(141\) − 41.9714i − 0.297669i
\(142\) 0 0
\(143\) 1.94045i 0.0135696i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 47.6332 0.324036
\(148\) 0 0
\(149\) − 191.397i − 1.28454i −0.766477 0.642271i \(-0.777992\pi\)
0.766477 0.642271i \(-0.222008\pi\)
\(150\) 0 0
\(151\) − 68.3549i − 0.452682i −0.974048 0.226341i \(-0.927324\pi\)
0.974048 0.226341i \(-0.0726763\pi\)
\(152\) 0 0
\(153\) −31.5355 −0.206115
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 155.235i 0.988756i 0.869247 + 0.494378i \(0.164604\pi\)
−0.869247 + 0.494378i \(0.835396\pi\)
\(158\) 0 0
\(159\) − 191.123i − 1.20203i
\(160\) 0 0
\(161\) 74.7214 0.464108
\(162\) 0 0
\(163\) −90.4765 −0.555070 −0.277535 0.960715i \(-0.589518\pi\)
−0.277535 + 0.960715i \(0.589518\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 100.778i − 0.603461i −0.953393 0.301730i \(-0.902436\pi\)
0.953393 0.301730i \(-0.0975642\pi\)
\(168\) 0 0
\(169\) 152.108 0.900049
\(170\) 0 0
\(171\) 367.580 2.14959
\(172\) 0 0
\(173\) 54.6556i 0.315928i 0.987445 + 0.157964i \(0.0504930\pi\)
−0.987445 + 0.157964i \(0.949507\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 369.758 2.08903
\(178\) 0 0
\(179\) −106.807 −0.596684 −0.298342 0.954459i \(-0.596434\pi\)
−0.298342 + 0.954459i \(0.596434\pi\)
\(180\) 0 0
\(181\) 144.778i 0.799879i 0.916542 + 0.399939i \(0.130969\pi\)
−0.916542 + 0.399939i \(0.869031\pi\)
\(182\) 0 0
\(183\) − 70.7248i − 0.386474i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −1.06775 −0.00570992
\(188\) 0 0
\(189\) − 181.828i − 0.962052i
\(190\) 0 0
\(191\) 210.809i 1.10371i 0.833939 + 0.551857i \(0.186081\pi\)
−0.833939 + 0.551857i \(0.813919\pi\)
\(192\) 0 0
\(193\) 108.176 0.560496 0.280248 0.959928i \(-0.409583\pi\)
0.280248 + 0.959928i \(0.409583\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 308.300i − 1.56497i −0.622667 0.782487i \(-0.713951\pi\)
0.622667 0.782487i \(-0.286049\pi\)
\(198\) 0 0
\(199\) − 247.859i − 1.24552i −0.782412 0.622761i \(-0.786011\pi\)
0.782412 0.622761i \(-0.213989\pi\)
\(200\) 0 0
\(201\) 363.272 1.80733
\(202\) 0 0
\(203\) 320.130 1.57700
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) − 135.712i − 0.655616i
\(208\) 0 0
\(209\) 12.4458 0.0595494
\(210\) 0 0
\(211\) −230.584 −1.09281 −0.546407 0.837520i \(-0.684005\pi\)
−0.546407 + 0.837520i \(0.684005\pi\)
\(212\) 0 0
\(213\) − 388.329i − 1.82314i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −168.985 −0.778734
\(218\) 0 0
\(219\) 399.607 1.82469
\(220\) 0 0
\(221\) − 9.29480i − 0.0420579i
\(222\) 0 0
\(223\) 177.782i 0.797229i 0.917118 + 0.398615i \(0.130509\pi\)
−0.917118 + 0.398615i \(0.869491\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 203.301 0.895601 0.447800 0.894134i \(-0.352208\pi\)
0.447800 + 0.894134i \(0.352208\pi\)
\(228\) 0 0
\(229\) 81.0705i 0.354020i 0.984209 + 0.177010i \(0.0566425\pi\)
−0.984209 + 0.177010i \(0.943358\pi\)
\(230\) 0 0
\(231\) − 17.3630i − 0.0751645i
\(232\) 0 0
\(233\) −56.2864 −0.241573 −0.120786 0.992679i \(-0.538542\pi\)
−0.120786 + 0.992679i \(0.538542\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 482.629i − 2.03641i
\(238\) 0 0
\(239\) 360.235i 1.50726i 0.657300 + 0.753629i \(0.271699\pi\)
−0.657300 + 0.753629i \(0.728301\pi\)
\(240\) 0 0
\(241\) −197.495 −0.819483 −0.409741 0.912202i \(-0.634381\pi\)
−0.409741 + 0.912202i \(0.634381\pi\)
\(242\) 0 0
\(243\) 270.896 1.11480
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 108.341i 0.438627i
\(248\) 0 0
\(249\) −1.27864 −0.00513510
\(250\) 0 0
\(251\) 178.361 0.710600 0.355300 0.934752i \(-0.384379\pi\)
0.355300 + 0.934752i \(0.384379\pi\)
\(252\) 0 0
\(253\) − 4.59506i − 0.0181623i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 453.183 1.76336 0.881679 0.471849i \(-0.156413\pi\)
0.881679 + 0.471849i \(0.156413\pi\)
\(258\) 0 0
\(259\) −397.272 −1.53387
\(260\) 0 0
\(261\) − 581.436i − 2.22772i
\(262\) 0 0
\(263\) 21.0921i 0.0801981i 0.999196 + 0.0400990i \(0.0127673\pi\)
−0.999196 + 0.0400990i \(0.987233\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 409.806 1.53485
\(268\) 0 0
\(269\) − 92.4148i − 0.343549i −0.985136 0.171775i \(-0.945050\pi\)
0.985136 0.171775i \(-0.0549501\pi\)
\(270\) 0 0
\(271\) 188.799i 0.696675i 0.937369 + 0.348337i \(0.113254\pi\)
−0.937369 + 0.348337i \(0.886746\pi\)
\(272\) 0 0
\(273\) 151.145 0.553645
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 70.1251i 0.253159i 0.991956 + 0.126580i \(0.0403999\pi\)
−0.991956 + 0.126580i \(0.959600\pi\)
\(278\) 0 0
\(279\) 306.919i 1.10007i
\(280\) 0 0
\(281\) −506.269 −1.80167 −0.900835 0.434161i \(-0.857045\pi\)
−0.900835 + 0.434161i \(0.857045\pi\)
\(282\) 0 0
\(283\) −501.350 −1.77156 −0.885778 0.464110i \(-0.846374\pi\)
−0.885778 + 0.464110i \(0.846374\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 115.591i 0.402755i
\(288\) 0 0
\(289\) −283.885 −0.982303
\(290\) 0 0
\(291\) −474.833 −1.63173
\(292\) 0 0
\(293\) − 324.026i − 1.10589i −0.833218 0.552945i \(-0.813504\pi\)
0.833218 0.552945i \(-0.186496\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −11.1817 −0.0376487
\(298\) 0 0
\(299\) 40.0000 0.133779
\(300\) 0 0
\(301\) − 71.5015i − 0.237546i
\(302\) 0 0
\(303\) − 504.890i − 1.66630i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 9.84697 0.0320748 0.0160374 0.999871i \(-0.494895\pi\)
0.0160374 + 0.999871i \(0.494895\pi\)
\(308\) 0 0
\(309\) 487.924i 1.57904i
\(310\) 0 0
\(311\) 200.417i 0.644429i 0.946667 + 0.322214i \(0.104427\pi\)
−0.946667 + 0.322214i \(0.895573\pi\)
\(312\) 0 0
\(313\) −261.582 −0.835727 −0.417863 0.908510i \(-0.637221\pi\)
−0.417863 + 0.908510i \(0.637221\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 322.341i 1.01685i 0.861107 + 0.508425i \(0.169772\pi\)
−0.861107 + 0.508425i \(0.830228\pi\)
\(318\) 0 0
\(319\) − 19.6867i − 0.0617138i
\(320\) 0 0
\(321\) 158.053 0.492376
\(322\) 0 0
\(323\) −59.6157 −0.184569
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 869.645i − 2.65946i
\(328\) 0 0
\(329\) −67.2724 −0.204475
\(330\) 0 0
\(331\) 61.0883 0.184557 0.0922783 0.995733i \(-0.470585\pi\)
0.0922783 + 0.995733i \(0.470585\pi\)
\(332\) 0 0
\(333\) 721.545i 2.16680i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 114.960 0.341129 0.170564 0.985347i \(-0.445441\pi\)
0.170564 + 0.985347i \(0.445441\pi\)
\(338\) 0 0
\(339\) −367.108 −1.08292
\(340\) 0 0
\(341\) 10.3919i 0.0304748i
\(342\) 0 0
\(343\) 299.851i 0.874201i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −143.967 −0.414892 −0.207446 0.978246i \(-0.566515\pi\)
−0.207446 + 0.978246i \(0.566515\pi\)
\(348\) 0 0
\(349\) 35.9526i 0.103016i 0.998673 + 0.0515080i \(0.0164028\pi\)
−0.998673 + 0.0515080i \(0.983597\pi\)
\(350\) 0 0
\(351\) − 97.3365i − 0.277312i
\(352\) 0 0
\(353\) 252.536 0.715400 0.357700 0.933837i \(-0.383561\pi\)
0.357700 + 0.933837i \(0.383561\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 83.1691i 0.232967i
\(358\) 0 0
\(359\) 594.152i 1.65502i 0.561452 + 0.827509i \(0.310243\pi\)
−0.561452 + 0.827509i \(0.689757\pi\)
\(360\) 0 0
\(361\) 333.885 0.924890
\(362\) 0 0
\(363\) 578.524 1.59373
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 88.9062i 0.242251i 0.992637 + 0.121126i \(0.0386504\pi\)
−0.992637 + 0.121126i \(0.961350\pi\)
\(368\) 0 0
\(369\) 209.941 0.568946
\(370\) 0 0
\(371\) −306.334 −0.825699
\(372\) 0 0
\(373\) 83.6542i 0.224274i 0.993693 + 0.112137i \(0.0357696\pi\)
−0.993693 + 0.112137i \(0.964230\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 171.373 0.454570
\(378\) 0 0
\(379\) −135.135 −0.356556 −0.178278 0.983980i \(-0.557053\pi\)
−0.178278 + 0.983980i \(0.557053\pi\)
\(380\) 0 0
\(381\) 684.791i 1.79735i
\(382\) 0 0
\(383\) − 498.526i − 1.30164i −0.759234 0.650818i \(-0.774426\pi\)
0.759234 0.650818i \(-0.225574\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −129.864 −0.335567
\(388\) 0 0
\(389\) − 308.420i − 0.792854i −0.918066 0.396427i \(-0.870250\pi\)
0.918066 0.396427i \(-0.129750\pi\)
\(390\) 0 0
\(391\) 22.0104i 0.0562926i
\(392\) 0 0
\(393\) 527.562 1.34240
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 297.682i − 0.749828i −0.927060 0.374914i \(-0.877672\pi\)
0.927060 0.374914i \(-0.122328\pi\)
\(398\) 0 0
\(399\) − 969.426i − 2.42964i
\(400\) 0 0
\(401\) 148.663 0.370729 0.185365 0.982670i \(-0.440653\pi\)
0.185365 + 0.982670i \(0.440653\pi\)
\(402\) 0 0
\(403\) −90.4616 −0.224470
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 24.4306i 0.0600261i
\(408\) 0 0
\(409\) −442.387 −1.08163 −0.540815 0.841141i \(-0.681884\pi\)
−0.540815 + 0.841141i \(0.681884\pi\)
\(410\) 0 0
\(411\) 1079.66 2.62691
\(412\) 0 0
\(413\) − 592.654i − 1.43500i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −466.626 −1.11901
\(418\) 0 0
\(419\) 536.184 1.27968 0.639838 0.768510i \(-0.279001\pi\)
0.639838 + 0.768510i \(0.279001\pi\)
\(420\) 0 0
\(421\) 514.582i 1.22228i 0.791521 + 0.611142i \(0.209290\pi\)
−0.791521 + 0.611142i \(0.790710\pi\)
\(422\) 0 0
\(423\) 122.183i 0.288850i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −113.359 −0.265477
\(428\) 0 0
\(429\) − 9.29480i − 0.0216662i
\(430\) 0 0
\(431\) 86.8151i 0.201427i 0.994915 + 0.100714i \(0.0321126\pi\)
−0.994915 + 0.100714i \(0.967887\pi\)
\(432\) 0 0
\(433\) −494.017 −1.14092 −0.570458 0.821327i \(-0.693234\pi\)
−0.570458 + 0.821327i \(0.693234\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 256.555i − 0.587082i
\(438\) 0 0
\(439\) − 524.700i − 1.19522i −0.801789 0.597608i \(-0.796118\pi\)
0.801789 0.597608i \(-0.203882\pi\)
\(440\) 0 0
\(441\) −138.666 −0.314435
\(442\) 0 0
\(443\) −496.575 −1.12094 −0.560469 0.828176i \(-0.689379\pi\)
−0.560469 + 0.828176i \(0.689379\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 916.795i 2.05099i
\(448\) 0 0
\(449\) 332.158 0.739773 0.369886 0.929077i \(-0.379397\pi\)
0.369886 + 0.929077i \(0.379397\pi\)
\(450\) 0 0
\(451\) 7.10835 0.0157613
\(452\) 0 0
\(453\) 327.421i 0.722785i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −252.788 −0.553147 −0.276574 0.960993i \(-0.589199\pi\)
−0.276574 + 0.960993i \(0.589199\pi\)
\(458\) 0 0
\(459\) 53.5604 0.116689
\(460\) 0 0
\(461\) − 832.716i − 1.80633i −0.429299 0.903163i \(-0.641239\pi\)
0.429299 0.903163i \(-0.358761\pi\)
\(462\) 0 0
\(463\) 854.205i 1.84494i 0.386074 + 0.922468i \(0.373831\pi\)
−0.386074 + 0.922468i \(0.626169\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 102.726 0.219970 0.109985 0.993933i \(-0.464920\pi\)
0.109985 + 0.993933i \(0.464920\pi\)
\(468\) 0 0
\(469\) − 582.259i − 1.24149i
\(470\) 0 0
\(471\) − 743.577i − 1.57872i
\(472\) 0 0
\(473\) −4.39705 −0.00929608
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 556.379i 1.16641i
\(478\) 0 0
\(479\) 268.772i 0.561111i 0.959838 + 0.280556i \(0.0905187\pi\)
−0.959838 + 0.280556i \(0.909481\pi\)
\(480\) 0 0
\(481\) −212.669 −0.442139
\(482\) 0 0
\(483\) −357.917 −0.741028
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 504.065i 1.03504i 0.855671 + 0.517520i \(0.173145\pi\)
−0.855671 + 0.517520i \(0.826855\pi\)
\(488\) 0 0
\(489\) 433.384 0.886266
\(490\) 0 0
\(491\) −130.020 −0.264807 −0.132403 0.991196i \(-0.542269\pi\)
−0.132403 + 0.991196i \(0.542269\pi\)
\(492\) 0 0
\(493\) 94.2997i 0.191277i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −622.421 −1.25236
\(498\) 0 0
\(499\) 664.184 1.33103 0.665515 0.746384i \(-0.268212\pi\)
0.665515 + 0.746384i \(0.268212\pi\)
\(500\) 0 0
\(501\) 482.728i 0.963529i
\(502\) 0 0
\(503\) 550.015i 1.09347i 0.837306 + 0.546735i \(0.184129\pi\)
−0.837306 + 0.546735i \(0.815871\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −728.602 −1.43708
\(508\) 0 0
\(509\) 349.843i 0.687314i 0.939095 + 0.343657i \(0.111666\pi\)
−0.939095 + 0.343657i \(0.888334\pi\)
\(510\) 0 0
\(511\) − 640.496i − 1.25342i
\(512\) 0 0
\(513\) −624.304 −1.21697
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 4.13698i 0.00800189i
\(518\) 0 0
\(519\) − 261.801i − 0.504434i
\(520\) 0 0
\(521\) 29.7771 0.0571537 0.0285769 0.999592i \(-0.490902\pi\)
0.0285769 + 0.999592i \(0.490902\pi\)
\(522\) 0 0
\(523\) 603.023 1.15301 0.576504 0.817094i \(-0.304416\pi\)
0.576504 + 0.817094i \(0.304416\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 49.7774i − 0.0944543i
\(528\) 0 0
\(529\) 434.279 0.820943
\(530\) 0 0
\(531\) −1076.41 −2.02713
\(532\) 0 0
\(533\) 61.8782i 0.116094i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 511.605 0.952710
\(538\) 0 0
\(539\) −4.69505 −0.00871066
\(540\) 0 0
\(541\) − 163.368i − 0.301974i −0.988536 0.150987i \(-0.951755\pi\)
0.988536 0.150987i \(-0.0482451\pi\)
\(542\) 0 0
\(543\) − 693.490i − 1.27714i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −524.218 −0.958350 −0.479175 0.877719i \(-0.659064\pi\)
−0.479175 + 0.877719i \(0.659064\pi\)
\(548\) 0 0
\(549\) 205.888i 0.375023i
\(550\) 0 0
\(551\) − 1099.16i − 1.99485i
\(552\) 0 0
\(553\) −773.566 −1.39885
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 589.515i 1.05837i 0.848505 + 0.529187i \(0.177503\pi\)
−0.848505 + 0.529187i \(0.822497\pi\)
\(558\) 0 0
\(559\) − 38.2763i − 0.0684728i
\(560\) 0 0
\(561\) 5.11456 0.00911687
\(562\) 0 0
\(563\) 557.763 0.990698 0.495349 0.868694i \(-0.335040\pi\)
0.495349 + 0.868694i \(0.335040\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) − 92.5581i − 0.163242i
\(568\) 0 0
\(569\) 542.715 0.953805 0.476903 0.878956i \(-0.341759\pi\)
0.476903 + 0.878956i \(0.341759\pi\)
\(570\) 0 0
\(571\) 476.695 0.834842 0.417421 0.908713i \(-0.362934\pi\)
0.417421 + 0.908713i \(0.362934\pi\)
\(572\) 0 0
\(573\) − 1009.78i − 1.76227i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −865.659 −1.50027 −0.750137 0.661282i \(-0.770013\pi\)
−0.750137 + 0.661282i \(0.770013\pi\)
\(578\) 0 0
\(579\) −518.164 −0.894929
\(580\) 0 0
\(581\) 2.04943i 0.00352741i
\(582\) 0 0
\(583\) 18.8383i 0.0323127i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 567.091 0.966083 0.483041 0.875597i \(-0.339532\pi\)
0.483041 + 0.875597i \(0.339532\pi\)
\(588\) 0 0
\(589\) 580.209i 0.985075i
\(590\) 0 0
\(591\) 1476.76i 2.49875i
\(592\) 0 0
\(593\) 421.774 0.711254 0.355627 0.934628i \(-0.384267\pi\)
0.355627 + 0.934628i \(0.384267\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 1187.25i 1.98869i
\(598\) 0 0
\(599\) 120.444i 0.201075i 0.994933 + 0.100538i \(0.0320563\pi\)
−0.994933 + 0.100538i \(0.967944\pi\)
\(600\) 0 0
\(601\) 340.158 0.565986 0.282993 0.959122i \(-0.408673\pi\)
0.282993 + 0.959122i \(0.408673\pi\)
\(602\) 0 0
\(603\) −1057.53 −1.75377
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 115.621i 0.190479i 0.995454 + 0.0952396i \(0.0303617\pi\)
−0.995454 + 0.0952396i \(0.969638\pi\)
\(608\) 0 0
\(609\) −1533.43 −2.51795
\(610\) 0 0
\(611\) −36.0124 −0.0589401
\(612\) 0 0
\(613\) 1095.63i 1.78733i 0.448738 + 0.893663i \(0.351874\pi\)
−0.448738 + 0.893663i \(0.648126\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 716.775 1.16171 0.580855 0.814007i \(-0.302718\pi\)
0.580855 + 0.814007i \(0.302718\pi\)
\(618\) 0 0
\(619\) 118.584 0.191573 0.0957864 0.995402i \(-0.469463\pi\)
0.0957864 + 0.995402i \(0.469463\pi\)
\(620\) 0 0
\(621\) 230.496i 0.371169i
\(622\) 0 0
\(623\) − 656.844i − 1.05432i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −59.6157 −0.0950809
\(628\) 0 0
\(629\) − 117.023i − 0.186046i
\(630\) 0 0
\(631\) 1168.62i 1.85201i 0.377515 + 0.926004i \(0.376779\pi\)
−0.377515 + 0.926004i \(0.623221\pi\)
\(632\) 0 0
\(633\) 1104.50 1.74486
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) − 40.8704i − 0.0641608i
\(638\) 0 0
\(639\) 1130.47i 1.76912i
\(640\) 0 0
\(641\) −244.158 −0.380902 −0.190451 0.981697i \(-0.560995\pi\)
−0.190451 + 0.981697i \(0.560995\pi\)
\(642\) 0 0
\(643\) −868.847 −1.35124 −0.675620 0.737250i \(-0.736124\pi\)
−0.675620 + 0.737250i \(0.736124\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 35.1333i − 0.0543019i −0.999631 0.0271510i \(-0.991357\pi\)
0.999631 0.0271510i \(-0.00864348\pi\)
\(648\) 0 0
\(649\) −36.4458 −0.0561569
\(650\) 0 0
\(651\) 809.443 1.24338
\(652\) 0 0
\(653\) 580.068i 0.888313i 0.895949 + 0.444157i \(0.146497\pi\)
−0.895949 + 0.444157i \(0.853503\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −1163.30 −1.77062
\(658\) 0 0
\(659\) −992.788 −1.50651 −0.753253 0.657731i \(-0.771517\pi\)
−0.753253 + 0.657731i \(0.771517\pi\)
\(660\) 0 0
\(661\) − 719.647i − 1.08872i −0.838850 0.544362i \(-0.816772\pi\)
0.838850 0.544362i \(-0.183228\pi\)
\(662\) 0 0
\(663\) 44.5223i 0.0671528i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −405.817 −0.608421
\(668\) 0 0
\(669\) − 851.580i − 1.27291i
\(670\) 0 0
\(671\) 6.97110i 0.0103891i
\(672\) 0 0
\(673\) −189.591 −0.281711 −0.140855 0.990030i \(-0.544985\pi\)
−0.140855 + 0.990030i \(0.544985\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 327.192i − 0.483297i −0.970364 0.241649i \(-0.922312\pi\)
0.970364 0.241649i \(-0.0776882\pi\)
\(678\) 0 0
\(679\) 761.070i 1.12087i
\(680\) 0 0
\(681\) −973.817 −1.42998
\(682\) 0 0
\(683\) 673.539 0.986148 0.493074 0.869987i \(-0.335873\pi\)
0.493074 + 0.869987i \(0.335873\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 388.329i − 0.565254i
\(688\) 0 0
\(689\) −163.988 −0.238008
\(690\) 0 0
\(691\) −237.036 −0.343033 −0.171516 0.985181i \(-0.554867\pi\)
−0.171516 + 0.985181i \(0.554867\pi\)
\(692\) 0 0
\(693\) 50.5456i 0.0729374i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −34.0491 −0.0488510
\(698\) 0 0
\(699\) 269.613 0.385712
\(700\) 0 0
\(701\) 476.306i 0.679466i 0.940522 + 0.339733i \(0.110337\pi\)
−0.940522 + 0.339733i \(0.889663\pi\)
\(702\) 0 0
\(703\) 1364.03i 1.94030i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −809.246 −1.14462
\(708\) 0 0
\(709\) 964.778i 1.36076i 0.732860 + 0.680380i \(0.238185\pi\)
−0.732860 + 0.680380i \(0.761815\pi\)
\(710\) 0 0
\(711\) 1404.99i 1.97607i
\(712\) 0 0
\(713\) 214.216 0.300443
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 1725.53i − 2.40660i
\(718\) 0 0
\(719\) − 899.974i − 1.25170i −0.779943 0.625851i \(-0.784752\pi\)
0.779943 0.625851i \(-0.215248\pi\)
\(720\) 0 0
\(721\) 782.053 1.08468
\(722\) 0 0
\(723\) 946.006 1.30845
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 908.888i 1.25019i 0.780549 + 0.625095i \(0.214940\pi\)
−0.780549 + 0.625095i \(0.785060\pi\)
\(728\) 0 0
\(729\) −1189.09 −1.63113
\(730\) 0 0
\(731\) 21.0619 0.0288125
\(732\) 0 0
\(733\) 433.283i 0.591109i 0.955326 + 0.295554i \(0.0955043\pi\)
−0.955326 + 0.295554i \(0.904496\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −35.8065 −0.0485842
\(738\) 0 0
\(739\) −886.138 −1.19910 −0.599552 0.800336i \(-0.704655\pi\)
−0.599552 + 0.800336i \(0.704655\pi\)
\(740\) 0 0
\(741\) − 518.955i − 0.700344i
\(742\) 0 0
\(743\) − 895.305i − 1.20499i −0.798124 0.602493i \(-0.794174\pi\)
0.798124 0.602493i \(-0.205826\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 3.72226 0.00498295
\(748\) 0 0
\(749\) − 253.329i − 0.338223i
\(750\) 0 0
\(751\) − 1297.13i − 1.72720i −0.504176 0.863601i \(-0.668204\pi\)
0.504176 0.863601i \(-0.331796\pi\)
\(752\) 0 0
\(753\) −854.351 −1.13460
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 421.694i 0.557060i 0.960428 + 0.278530i \(0.0898471\pi\)
−0.960428 + 0.278530i \(0.910153\pi\)
\(758\) 0 0
\(759\) 22.0104i 0.0289992i
\(760\) 0 0
\(761\) 1415.76 1.86039 0.930196 0.367063i \(-0.119637\pi\)
0.930196 + 0.367063i \(0.119637\pi\)
\(762\) 0 0
\(763\) −1393.88 −1.82684
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 317.261i − 0.413639i
\(768\) 0 0
\(769\) 414.210 0.538635 0.269318 0.963051i \(-0.413202\pi\)
0.269318 + 0.963051i \(0.413202\pi\)
\(770\) 0 0
\(771\) −2170.76 −2.81551
\(772\) 0 0
\(773\) − 727.056i − 0.940564i −0.882516 0.470282i \(-0.844152\pi\)
0.882516 0.470282i \(-0.155848\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 1902.94 2.44909
\(778\) 0 0
\(779\) 396.879 0.509473
\(780\) 0 0
\(781\) 38.2763i 0.0490094i
\(782\) 0 0
\(783\) 987.519i 1.26120i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 1030.11 1.30890 0.654451 0.756104i \(-0.272900\pi\)
0.654451 + 0.756104i \(0.272900\pi\)
\(788\) 0 0
\(789\) − 101.032i − 0.128050i
\(790\) 0 0
\(791\) 588.407i 0.743878i
\(792\) 0 0
\(793\) −60.6835 −0.0765239
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 371.202i 0.465750i 0.972507 + 0.232875i \(0.0748132\pi\)
−0.972507 + 0.232875i \(0.925187\pi\)
\(798\) 0 0
\(799\) − 19.8162i − 0.0248013i
\(800\) 0 0
\(801\) −1192.99 −1.48938
\(802\) 0 0
\(803\) −39.3879 −0.0490509
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 442.668i 0.548536i
\(808\) 0 0
\(809\) −77.7771 −0.0961398 −0.0480699 0.998844i \(-0.515307\pi\)
−0.0480699 + 0.998844i \(0.515307\pi\)
\(810\) 0 0
\(811\) 1407.90 1.73600 0.868000 0.496564i \(-0.165405\pi\)
0.868000 + 0.496564i \(0.165405\pi\)
\(812\) 0 0
\(813\) − 904.350i − 1.11236i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −245.500 −0.300489
\(818\) 0 0
\(819\) −440.000 −0.537241
\(820\) 0 0
\(821\) − 820.275i − 0.999116i −0.866280 0.499558i \(-0.833496\pi\)
0.866280 0.499558i \(-0.166504\pi\)
\(822\) 0 0
\(823\) − 1385.41i − 1.68336i −0.539976 0.841681i \(-0.681567\pi\)
0.539976 0.841681i \(-0.318433\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 258.898 0.313057 0.156529 0.987673i \(-0.449970\pi\)
0.156529 + 0.987673i \(0.449970\pi\)
\(828\) 0 0
\(829\) − 1299.31i − 1.56732i −0.621190 0.783660i \(-0.713351\pi\)
0.621190 0.783660i \(-0.286649\pi\)
\(830\) 0 0
\(831\) − 335.901i − 0.404213i
\(832\) 0 0
\(833\) 22.4894 0.0269980
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) − 521.276i − 0.622791i
\(838\) 0 0
\(839\) − 804.961i − 0.959429i −0.877425 0.479715i \(-0.840740\pi\)
0.877425 0.479715i \(-0.159260\pi\)
\(840\) 0 0
\(841\) −897.650 −1.06736
\(842\) 0 0
\(843\) 2425.04 2.87668
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 927.268i − 1.09477i
\(848\) 0 0
\(849\) 2401.48 2.82859
\(850\) 0 0
\(851\) 503.607 0.591782
\(852\) 0 0
\(853\) − 470.811i − 0.551948i −0.961165 0.275974i \(-0.911000\pi\)
0.961165 0.275974i \(-0.0890003\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 266.105 0.310508 0.155254 0.987875i \(-0.450380\pi\)
0.155254 + 0.987875i \(0.450380\pi\)
\(858\) 0 0
\(859\) 1442.02 1.67872 0.839360 0.543576i \(-0.182930\pi\)
0.839360 + 0.543576i \(0.182930\pi\)
\(860\) 0 0
\(861\) − 553.681i − 0.643067i
\(862\) 0 0
\(863\) − 364.495i − 0.422358i −0.977447 0.211179i \(-0.932270\pi\)
0.977447 0.211179i \(-0.0677303\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 1359.82 1.56842
\(868\) 0 0
\(869\) 47.5711i 0.0547424i
\(870\) 0 0
\(871\) − 311.696i − 0.357860i
\(872\) 0 0
\(873\) 1382.29 1.58338
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 77.4289i 0.0882883i 0.999025 + 0.0441442i \(0.0140561\pi\)
−0.999025 + 0.0441442i \(0.985944\pi\)
\(878\) 0 0
\(879\) 1552.09i 1.76574i
\(880\) 0 0
\(881\) 724.932 0.822851 0.411426 0.911443i \(-0.365031\pi\)
0.411426 + 0.911443i \(0.365031\pi\)
\(882\) 0 0
\(883\) −493.342 −0.558711 −0.279356 0.960188i \(-0.590121\pi\)
−0.279356 + 0.960188i \(0.590121\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 1514.47i − 1.70741i −0.520758 0.853705i \(-0.674351\pi\)
0.520758 0.853705i \(-0.325649\pi\)
\(888\) 0 0
\(889\) 1097.59 1.23464
\(890\) 0 0
\(891\) −5.69194 −0.00638826
\(892\) 0 0
\(893\) 230.979i 0.258655i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −191.601 −0.213602
\(898\) 0 0
\(899\) 917.771 1.02088
\(900\) 0 0
\(901\) − 90.2359i − 0.100151i
\(902\) 0 0
\(903\) 342.493i 0.379284i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 851.570 0.938887 0.469443 0.882963i \(-0.344455\pi\)
0.469443 + 0.882963i \(0.344455\pi\)
\(908\) 0 0
\(909\) 1469.79i 1.61693i
\(910\) 0 0
\(911\) − 517.728i − 0.568308i −0.958779 0.284154i \(-0.908287\pi\)
0.958779 0.284154i \(-0.0917127\pi\)
\(912\) 0 0
\(913\) 0.126031 0.000138041 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 845.585i − 0.922121i
\(918\) 0 0
\(919\) − 657.730i − 0.715701i −0.933779 0.357851i \(-0.883510\pi\)
0.933779 0.357851i \(-0.116490\pi\)
\(920\) 0 0
\(921\) −47.1672 −0.0512130
\(922\) 0 0
\(923\) −333.195 −0.360992
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) − 1420.40i − 1.53226i
\(928\) 0 0
\(929\) −1206.28 −1.29847 −0.649237 0.760586i \(-0.724912\pi\)
−0.649237 + 0.760586i \(0.724912\pi\)
\(930\) 0 0
\(931\) −262.138 −0.281566
\(932\) 0 0
\(933\) − 960.003i − 1.02894i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 216.730 0.231302 0.115651 0.993290i \(-0.463105\pi\)
0.115651 + 0.993290i \(0.463105\pi\)
\(938\) 0 0
\(939\) 1252.98 1.33438
\(940\) 0 0
\(941\) 749.322i 0.796304i 0.917320 + 0.398152i \(0.130348\pi\)
−0.917320 + 0.398152i \(0.869652\pi\)
\(942\) 0 0
\(943\) − 146.530i − 0.155387i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −114.160 −0.120549 −0.0602743 0.998182i \(-0.519198\pi\)
−0.0602743 + 0.998182i \(0.519198\pi\)
\(948\) 0 0
\(949\) − 342.872i − 0.361298i
\(950\) 0 0
\(951\) − 1544.02i − 1.62358i
\(952\) 0 0
\(953\) −820.680 −0.861154 −0.430577 0.902554i \(-0.641690\pi\)
−0.430577 + 0.902554i \(0.641690\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 94.2997i 0.0985368i
\(958\) 0 0
\(959\) − 1730.50i − 1.80448i
\(960\) 0 0
\(961\) 476.542 0.495881
\(962\) 0 0
\(963\) −460.109 −0.477787
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 1108.56i 1.14639i 0.819420 + 0.573194i \(0.194296\pi\)
−0.819420 + 0.573194i \(0.805704\pi\)
\(968\) 0 0
\(969\) 285.560 0.294696
\(970\) 0 0
\(971\) 1372.41 1.41340 0.706698 0.707516i \(-0.250184\pi\)
0.706698 + 0.707516i \(0.250184\pi\)
\(972\) 0 0
\(973\) 747.916i 0.768670i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 927.224 0.949052 0.474526 0.880241i \(-0.342619\pi\)
0.474526 + 0.880241i \(0.342619\pi\)
\(978\) 0 0
\(979\) −40.3932 −0.0412597
\(980\) 0 0
\(981\) 2531.63i 2.58066i
\(982\) 0 0
\(983\) 354.106i 0.360230i 0.983646 + 0.180115i \(0.0576469\pi\)
−0.983646 + 0.180115i \(0.942353\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 322.236 0.326480
\(988\) 0 0
\(989\) 90.6396i 0.0916478i
\(990\) 0 0
\(991\) 537.545i 0.542427i 0.962519 + 0.271213i \(0.0874249\pi\)
−0.962519 + 0.271213i \(0.912575\pi\)
\(992\) 0 0
\(993\) −292.614 −0.294677
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 441.759i 0.443088i 0.975150 + 0.221544i \(0.0711096\pi\)
−0.975150 + 0.221544i \(0.928890\pi\)
\(998\) 0 0
\(999\) − 1225.48i − 1.22671i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 800.3.g.h.751.2 8
4.3 odd 2 200.3.g.h.51.6 8
5.2 odd 4 160.3.e.c.79.7 8
5.3 odd 4 160.3.e.c.79.2 8
5.4 even 2 inner 800.3.g.h.751.7 8
8.3 odd 2 inner 800.3.g.h.751.1 8
8.5 even 2 200.3.g.h.51.5 8
15.2 even 4 1440.3.p.g.559.8 8
15.8 even 4 1440.3.p.g.559.2 8
20.3 even 4 40.3.e.c.19.7 yes 8
20.7 even 4 40.3.e.c.19.2 yes 8
20.19 odd 2 200.3.g.h.51.3 8
40.3 even 4 160.3.e.c.79.1 8
40.13 odd 4 40.3.e.c.19.1 8
40.19 odd 2 inner 800.3.g.h.751.8 8
40.27 even 4 160.3.e.c.79.8 8
40.29 even 2 200.3.g.h.51.4 8
40.37 odd 4 40.3.e.c.19.8 yes 8
60.23 odd 4 360.3.p.g.19.2 8
60.47 odd 4 360.3.p.g.19.7 8
80.3 even 4 1280.3.h.m.1279.1 16
80.13 odd 4 1280.3.h.m.1279.13 16
80.27 even 4 1280.3.h.m.1279.3 16
80.37 odd 4 1280.3.h.m.1279.15 16
80.43 even 4 1280.3.h.m.1279.16 16
80.53 odd 4 1280.3.h.m.1279.4 16
80.67 even 4 1280.3.h.m.1279.14 16
80.77 odd 4 1280.3.h.m.1279.2 16
120.53 even 4 360.3.p.g.19.8 8
120.77 even 4 360.3.p.g.19.1 8
120.83 odd 4 1440.3.p.g.559.7 8
120.107 odd 4 1440.3.p.g.559.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.3.e.c.19.1 8 40.13 odd 4
40.3.e.c.19.2 yes 8 20.7 even 4
40.3.e.c.19.7 yes 8 20.3 even 4
40.3.e.c.19.8 yes 8 40.37 odd 4
160.3.e.c.79.1 8 40.3 even 4
160.3.e.c.79.2 8 5.3 odd 4
160.3.e.c.79.7 8 5.2 odd 4
160.3.e.c.79.8 8 40.27 even 4
200.3.g.h.51.3 8 20.19 odd 2
200.3.g.h.51.4 8 40.29 even 2
200.3.g.h.51.5 8 8.5 even 2
200.3.g.h.51.6 8 4.3 odd 2
360.3.p.g.19.1 8 120.77 even 4
360.3.p.g.19.2 8 60.23 odd 4
360.3.p.g.19.7 8 60.47 odd 4
360.3.p.g.19.8 8 120.53 even 4
800.3.g.h.751.1 8 8.3 odd 2 inner
800.3.g.h.751.2 8 1.1 even 1 trivial
800.3.g.h.751.7 8 5.4 even 2 inner
800.3.g.h.751.8 8 40.19 odd 2 inner
1280.3.h.m.1279.1 16 80.3 even 4
1280.3.h.m.1279.2 16 80.77 odd 4
1280.3.h.m.1279.3 16 80.27 even 4
1280.3.h.m.1279.4 16 80.53 odd 4
1280.3.h.m.1279.13 16 80.13 odd 4
1280.3.h.m.1279.14 16 80.67 even 4
1280.3.h.m.1279.15 16 80.37 odd 4
1280.3.h.m.1279.16 16 80.43 even 4
1440.3.p.g.559.1 8 120.107 odd 4
1440.3.p.g.559.2 8 15.8 even 4
1440.3.p.g.559.7 8 120.83 odd 4
1440.3.p.g.559.8 8 15.2 even 4