Properties

Label 360.3.p.g.19.1
Level $360$
Weight $3$
Character 360.19
Analytic conductor $9.809$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [360,3,Mod(19,360)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(360, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("360.19");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 360 = 2^{3} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 360.p (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.80928951697\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.53824000000.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 6x^{6} + 36x^{4} + 96x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 19.1
Root \(-1.34500 - 1.48020i\) of defining polynomial
Character \(\chi\) \(=\) 360.19
Dual form 360.3.p.g.19.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.34500 - 1.48020i) q^{2} +(-0.381966 + 3.98172i) q^{4} +(-4.35250 - 2.46084i) q^{5} -7.67752 q^{7} +(6.40747 - 4.79002i) q^{8} +(2.21158 + 9.75238i) q^{10} +0.472136 q^{11} -4.10995 q^{13} +(10.3262 + 11.3642i) q^{14} +(-15.7082 - 3.04176i) q^{16} +2.26154i q^{17} +26.3607 q^{19} +(11.4609 - 16.3905i) q^{20} +(-0.635021 - 0.698854i) q^{22} +9.73249 q^{23} +(12.8885 + 21.4216i) q^{25} +(5.52786 + 6.08353i) q^{26} +(2.93255 - 30.5697i) q^{28} +41.6971i q^{29} +22.0104i q^{31} +(16.6251 + 27.3424i) q^{32} +(3.34752 - 3.04176i) q^{34} +(33.4164 + 18.8931i) q^{35} +51.7449 q^{37} +(-35.4550 - 39.0190i) q^{38} +(-39.6760 + 5.08080i) q^{40} -15.0557 q^{41} -9.31310i q^{43} +(-0.180340 + 1.87991i) q^{44} +(-13.0902 - 14.4060i) q^{46} +8.76226 q^{47} +9.94427 q^{49} +(14.3732 - 47.8896i) q^{50} +(1.56986 - 16.3647i) q^{52} +39.9002 q^{53} +(-2.05497 - 1.16185i) q^{55} +(-49.1935 + 36.7754i) q^{56} +(61.7200 - 56.0825i) q^{58} +77.1935 q^{59} -14.7650i q^{61} +(32.5797 - 29.6039i) q^{62} +(18.1115 - 61.3838i) q^{64} +(17.8885 + 10.1139i) q^{65} +75.8395i q^{67} +(-9.00482 - 0.863831i) q^{68} +(-16.9794 - 74.8741i) q^{70} -81.0705i q^{71} +83.4249i q^{73} +(-69.5967 - 76.5927i) q^{74} +(-10.0689 + 104.961i) q^{76} -3.62483 q^{77} -100.757i q^{79} +(60.8847 + 51.8946i) q^{80} +(20.2499 + 22.2854i) q^{82} -0.266939i q^{83} +(5.56528 - 9.84336i) q^{85} +(-13.7852 + 12.5261i) q^{86} +(3.02520 - 2.26154i) q^{88} -85.5542 q^{89} +31.5542 q^{91} +(-3.71748 + 38.7521i) q^{92} +(-11.7852 - 12.9699i) q^{94} +(-114.735 - 64.8694i) q^{95} +99.1297i q^{97} +(-13.3750 - 14.7195i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 12 q^{4} + 20 q^{10} - 32 q^{11} + 20 q^{14} - 72 q^{16} + 32 q^{19} - 20 q^{20} - 40 q^{25} + 80 q^{26} + 152 q^{34} + 160 q^{35} - 80 q^{40} - 192 q^{41} + 88 q^{44} - 60 q^{46} + 8 q^{49} + 200 q^{50}+ \cdots - 300 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/360\mathbb{Z}\right)^\times\).

\(n\) \(181\) \(217\) \(271\) \(281\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.34500 1.48020i −0.672499 0.740098i
\(3\) 0 0
\(4\) −0.381966 + 3.98172i −0.0954915 + 0.995430i
\(5\) −4.35250 2.46084i −0.870500 0.492168i
\(6\) 0 0
\(7\) −7.67752 −1.09679 −0.548394 0.836220i \(-0.684761\pi\)
−0.548394 + 0.836220i \(0.684761\pi\)
\(8\) 6.40747 4.79002i 0.800934 0.598752i
\(9\) 0 0
\(10\) 2.21158 + 9.75238i 0.221158 + 0.975238i
\(11\) 0.472136 0.0429215 0.0214607 0.999770i \(-0.493168\pi\)
0.0214607 + 0.999770i \(0.493168\pi\)
\(12\) 0 0
\(13\) −4.10995 −0.316150 −0.158075 0.987427i \(-0.550529\pi\)
−0.158075 + 0.987427i \(0.550529\pi\)
\(14\) 10.3262 + 11.3642i 0.737588 + 0.811731i
\(15\) 0 0
\(16\) −15.7082 3.04176i −0.981763 0.190110i
\(17\) 2.26154i 0.133032i 0.997785 + 0.0665159i \(0.0211883\pi\)
−0.997785 + 0.0665159i \(0.978812\pi\)
\(18\) 0 0
\(19\) 26.3607 1.38740 0.693702 0.720262i \(-0.255978\pi\)
0.693702 + 0.720262i \(0.255978\pi\)
\(20\) 11.4609 16.3905i 0.573044 0.819525i
\(21\) 0 0
\(22\) −0.635021 0.698854i −0.0288646 0.0317661i
\(23\) 9.73249 0.423152 0.211576 0.977362i \(-0.432140\pi\)
0.211576 + 0.977362i \(0.432140\pi\)
\(24\) 0 0
\(25\) 12.8885 + 21.4216i 0.515542 + 0.856864i
\(26\) 5.52786 + 6.08353i 0.212610 + 0.233982i
\(27\) 0 0
\(28\) 2.93255 30.5697i 0.104734 1.09178i
\(29\) 41.6971i 1.43783i 0.695097 + 0.718916i \(0.255361\pi\)
−0.695097 + 0.718916i \(0.744639\pi\)
\(30\) 0 0
\(31\) 22.0104i 0.710013i 0.934864 + 0.355007i \(0.115521\pi\)
−0.934864 + 0.355007i \(0.884479\pi\)
\(32\) 16.6251 + 27.3424i 0.519534 + 0.854450i
\(33\) 0 0
\(34\) 3.34752 3.04176i 0.0984566 0.0894637i
\(35\) 33.4164 + 18.8931i 0.954755 + 0.539804i
\(36\) 0 0
\(37\) 51.7449 1.39851 0.699256 0.714872i \(-0.253515\pi\)
0.699256 + 0.714872i \(0.253515\pi\)
\(38\) −35.4550 39.0190i −0.933027 1.02682i
\(39\) 0 0
\(40\) −39.6760 + 5.08080i −0.991900 + 0.127020i
\(41\) −15.0557 −0.367213 −0.183606 0.983000i \(-0.558777\pi\)
−0.183606 + 0.983000i \(0.558777\pi\)
\(42\) 0 0
\(43\) 9.31310i 0.216584i −0.994119 0.108292i \(-0.965462\pi\)
0.994119 0.108292i \(-0.0345381\pi\)
\(44\) −0.180340 + 1.87991i −0.00409863 + 0.0427253i
\(45\) 0 0
\(46\) −13.0902 14.4060i −0.284569 0.313174i
\(47\) 8.76226 0.186431 0.0932156 0.995646i \(-0.470285\pi\)
0.0932156 + 0.995646i \(0.470285\pi\)
\(48\) 0 0
\(49\) 9.94427 0.202944
\(50\) 14.3732 47.8896i 0.287463 0.957792i
\(51\) 0 0
\(52\) 1.56986 16.3647i 0.0301896 0.314705i
\(53\) 39.9002 0.752834 0.376417 0.926450i \(-0.377156\pi\)
0.376417 + 0.926450i \(0.377156\pi\)
\(54\) 0 0
\(55\) −2.05497 1.16185i −0.0373631 0.0211246i
\(56\) −49.1935 + 36.7754i −0.878455 + 0.656704i
\(57\) 0 0
\(58\) 61.7200 56.0825i 1.06414 0.966940i
\(59\) 77.1935 1.30836 0.654182 0.756337i \(-0.273013\pi\)
0.654182 + 0.756337i \(0.273013\pi\)
\(60\) 0 0
\(61\) 14.7650i 0.242050i −0.992649 0.121025i \(-0.961382\pi\)
0.992649 0.121025i \(-0.0386181\pi\)
\(62\) 32.5797 29.6039i 0.525480 0.477483i
\(63\) 0 0
\(64\) 18.1115 61.3838i 0.282992 0.959122i
\(65\) 17.8885 + 10.1139i 0.275208 + 0.155599i
\(66\) 0 0
\(67\) 75.8395i 1.13193i 0.824428 + 0.565966i \(0.191497\pi\)
−0.824428 + 0.565966i \(0.808503\pi\)
\(68\) −9.00482 0.863831i −0.132424 0.0127034i
\(69\) 0 0
\(70\) −16.9794 74.8741i −0.242563 1.06963i
\(71\) 81.0705i 1.14184i −0.821006 0.570919i \(-0.806587\pi\)
0.821006 0.570919i \(-0.193413\pi\)
\(72\) 0 0
\(73\) 83.4249i 1.14281i 0.820669 + 0.571403i \(0.193601\pi\)
−0.820669 + 0.571403i \(0.806399\pi\)
\(74\) −69.5967 76.5927i −0.940497 1.03504i
\(75\) 0 0
\(76\) −10.0689 + 104.961i −0.132485 + 1.38106i
\(77\) −3.62483 −0.0470757
\(78\) 0 0
\(79\) 100.757i 1.27541i −0.770281 0.637704i \(-0.779884\pi\)
0.770281 0.637704i \(-0.220116\pi\)
\(80\) 60.8847 + 51.8946i 0.761059 + 0.648683i
\(81\) 0 0
\(82\) 20.2499 + 22.2854i 0.246950 + 0.271774i
\(83\) 0.266939i 0.00321613i −0.999999 0.00160806i \(-0.999488\pi\)
0.999999 0.00160806i \(-0.000511863\pi\)
\(84\) 0 0
\(85\) 5.56528 9.84336i 0.0654739 0.115804i
\(86\) −13.7852 + 12.5261i −0.160293 + 0.145652i
\(87\) 0 0
\(88\) 3.02520 2.26154i 0.0343773 0.0256993i
\(89\) −85.5542 −0.961283 −0.480641 0.876917i \(-0.659596\pi\)
−0.480641 + 0.876917i \(0.659596\pi\)
\(90\) 0 0
\(91\) 31.5542 0.346749
\(92\) −3.71748 + 38.7521i −0.0404074 + 0.421218i
\(93\) 0 0
\(94\) −11.7852 12.9699i −0.125375 0.137977i
\(95\) −114.735 64.8694i −1.20774 0.682836i
\(96\) 0 0
\(97\) 99.1297i 1.02196i 0.859594 + 0.510978i \(0.170716\pi\)
−0.859594 + 0.510978i \(0.829284\pi\)
\(98\) −13.3750 14.7195i −0.136480 0.150199i
\(99\) 0 0
\(100\) −90.2179 + 43.1363i −0.902179 + 0.431363i
\(101\) 105.405i 1.04361i 0.853065 + 0.521805i \(0.174741\pi\)
−0.853065 + 0.521805i \(0.825259\pi\)
\(102\) 0 0
\(103\) −101.863 −0.988958 −0.494479 0.869190i \(-0.664641\pi\)
−0.494479 + 0.869190i \(0.664641\pi\)
\(104\) −26.3344 + 19.6867i −0.253215 + 0.189295i
\(105\) 0 0
\(106\) −53.6656 59.0601i −0.506280 0.557171i
\(107\) 32.9962i 0.308376i −0.988042 0.154188i \(-0.950724\pi\)
0.988042 0.154188i \(-0.0492762\pi\)
\(108\) 0 0
\(109\) 181.554i 1.66563i 0.553552 + 0.832814i \(0.313272\pi\)
−0.553552 + 0.832814i \(0.686728\pi\)
\(110\) 1.04416 + 4.60445i 0.00949240 + 0.0418586i
\(111\) 0 0
\(112\) 120.600 + 23.3532i 1.07679 + 0.208511i
\(113\) 76.6403i 0.678233i 0.940744 + 0.339116i \(0.110128\pi\)
−0.940744 + 0.339116i \(0.889872\pi\)
\(114\) 0 0
\(115\) −42.3607 23.9501i −0.368354 0.208262i
\(116\) −166.026 15.9269i −1.43126 0.137301i
\(117\) 0 0
\(118\) −103.825 114.262i −0.879873 0.968318i
\(119\) 17.3630i 0.145908i
\(120\) 0 0
\(121\) −120.777 −0.998158
\(122\) −21.8552 + 19.8589i −0.179141 + 0.162778i
\(123\) 0 0
\(124\) −87.6393 8.40723i −0.706769 0.0678002i
\(125\) −3.38228 124.954i −0.0270582 0.999634i
\(126\) 0 0
\(127\) 142.962 1.12569 0.562843 0.826564i \(-0.309708\pi\)
0.562843 + 0.826564i \(0.309708\pi\)
\(128\) −115.220 + 55.7526i −0.900156 + 0.435567i
\(129\) 0 0
\(130\) −9.08946 40.0818i −0.0699189 0.308321i
\(131\) −110.138 −0.840746 −0.420373 0.907351i \(-0.638101\pi\)
−0.420373 + 0.907351i \(0.638101\pi\)
\(132\) 0 0
\(133\) −202.385 −1.52169
\(134\) 112.257 102.004i 0.837741 0.761223i
\(135\) 0 0
\(136\) 10.8328 + 14.4908i 0.0796531 + 0.106550i
\(137\) 225.398i 1.64524i 0.568592 + 0.822620i \(0.307488\pi\)
−0.568592 + 0.822620i \(0.692512\pi\)
\(138\) 0 0
\(139\) 97.4164 0.700837 0.350419 0.936593i \(-0.386039\pi\)
0.350419 + 0.936593i \(0.386039\pi\)
\(140\) −87.9911 + 125.838i −0.628508 + 0.898845i
\(141\) 0 0
\(142\) −120.000 + 109.040i −0.845073 + 0.767885i
\(143\) −1.94045 −0.0135696
\(144\) 0 0
\(145\) 102.610 181.487i 0.707655 1.25163i
\(146\) 123.485 112.206i 0.845790 0.768536i
\(147\) 0 0
\(148\) −19.7648 + 206.034i −0.133546 + 1.39212i
\(149\) 191.397i 1.28454i 0.766477 + 0.642271i \(0.222008\pi\)
−0.766477 + 0.642271i \(0.777992\pi\)
\(150\) 0 0
\(151\) 68.3549i 0.452682i −0.974048 0.226341i \(-0.927324\pi\)
0.974048 0.226341i \(-0.0726763\pi\)
\(152\) 168.905 126.268i 1.11122 0.830711i
\(153\) 0 0
\(154\) 4.87539 + 5.36547i 0.0316584 + 0.0348407i
\(155\) 54.1641 95.8004i 0.349446 0.618067i
\(156\) 0 0
\(157\) 155.235 0.988756 0.494378 0.869247i \(-0.335396\pi\)
0.494378 + 0.869247i \(0.335396\pi\)
\(158\) −149.141 + 135.518i −0.943928 + 0.857710i
\(159\) 0 0
\(160\) −5.07544 159.919i −0.0317215 0.999497i
\(161\) −74.7214 −0.464108
\(162\) 0 0
\(163\) 90.4765i 0.555070i −0.960715 0.277535i \(-0.910482\pi\)
0.960715 0.277535i \(-0.0895175\pi\)
\(164\) 5.75078 59.9477i 0.0350657 0.365535i
\(165\) 0 0
\(166\) −0.395122 + 0.359032i −0.00238025 + 0.00216284i
\(167\) −100.778 −0.603461 −0.301730 0.953393i \(-0.597564\pi\)
−0.301730 + 0.953393i \(0.597564\pi\)
\(168\) 0 0
\(169\) −152.108 −0.900049
\(170\) −22.0554 + 5.00157i −0.129738 + 0.0294210i
\(171\) 0 0
\(172\) 37.0822 + 3.55729i 0.215594 + 0.0206819i
\(173\) 54.6556 0.315928 0.157964 0.987445i \(-0.449507\pi\)
0.157964 + 0.987445i \(0.449507\pi\)
\(174\) 0 0
\(175\) −98.9520 164.465i −0.565440 0.939799i
\(176\) −7.41641 1.43613i −0.0421387 0.00815981i
\(177\) 0 0
\(178\) 115.070 + 126.637i 0.646461 + 0.711444i
\(179\) 106.807 0.596684 0.298342 0.954459i \(-0.403566\pi\)
0.298342 + 0.954459i \(0.403566\pi\)
\(180\) 0 0
\(181\) 144.778i 0.799879i −0.916542 0.399939i \(-0.869031\pi\)
0.916542 0.399939i \(-0.130969\pi\)
\(182\) −42.4403 46.7064i −0.233188 0.256629i
\(183\) 0 0
\(184\) 62.3607 46.6188i 0.338917 0.253363i
\(185\) −225.220 127.336i −1.21740 0.688302i
\(186\) 0 0
\(187\) 1.06775i 0.00570992i
\(188\) −3.34689 + 34.8889i −0.0178026 + 0.185579i
\(189\) 0 0
\(190\) 58.2986 + 257.079i 0.306835 + 1.35305i
\(191\) 210.809i 1.10371i −0.833939 0.551857i \(-0.813919\pi\)
0.833939 0.551857i \(-0.186081\pi\)
\(192\) 0 0
\(193\) 108.176i 0.560496i −0.959928 0.280248i \(-0.909583\pi\)
0.959928 0.280248i \(-0.0904168\pi\)
\(194\) 146.731 133.329i 0.756347 0.687263i
\(195\) 0 0
\(196\) −3.79837 + 39.5953i −0.0193795 + 0.202017i
\(197\) 308.300 1.56497 0.782487 0.622667i \(-0.213951\pi\)
0.782487 + 0.622667i \(0.213951\pi\)
\(198\) 0 0
\(199\) 247.859i 1.24552i 0.782412 + 0.622761i \(0.213989\pi\)
−0.782412 + 0.622761i \(0.786011\pi\)
\(200\) 185.193 + 75.5221i 0.925965 + 0.377610i
\(201\) 0 0
\(202\) 156.020 141.769i 0.772375 0.701826i
\(203\) 320.130i 1.57700i
\(204\) 0 0
\(205\) 65.5301 + 37.0497i 0.319659 + 0.180730i
\(206\) 137.005 + 150.777i 0.665073 + 0.731926i
\(207\) 0 0
\(208\) 64.5599 + 12.5015i 0.310384 + 0.0601033i
\(209\) 12.4458 0.0595494
\(210\) 0 0
\(211\) 230.584 1.09281 0.546407 0.837520i \(-0.315995\pi\)
0.546407 + 0.837520i \(0.315995\pi\)
\(212\) −15.2405 + 158.871i −0.0718892 + 0.749393i
\(213\) 0 0
\(214\) −48.8409 + 44.3799i −0.228229 + 0.207383i
\(215\) −22.9180 + 40.5353i −0.106595 + 0.188536i
\(216\) 0 0
\(217\) 168.985i 0.778734i
\(218\) 268.735 244.189i 1.23273 1.12013i
\(219\) 0 0
\(220\) 5.41109 7.73854i 0.0245959 0.0351752i
\(221\) 9.29480i 0.0420579i
\(222\) 0 0
\(223\) 177.782 0.797229 0.398615 0.917118i \(-0.369491\pi\)
0.398615 + 0.917118i \(0.369491\pi\)
\(224\) −127.639 209.922i −0.569818 0.937151i
\(225\) 0 0
\(226\) 113.443 103.081i 0.501959 0.456110i
\(227\) 203.301i 0.895601i 0.894134 + 0.447800i \(0.147792\pi\)
−0.894134 + 0.447800i \(0.852208\pi\)
\(228\) 0 0
\(229\) 81.0705i 0.354020i 0.984209 + 0.177010i \(0.0566425\pi\)
−0.984209 + 0.177010i \(0.943358\pi\)
\(230\) 21.5241 + 94.9149i 0.0935832 + 0.412674i
\(231\) 0 0
\(232\) 199.730 + 267.173i 0.860905 + 1.15161i
\(233\) 56.2864i 0.241573i −0.992679 0.120786i \(-0.961458\pi\)
0.992679 0.120786i \(-0.0385416\pi\)
\(234\) 0 0
\(235\) −38.1378 21.5625i −0.162288 0.0917554i
\(236\) −29.4853 + 307.363i −0.124938 + 1.30239i
\(237\) 0 0
\(238\) −25.7007 + 23.3532i −0.107986 + 0.0981227i
\(239\) 360.235i 1.50726i 0.657300 + 0.753629i \(0.271699\pi\)
−0.657300 + 0.753629i \(0.728301\pi\)
\(240\) 0 0
\(241\) −197.495 −0.819483 −0.409741 0.912202i \(-0.634381\pi\)
−0.409741 + 0.912202i \(0.634381\pi\)
\(242\) 162.445 + 178.774i 0.671260 + 0.738735i
\(243\) 0 0
\(244\) 58.7902 + 5.63974i 0.240944 + 0.0231137i
\(245\) −43.2825 24.4713i −0.176663 0.0998827i
\(246\) 0 0
\(247\) −108.341 −0.438627
\(248\) 105.430 + 141.031i 0.425122 + 0.568674i
\(249\) 0 0
\(250\) −180.408 + 173.070i −0.721631 + 0.692278i
\(251\) 178.361 0.710600 0.355300 0.934752i \(-0.384379\pi\)
0.355300 + 0.934752i \(0.384379\pi\)
\(252\) 0 0
\(253\) 4.59506 0.0181623
\(254\) −192.284 211.612i −0.757022 0.833119i
\(255\) 0 0
\(256\) 237.495 + 95.5613i 0.927716 + 0.373286i
\(257\) 453.183i 1.76336i −0.471849 0.881679i \(-0.656413\pi\)
0.471849 0.881679i \(-0.343587\pi\)
\(258\) 0 0
\(259\) −397.272 −1.53387
\(260\) −47.1036 + 67.3640i −0.181168 + 0.259092i
\(261\) 0 0
\(262\) 148.135 + 163.026i 0.565401 + 0.622235i
\(263\) −21.0921 −0.0801981 −0.0400990 0.999196i \(-0.512767\pi\)
−0.0400990 + 0.999196i \(0.512767\pi\)
\(264\) 0 0
\(265\) −173.666 98.1879i −0.655342 0.370520i
\(266\) 272.207 + 299.569i 1.02333 + 1.12620i
\(267\) 0 0
\(268\) −301.972 28.9681i −1.12676 0.108090i
\(269\) 92.4148i 0.343549i 0.985136 + 0.171775i \(0.0549501\pi\)
−0.985136 + 0.171775i \(0.945050\pi\)
\(270\) 0 0
\(271\) 188.799i 0.696675i 0.937369 + 0.348337i \(0.113254\pi\)
−0.937369 + 0.348337i \(0.886746\pi\)
\(272\) 6.87907 35.5247i 0.0252907 0.130606i
\(273\) 0 0
\(274\) 333.633 303.159i 1.21764 1.10642i
\(275\) 6.08514 + 10.1139i 0.0221278 + 0.0367779i
\(276\) 0 0
\(277\) 70.1251 0.253159 0.126580 0.991956i \(-0.459600\pi\)
0.126580 + 0.991956i \(0.459600\pi\)
\(278\) −131.025 144.195i −0.471312 0.518689i
\(279\) 0 0
\(280\) 304.613 39.0079i 1.08790 0.139314i
\(281\) 506.269 1.80167 0.900835 0.434161i \(-0.142955\pi\)
0.900835 + 0.434161i \(0.142955\pi\)
\(282\) 0 0
\(283\) 501.350i 1.77156i −0.464110 0.885778i \(-0.653626\pi\)
0.464110 0.885778i \(-0.346374\pi\)
\(284\) 322.800 + 30.9662i 1.13662 + 0.109036i
\(285\) 0 0
\(286\) 2.60990 + 2.87225i 0.00912554 + 0.0100428i
\(287\) 115.591 0.402755
\(288\) 0 0
\(289\) 283.885 0.982303
\(290\) −406.646 + 92.2163i −1.40223 + 0.317987i
\(291\) 0 0
\(292\) −332.175 31.8655i −1.13758 0.109128i
\(293\) −324.026 −1.10589 −0.552945 0.833218i \(-0.686496\pi\)
−0.552945 + 0.833218i \(0.686496\pi\)
\(294\) 0 0
\(295\) −335.985 189.961i −1.13893 0.643935i
\(296\) 331.554 247.859i 1.12012 0.837362i
\(297\) 0 0
\(298\) 283.305 257.428i 0.950688 0.863853i
\(299\) −40.0000 −0.133779
\(300\) 0 0
\(301\) 71.5015i 0.237546i
\(302\) −101.179 + 91.9372i −0.335029 + 0.304428i
\(303\) 0 0
\(304\) −414.079 80.1830i −1.36210 0.263760i
\(305\) −36.3344 + 64.2648i −0.119129 + 0.210704i
\(306\) 0 0
\(307\) 9.84697i 0.0320748i −0.999871 0.0160374i \(-0.994895\pi\)
0.999871 0.0160374i \(-0.00510509\pi\)
\(308\) 1.38456 14.4331i 0.00449533 0.0468606i
\(309\) 0 0
\(310\) −214.654 + 48.6777i −0.692432 + 0.157025i
\(311\) 200.417i 0.644429i −0.946667 0.322214i \(-0.895573\pi\)
0.946667 0.322214i \(-0.104427\pi\)
\(312\) 0 0
\(313\) 261.582i 0.835727i 0.908510 + 0.417863i \(0.137221\pi\)
−0.908510 + 0.417863i \(0.862779\pi\)
\(314\) −208.790 229.778i −0.664937 0.731777i
\(315\) 0 0
\(316\) 401.187 + 38.4858i 1.26958 + 0.121791i
\(317\) −322.341 −1.01685 −0.508425 0.861107i \(-0.669772\pi\)
−0.508425 + 0.861107i \(0.669772\pi\)
\(318\) 0 0
\(319\) 19.6867i 0.0617138i
\(320\) −229.886 + 222.604i −0.718393 + 0.695637i
\(321\) 0 0
\(322\) 100.500 + 110.602i 0.312112 + 0.343485i
\(323\) 59.6157i 0.184569i
\(324\) 0 0
\(325\) −52.9712 88.0416i −0.162988 0.270897i
\(326\) −133.923 + 121.691i −0.410807 + 0.373284i
\(327\) 0 0
\(328\) −96.4692 + 72.1172i −0.294113 + 0.219870i
\(329\) −67.2724 −0.204475
\(330\) 0 0
\(331\) −61.0883 −0.184557 −0.0922783 0.995733i \(-0.529415\pi\)
−0.0922783 + 0.995733i \(0.529415\pi\)
\(332\) 1.06287 + 0.101961i 0.00320143 + 0.000307113i
\(333\) 0 0
\(334\) 135.546 + 149.171i 0.405826 + 0.446620i
\(335\) 186.629 330.091i 0.557101 0.985348i
\(336\) 0 0
\(337\) 114.960i 0.341129i 0.985347 + 0.170564i \(0.0545591\pi\)
−0.985347 + 0.170564i \(0.945441\pi\)
\(338\) 204.585 + 225.150i 0.605282 + 0.666125i
\(339\) 0 0
\(340\) 37.0677 + 25.9192i 0.109023 + 0.0762331i
\(341\) 10.3919i 0.0304748i
\(342\) 0 0
\(343\) 299.851 0.874201
\(344\) −44.6099 59.6734i −0.129680 0.173469i
\(345\) 0 0
\(346\) −73.5116 80.9010i −0.212461 0.233818i
\(347\) 143.967i 0.414892i −0.978246 0.207446i \(-0.933485\pi\)
0.978246 0.207446i \(-0.0665151\pi\)
\(348\) 0 0
\(349\) 35.9526i 0.103016i 0.998673 + 0.0515080i \(0.0164028\pi\)
−0.998673 + 0.0515080i \(0.983597\pi\)
\(350\) −110.350 + 367.673i −0.315286 + 1.05049i
\(351\) 0 0
\(352\) 7.84930 + 12.9093i 0.0222991 + 0.0366742i
\(353\) 252.536i 0.715400i 0.933837 + 0.357700i \(0.116439\pi\)
−0.933837 + 0.357700i \(0.883561\pi\)
\(354\) 0 0
\(355\) −199.502 + 352.860i −0.561976 + 0.993971i
\(356\) 32.6788 340.653i 0.0917943 0.956890i
\(357\) 0 0
\(358\) −143.654 158.095i −0.401269 0.441605i
\(359\) 594.152i 1.65502i 0.561452 + 0.827509i \(0.310243\pi\)
−0.561452 + 0.827509i \(0.689757\pi\)
\(360\) 0 0
\(361\) 333.885 0.924890
\(362\) −214.300 + 194.726i −0.591989 + 0.537917i
\(363\) 0 0
\(364\) −12.0526 + 125.640i −0.0331116 + 0.345165i
\(365\) 205.295 363.107i 0.562453 0.994814i
\(366\) 0 0
\(367\) −88.9062 −0.242251 −0.121126 0.992637i \(-0.538650\pi\)
−0.121126 + 0.992637i \(0.538650\pi\)
\(368\) −152.880 29.6039i −0.415435 0.0804455i
\(369\) 0 0
\(370\) 114.438 + 504.636i 0.309291 + 1.36388i
\(371\) −306.334 −0.825699
\(372\) 0 0
\(373\) −83.6542 −0.224274 −0.112137 0.993693i \(-0.535770\pi\)
−0.112137 + 0.993693i \(0.535770\pi\)
\(374\) 1.58049 1.43613i 0.00422590 0.00383991i
\(375\) 0 0
\(376\) 56.1440 41.9714i 0.149319 0.111626i
\(377\) 171.373i 0.454570i
\(378\) 0 0
\(379\) −135.135 −0.356556 −0.178278 0.983980i \(-0.557053\pi\)
−0.178278 + 0.983980i \(0.557053\pi\)
\(380\) 302.117 432.064i 0.795044 1.13701i
\(381\) 0 0
\(382\) −312.039 + 283.538i −0.816857 + 0.742246i
\(383\) 498.526 1.30164 0.650818 0.759234i \(-0.274426\pi\)
0.650818 + 0.759234i \(0.274426\pi\)
\(384\) 0 0
\(385\) 15.7771 + 8.92013i 0.0409794 + 0.0231692i
\(386\) −160.122 + 145.496i −0.414823 + 0.376933i
\(387\) 0 0
\(388\) −394.707 37.8642i −1.01729 0.0975880i
\(389\) 308.420i 0.792854i 0.918066 + 0.396427i \(0.129750\pi\)
−0.918066 + 0.396427i \(0.870250\pi\)
\(390\) 0 0
\(391\) 22.0104i 0.0562926i
\(392\) 63.7177 47.6332i 0.162545 0.121513i
\(393\) 0 0
\(394\) −414.663 456.345i −1.05244 1.15824i
\(395\) −247.947 + 438.546i −0.627715 + 1.11024i
\(396\) 0 0
\(397\) −297.682 −0.749828 −0.374914 0.927060i \(-0.622328\pi\)
−0.374914 + 0.927060i \(0.622328\pi\)
\(398\) 366.880 333.370i 0.921810 0.837612i
\(399\) 0 0
\(400\) −137.296 375.699i −0.343241 0.939247i
\(401\) −148.663 −0.370729 −0.185365 0.982670i \(-0.559347\pi\)
−0.185365 + 0.982670i \(0.559347\pi\)
\(402\) 0 0
\(403\) 90.4616i 0.224470i
\(404\) −419.692 40.2610i −1.03884 0.0996559i
\(405\) 0 0
\(406\) −473.856 + 430.574i −1.16713 + 1.06053i
\(407\) 24.4306 0.0600261
\(408\) 0 0
\(409\) 442.387 1.08163 0.540815 0.841141i \(-0.318116\pi\)
0.540815 + 0.841141i \(0.318116\pi\)
\(410\) −33.2969 146.829i −0.0812119 0.358120i
\(411\) 0 0
\(412\) 38.9081 405.589i 0.0944371 0.984439i
\(413\) −592.654 −1.43500
\(414\) 0 0
\(415\) −0.656893 + 1.16185i −0.00158287 + 0.00279964i
\(416\) −68.3282 112.376i −0.164250 0.270134i
\(417\) 0 0
\(418\) −16.7396 18.4223i −0.0400469 0.0440724i
\(419\) −536.184 −1.27968 −0.639838 0.768510i \(-0.720999\pi\)
−0.639838 + 0.768510i \(0.720999\pi\)
\(420\) 0 0
\(421\) 514.582i 1.22228i −0.791521 0.611142i \(-0.790710\pi\)
0.791521 0.611142i \(-0.209290\pi\)
\(422\) −310.134 341.309i −0.734915 0.808789i
\(423\) 0 0
\(424\) 255.659 191.123i 0.602970 0.450761i
\(425\) −48.4458 + 29.1480i −0.113990 + 0.0685834i
\(426\) 0 0
\(427\) 113.359i 0.265477i
\(428\) 131.382 + 12.6034i 0.306967 + 0.0294473i
\(429\) 0 0
\(430\) 90.8249 20.5966i 0.211221 0.0478991i
\(431\) 86.8151i 0.201427i −0.994915 0.100714i \(-0.967887\pi\)
0.994915 0.100714i \(-0.0321126\pi\)
\(432\) 0 0
\(433\) 494.017i 1.14092i 0.821327 + 0.570458i \(0.193234\pi\)
−0.821327 + 0.570458i \(0.806766\pi\)
\(434\) −250.132 + 227.285i −0.576340 + 0.523698i
\(435\) 0 0
\(436\) −722.895 69.3473i −1.65802 0.159053i
\(437\) 256.555 0.587082
\(438\) 0 0
\(439\) 524.700i 1.19522i 0.801789 + 0.597608i \(0.203882\pi\)
−0.801789 + 0.597608i \(0.796118\pi\)
\(440\) −18.7325 + 2.39883i −0.0425738 + 0.00545188i
\(441\) 0 0
\(442\) −13.7581 + 12.5015i −0.0311270 + 0.0282839i
\(443\) 496.575i 1.12094i 0.828176 + 0.560469i \(0.189379\pi\)
−0.828176 + 0.560469i \(0.810621\pi\)
\(444\) 0 0
\(445\) 372.375 + 210.535i 0.836797 + 0.473112i
\(446\) −239.116 263.153i −0.536136 0.590028i
\(447\) 0 0
\(448\) −139.051 + 471.275i −0.310382 + 1.05195i
\(449\) 332.158 0.739773 0.369886 0.929077i \(-0.379397\pi\)
0.369886 + 0.929077i \(0.379397\pi\)
\(450\) 0 0
\(451\) −7.10835 −0.0157613
\(452\) −305.160 29.2740i −0.675133 0.0647655i
\(453\) 0 0
\(454\) 300.926 273.440i 0.662833 0.602290i
\(455\) −137.340 77.6497i −0.301845 0.170659i
\(456\) 0 0
\(457\) 252.788i 0.553147i −0.960993 0.276574i \(-0.910801\pi\)
0.960993 0.276574i \(-0.0891990\pi\)
\(458\) 120.000 109.040i 0.262010 0.238078i
\(459\) 0 0
\(460\) 111.543 159.520i 0.242485 0.346783i
\(461\) 832.716i 1.80633i −0.429299 0.903163i \(-0.641239\pi\)
0.429299 0.903163i \(-0.358761\pi\)
\(462\) 0 0
\(463\) 854.205 1.84494 0.922468 0.386074i \(-0.126169\pi\)
0.922468 + 0.386074i \(0.126169\pi\)
\(464\) 126.833 654.987i 0.273347 1.41161i
\(465\) 0 0
\(466\) −83.3150 + 75.7051i −0.178788 + 0.162457i
\(467\) 102.726i 0.219970i 0.993933 + 0.109985i \(0.0350802\pi\)
−0.993933 + 0.109985i \(0.964920\pi\)
\(468\) 0 0
\(469\) 582.259i 1.24149i
\(470\) 19.3784 + 85.4529i 0.0412307 + 0.181815i
\(471\) 0 0
\(472\) 494.615 369.758i 1.04791 0.783386i
\(473\) 4.39705i 0.00929608i
\(474\) 0 0
\(475\) 339.751 + 564.688i 0.715265 + 1.18882i
\(476\) 69.1347 + 6.63208i 0.145241 + 0.0139329i
\(477\) 0 0
\(478\) 533.218 484.515i 1.11552 1.01363i
\(479\) 268.772i 0.561111i 0.959838 + 0.280556i \(0.0905187\pi\)
−0.959838 + 0.280556i \(0.909481\pi\)
\(480\) 0 0
\(481\) −212.669 −0.442139
\(482\) 265.631 + 292.332i 0.551101 + 0.606498i
\(483\) 0 0
\(484\) 46.1327 480.901i 0.0953156 0.993596i
\(485\) 243.942 431.462i 0.502973 0.889612i
\(486\) 0 0
\(487\) −504.065 −1.03504 −0.517520 0.855671i \(-0.673145\pi\)
−0.517520 + 0.855671i \(0.673145\pi\)
\(488\) −70.7248 94.6066i −0.144928 0.193866i
\(489\) 0 0
\(490\) 21.9925 + 96.9803i 0.0448827 + 0.197919i
\(491\) −130.020 −0.264807 −0.132403 0.991196i \(-0.542269\pi\)
−0.132403 + 0.991196i \(0.542269\pi\)
\(492\) 0 0
\(493\) −94.2997 −0.191277
\(494\) 145.718 + 160.366i 0.294976 + 0.324627i
\(495\) 0 0
\(496\) 66.9505 345.744i 0.134981 0.697065i
\(497\) 622.421i 1.25236i
\(498\) 0 0
\(499\) 664.184 1.33103 0.665515 0.746384i \(-0.268212\pi\)
0.665515 + 0.746384i \(0.268212\pi\)
\(500\) 498.825 + 34.2610i 0.997650 + 0.0685220i
\(501\) 0 0
\(502\) −239.895 264.009i −0.477878 0.525914i
\(503\) −550.015 −1.09347 −0.546735 0.837306i \(-0.684129\pi\)
−0.546735 + 0.837306i \(0.684129\pi\)
\(504\) 0 0
\(505\) 259.384 458.774i 0.513631 0.908463i
\(506\) −6.18034 6.80159i −0.0122141 0.0134419i
\(507\) 0 0
\(508\) −54.6067 + 569.235i −0.107493 + 1.12054i
\(509\) 349.843i 0.687314i −0.939095 0.343657i \(-0.888334\pi\)
0.939095 0.343657i \(-0.111666\pi\)
\(510\) 0 0
\(511\) 640.496i 1.25342i
\(512\) −177.981 480.070i −0.347619 0.937636i
\(513\) 0 0
\(514\) −670.800 + 609.530i −1.30506 + 1.18586i
\(515\) 443.358 + 250.668i 0.860888 + 0.486733i
\(516\) 0 0
\(517\) 4.13698 0.00800189
\(518\) 534.330 + 588.041i 1.03153 + 1.13522i
\(519\) 0 0
\(520\) 163.066 20.8818i 0.313589 0.0401573i
\(521\) −29.7771 −0.0571537 −0.0285769 0.999592i \(-0.509098\pi\)
−0.0285769 + 0.999592i \(0.509098\pi\)
\(522\) 0 0
\(523\) 603.023i 1.15301i 0.817094 + 0.576504i \(0.195584\pi\)
−0.817094 + 0.576504i \(0.804416\pi\)
\(524\) 42.0689 438.538i 0.0802841 0.836904i
\(525\) 0 0
\(526\) 28.3688 + 31.2205i 0.0539331 + 0.0593545i
\(527\) −49.7774 −0.0944543
\(528\) 0 0
\(529\) −434.279 −0.820943
\(530\) 88.2423 + 389.122i 0.166495 + 0.734192i
\(531\) 0 0
\(532\) 77.3040 805.839i 0.145308 1.51473i
\(533\) 61.8782 0.116094
\(534\) 0 0
\(535\) −81.1985 + 143.616i −0.151773 + 0.268442i
\(536\) 363.272 + 485.939i 0.677747 + 0.906603i
\(537\) 0 0
\(538\) 136.792 124.298i 0.254260 0.231036i
\(539\) 4.69505 0.00871066
\(540\) 0 0
\(541\) 163.368i 0.301974i 0.988536 + 0.150987i \(0.0482451\pi\)
−0.988536 + 0.150987i \(0.951755\pi\)
\(542\) 279.460 253.934i 0.515608 0.468513i
\(543\) 0 0
\(544\) −61.8359 + 37.5983i −0.113669 + 0.0691145i
\(545\) 446.774 790.212i 0.819769 1.44993i
\(546\) 0 0
\(547\) 524.218i 0.958350i 0.877719 + 0.479175i \(0.159064\pi\)
−0.877719 + 0.479175i \(0.840936\pi\)
\(548\) −897.471 86.0943i −1.63772 0.157106i
\(549\) 0 0
\(550\) 6.78608 22.6104i 0.0123383 0.0411098i
\(551\) 1099.16i 1.99485i
\(552\) 0 0
\(553\) 773.566i 1.39885i
\(554\) −94.3181 103.799i −0.170249 0.187363i
\(555\) 0 0
\(556\) −37.2098 + 387.885i −0.0669240 + 0.697635i
\(557\) −589.515 −1.05837 −0.529187 0.848505i \(-0.677503\pi\)
−0.529187 + 0.848505i \(0.677503\pi\)
\(558\) 0 0
\(559\) 38.2763i 0.0684728i
\(560\) −467.443 398.422i −0.834720 0.711468i
\(561\) 0 0
\(562\) −680.931 749.378i −1.21162 1.33341i
\(563\) 557.763i 0.990698i −0.868694 0.495349i \(-0.835040\pi\)
0.868694 0.495349i \(-0.164960\pi\)
\(564\) 0 0
\(565\) 188.599 333.577i 0.333804 0.590402i
\(566\) −742.097 + 674.315i −1.31113 + 1.19137i
\(567\) 0 0
\(568\) −388.329 519.457i −0.683678 0.914538i
\(569\) 542.715 0.953805 0.476903 0.878956i \(-0.341759\pi\)
0.476903 + 0.878956i \(0.341759\pi\)
\(570\) 0 0
\(571\) −476.695 −0.834842 −0.417421 0.908713i \(-0.637066\pi\)
−0.417421 + 0.908713i \(0.637066\pi\)
\(572\) 0.741187 7.72634i 0.00129578 0.0135076i
\(573\) 0 0
\(574\) −155.469 171.097i −0.270852 0.298078i
\(575\) 125.438 + 208.486i 0.218152 + 0.362584i
\(576\) 0 0
\(577\) 865.659i 1.50027i −0.661282 0.750137i \(-0.729987\pi\)
0.661282 0.750137i \(-0.270013\pi\)
\(578\) −381.825 420.206i −0.660597 0.727001i
\(579\) 0 0
\(580\) 683.436 + 477.886i 1.17834 + 0.823941i
\(581\) 2.04943i 0.00352741i
\(582\) 0 0
\(583\) 18.8383 0.0323127
\(584\) 399.607 + 534.543i 0.684258 + 0.915313i
\(585\) 0 0
\(586\) 435.813 + 479.622i 0.743709 + 0.818467i
\(587\) 567.091i 0.966083i 0.875597 + 0.483041i \(0.160468\pi\)
−0.875597 + 0.483041i \(0.839532\pi\)
\(588\) 0 0
\(589\) 580.209i 0.985075i
\(590\) 170.719 + 752.820i 0.289355 + 1.27597i
\(591\) 0 0
\(592\) −812.820 157.396i −1.37301 0.265871i
\(593\) 421.774i 0.711254i 0.934628 + 0.355627i \(0.115733\pi\)
−0.934628 + 0.355627i \(0.884267\pi\)
\(594\) 0 0
\(595\) −42.7276 + 75.5725i −0.0718110 + 0.127013i
\(596\) −762.089 73.1071i −1.27867 0.122663i
\(597\) 0 0
\(598\) 53.7999 + 59.2079i 0.0899664 + 0.0990098i
\(599\) 120.444i 0.201075i 0.994933 + 0.100538i \(0.0320563\pi\)
−0.994933 + 0.100538i \(0.967944\pi\)
\(600\) 0 0
\(601\) 340.158 0.565986 0.282993 0.959122i \(-0.408673\pi\)
0.282993 + 0.959122i \(0.408673\pi\)
\(602\) 105.836 96.1693i 0.175808 0.159750i
\(603\) 0 0
\(604\) 272.170 + 26.1093i 0.450613 + 0.0432273i
\(605\) 525.682 + 297.213i 0.868897 + 0.491261i
\(606\) 0 0
\(607\) −115.621 −0.190479 −0.0952396 0.995454i \(-0.530362\pi\)
−0.0952396 + 0.995454i \(0.530362\pi\)
\(608\) 438.248 + 720.764i 0.720803 + 1.18547i
\(609\) 0 0
\(610\) 143.994 32.6540i 0.236056 0.0535311i
\(611\) −36.0124 −0.0589401
\(612\) 0 0
\(613\) −1095.63 −1.78733 −0.893663 0.448738i \(-0.851874\pi\)
−0.893663 + 0.448738i \(0.851874\pi\)
\(614\) −14.5755 + 13.2442i −0.0237385 + 0.0215703i
\(615\) 0 0
\(616\) −23.2260 + 17.3630i −0.0377046 + 0.0281867i
\(617\) 716.775i 1.16171i −0.814007 0.580855i \(-0.802718\pi\)
0.814007 0.580855i \(-0.197282\pi\)
\(618\) 0 0
\(619\) 118.584 0.191573 0.0957864 0.995402i \(-0.469463\pi\)
0.0957864 + 0.995402i \(0.469463\pi\)
\(620\) 360.761 + 252.259i 0.581873 + 0.406869i
\(621\) 0 0
\(622\) −296.657 + 269.561i −0.476941 + 0.433378i
\(623\) 656.844 1.05432
\(624\) 0 0
\(625\) −292.771 + 552.187i −0.468433 + 0.883499i
\(626\) 387.193 351.828i 0.618520 0.562025i
\(627\) 0 0
\(628\) −59.2944 + 618.101i −0.0944178 + 0.984238i
\(629\) 117.023i 0.186046i
\(630\) 0 0
\(631\) 1168.62i 1.85201i 0.377515 + 0.926004i \(0.376779\pi\)
−0.377515 + 0.926004i \(0.623221\pi\)
\(632\) −482.629 645.600i −0.763654 1.02152i
\(633\) 0 0
\(634\) 433.548 + 477.128i 0.683830 + 0.752569i
\(635\) −622.243 351.807i −0.979910 0.554026i
\(636\) 0 0
\(637\) −40.8704 −0.0641608
\(638\) 29.1402 26.4786i 0.0456743 0.0415025i
\(639\) 0 0
\(640\) 638.693 + 40.8748i 0.997958 + 0.0638669i
\(641\) 244.158 0.380902 0.190451 0.981697i \(-0.439005\pi\)
0.190451 + 0.981697i \(0.439005\pi\)
\(642\) 0 0
\(643\) 868.847i 1.35124i −0.737250 0.675620i \(-0.763876\pi\)
0.737250 0.675620i \(-0.236124\pi\)
\(644\) 28.5410 297.520i 0.0443184 0.461987i
\(645\) 0 0
\(646\) 88.2430 80.1830i 0.136599 0.124122i
\(647\) −35.1333 −0.0543019 −0.0271510 0.999631i \(-0.508643\pi\)
−0.0271510 + 0.999631i \(0.508643\pi\)
\(648\) 0 0
\(649\) 36.4458 0.0561569
\(650\) −59.0729 + 196.824i −0.0908813 + 0.302806i
\(651\) 0 0
\(652\) 360.252 + 34.5589i 0.552534 + 0.0530045i
\(653\) 580.068 0.888313 0.444157 0.895949i \(-0.353503\pi\)
0.444157 + 0.895949i \(0.353503\pi\)
\(654\) 0 0
\(655\) 479.375 + 271.031i 0.731870 + 0.413788i
\(656\) 236.498 + 45.7960i 0.360516 + 0.0698109i
\(657\) 0 0
\(658\) 90.4812 + 99.5764i 0.137509 + 0.151332i
\(659\) 992.788 1.50651 0.753253 0.657731i \(-0.228483\pi\)
0.753253 + 0.657731i \(0.228483\pi\)
\(660\) 0 0
\(661\) 719.647i 1.08872i 0.838850 + 0.544362i \(0.183228\pi\)
−0.838850 + 0.544362i \(0.816772\pi\)
\(662\) 82.1635 + 90.4226i 0.124114 + 0.136590i
\(663\) 0 0
\(664\) −1.27864 1.71040i −0.00192566 0.00257591i
\(665\) 880.879 + 498.036i 1.32463 + 0.748926i
\(666\) 0 0
\(667\) 405.817i 0.608421i
\(668\) 38.4938 401.270i 0.0576254 0.600703i
\(669\) 0 0
\(670\) −739.615 + 167.725i −1.10390 + 0.250335i
\(671\) 6.97110i 0.0103891i
\(672\) 0 0
\(673\) 189.591i 0.281711i 0.990030 + 0.140855i \(0.0449852\pi\)
−0.990030 + 0.140855i \(0.955015\pi\)
\(674\) 170.164 154.621i 0.252469 0.229409i
\(675\) 0 0
\(676\) 58.1002 605.653i 0.0859471 0.895936i
\(677\) 327.192 0.483297 0.241649 0.970364i \(-0.422312\pi\)
0.241649 + 0.970364i \(0.422312\pi\)
\(678\) 0 0
\(679\) 761.070i 1.12087i
\(680\) −11.4904 89.7289i −0.0168977 0.131954i
\(681\) 0 0
\(682\) 15.3821 13.9771i 0.0225544 0.0204943i
\(683\) 673.539i 0.986148i −0.869987 0.493074i \(-0.835873\pi\)
0.869987 0.493074i \(-0.164127\pi\)
\(684\) 0 0
\(685\) 554.668 981.044i 0.809734 1.43218i
\(686\) −403.299 443.839i −0.587899 0.646995i
\(687\) 0 0
\(688\) −28.3282 + 146.292i −0.0411748 + 0.212634i
\(689\) −163.988 −0.238008
\(690\) 0 0
\(691\) 237.036 0.343033 0.171516 0.985181i \(-0.445133\pi\)
0.171516 + 0.985181i \(0.445133\pi\)
\(692\) −20.8766 + 217.623i −0.0301685 + 0.314485i
\(693\) 0 0
\(694\) −213.100 + 193.636i −0.307061 + 0.279014i
\(695\) −424.005 239.726i −0.610079 0.344930i
\(696\) 0 0
\(697\) 34.0491i 0.0488510i
\(698\) 53.2170 48.3562i 0.0762421 0.0692782i
\(699\) 0 0
\(700\) 692.649 331.179i 0.989499 0.473113i
\(701\) 476.306i 0.679466i 0.940522 + 0.339733i \(0.110337\pi\)
−0.940522 + 0.339733i \(0.889663\pi\)
\(702\) 0 0
\(703\) 1364.03 1.94030
\(704\) 8.55107 28.9815i 0.0121464 0.0411669i
\(705\) 0 0
\(706\) 373.803 339.661i 0.529467 0.481106i
\(707\) 809.246i 1.14462i
\(708\) 0 0
\(709\) 964.778i 1.36076i 0.732860 + 0.680380i \(0.238185\pi\)
−0.732860 + 0.680380i \(0.761815\pi\)
\(710\) 790.631 179.294i 1.11356 0.252526i
\(711\) 0 0
\(712\) −548.186 + 409.806i −0.769924 + 0.575570i
\(713\) 214.216i 0.300443i
\(714\) 0 0
\(715\) 8.44582 + 4.77514i 0.0118123 + 0.00667852i
\(716\) −40.7965 + 425.274i −0.0569783 + 0.593958i
\(717\) 0 0
\(718\) 879.461 799.132i 1.22488 1.11300i
\(719\) 899.974i 1.25170i −0.779943 0.625851i \(-0.784752\pi\)
0.779943 0.625851i \(-0.215248\pi\)
\(720\) 0 0
\(721\) 782.053 1.08468
\(722\) −449.075 494.216i −0.621987 0.684510i
\(723\) 0 0
\(724\) 576.466 + 55.3003i 0.796224 + 0.0763816i
\(725\) −893.220 + 537.415i −1.23203 + 0.741262i
\(726\) 0 0
\(727\) −908.888 −1.25019 −0.625095 0.780549i \(-0.714940\pi\)
−0.625095 + 0.780549i \(0.714940\pi\)
\(728\) 202.183 151.145i 0.277723 0.207617i
\(729\) 0 0
\(730\) −813.591 + 184.500i −1.11451 + 0.252740i
\(731\) 21.0619 0.0288125
\(732\) 0 0
\(733\) −433.283 −0.591109 −0.295554 0.955326i \(-0.595504\pi\)
−0.295554 + 0.955326i \(0.595504\pi\)
\(734\) 119.579 + 131.599i 0.162914 + 0.179290i
\(735\) 0 0
\(736\) 161.803 + 266.110i 0.219842 + 0.361562i
\(737\) 35.8065i 0.0485842i
\(738\) 0 0
\(739\) −886.138 −1.19910 −0.599552 0.800336i \(-0.704655\pi\)
−0.599552 + 0.800336i \(0.704655\pi\)
\(740\) 593.042 848.124i 0.801408 1.14611i
\(741\) 0 0
\(742\) 412.019 + 453.435i 0.555281 + 0.611099i
\(743\) 895.305 1.20499 0.602493 0.798124i \(-0.294174\pi\)
0.602493 + 0.798124i \(0.294174\pi\)
\(744\) 0 0
\(745\) 470.997 833.055i 0.632211 1.11820i
\(746\) 112.515 + 123.825i 0.150824 + 0.165985i
\(747\) 0 0
\(748\) −4.25150 0.407846i −0.00568382 0.000545248i
\(749\) 253.329i 0.338223i
\(750\) 0 0
\(751\) 1297.13i 1.72720i −0.504176 0.863601i \(-0.668204\pi\)
0.504176 0.863601i \(-0.331796\pi\)
\(752\) −137.639 26.6527i −0.183031 0.0354425i
\(753\) 0 0
\(754\) −253.666 + 230.496i −0.336427 + 0.305698i
\(755\) −168.210 + 297.515i −0.222795 + 0.394060i
\(756\) 0 0
\(757\) 421.694 0.557060 0.278530 0.960428i \(-0.410153\pi\)
0.278530 + 0.960428i \(0.410153\pi\)
\(758\) 181.756 + 200.026i 0.239783 + 0.263886i
\(759\) 0 0
\(760\) −1045.89 + 133.933i −1.37617 + 0.176228i
\(761\) −1415.76 −1.86039 −0.930196 0.367063i \(-0.880363\pi\)
−0.930196 + 0.367063i \(0.880363\pi\)
\(762\) 0 0
\(763\) 1393.88i 1.82684i
\(764\) 839.384 + 80.5220i 1.09867 + 0.105395i
\(765\) 0 0
\(766\) −670.517 737.917i −0.875348 0.963339i
\(767\) −317.261 −0.413639
\(768\) 0 0
\(769\) −414.210 −0.538635 −0.269318 0.963051i \(-0.586798\pi\)
−0.269318 + 0.963051i \(0.586798\pi\)
\(770\) −8.01659 35.3507i −0.0104112 0.0459101i
\(771\) 0 0
\(772\) 430.726 + 41.3195i 0.557935 + 0.0535226i
\(773\) −727.056 −0.940564 −0.470282 0.882516i \(-0.655848\pi\)
−0.470282 + 0.882516i \(0.655848\pi\)
\(774\) 0 0
\(775\) −471.498 + 283.682i −0.608385 + 0.366042i
\(776\) 474.833 + 635.171i 0.611898 + 0.818519i
\(777\) 0 0
\(778\) 456.522 414.824i 0.586790 0.533193i
\(779\) −396.879 −0.509473
\(780\) 0 0
\(781\) 38.2763i 0.0490094i
\(782\) 32.5797 29.6039i 0.0416621 0.0378567i
\(783\) 0 0
\(784\) −156.207 30.2481i −0.199243 0.0385818i
\(785\) −675.659 382.008i −0.860713 0.486634i
\(786\) 0 0
\(787\) 1030.11i 1.30890i −0.756104 0.654451i \(-0.772900\pi\)
0.756104 0.654451i \(-0.227100\pi\)
\(788\) −117.760 + 1227.56i −0.149442 + 1.55782i
\(789\) 0 0
\(790\) 982.623 222.832i 1.24383 0.282066i
\(791\) 588.407i 0.743878i
\(792\) 0 0
\(793\) 60.6835i 0.0765239i
\(794\) 400.381 + 440.627i 0.504258 + 0.554946i
\(795\) 0 0
\(796\) −986.906 94.6737i −1.23983 0.118937i
\(797\) −371.202 −0.465750 −0.232875 0.972507i \(-0.574813\pi\)
−0.232875 + 0.972507i \(0.574813\pi\)
\(798\) 0 0
\(799\) 19.8162i 0.0248013i
\(800\) −371.445 + 708.540i −0.464307 + 0.885675i
\(801\) 0 0
\(802\) 199.951 + 220.050i 0.249315 + 0.274376i
\(803\) 39.3879i 0.0490509i
\(804\) 0 0
\(805\) 325.225 + 183.877i 0.404006 + 0.228419i
\(806\) −133.901 + 121.671i −0.166130 + 0.150956i
\(807\) 0 0
\(808\) 504.890 + 675.378i 0.624864 + 0.835863i
\(809\) −77.7771 −0.0961398 −0.0480699 0.998844i \(-0.515307\pi\)
−0.0480699 + 0.998844i \(0.515307\pi\)
\(810\) 0 0
\(811\) −1407.90 −1.73600 −0.868000 0.496564i \(-0.834595\pi\)
−0.868000 + 0.496564i \(0.834595\pi\)
\(812\) 1274.67 + 122.279i 1.56979 + 0.150590i
\(813\) 0 0
\(814\) −32.8591 36.1621i −0.0403675 0.0444252i
\(815\) −222.648 + 393.799i −0.273188 + 0.483189i
\(816\) 0 0
\(817\) 245.500i 0.300489i
\(818\) −595.009 654.820i −0.727395 0.800513i
\(819\) 0 0
\(820\) −172.552 + 246.771i −0.210429 + 0.300940i
\(821\) 820.275i 0.999116i −0.866280 0.499558i \(-0.833496\pi\)
0.866280 0.499558i \(-0.166504\pi\)
\(822\) 0 0
\(823\) −1385.41 −1.68336 −0.841681 0.539976i \(-0.818433\pi\)
−0.841681 + 0.539976i \(0.818433\pi\)
\(824\) −652.683 + 487.924i −0.792091 + 0.592141i
\(825\) 0 0
\(826\) 797.118 + 877.245i 0.965034 + 1.06204i
\(827\) 258.898i 0.313057i 0.987673 + 0.156529i \(0.0500303\pi\)
−0.987673 + 0.156529i \(0.949970\pi\)
\(828\) 0 0
\(829\) 1299.31i 1.56732i −0.621190 0.783660i \(-0.713351\pi\)
0.621190 0.783660i \(-0.286649\pi\)
\(830\) 2.60329 0.590355i 0.00313649 0.000711271i
\(831\) 0 0
\(832\) −74.4371 + 252.284i −0.0894677 + 0.303226i
\(833\) 22.4894i 0.0269980i
\(834\) 0 0
\(835\) 438.636 + 247.998i 0.525313 + 0.297004i
\(836\) −4.75388 + 49.5558i −0.00568646 + 0.0592773i
\(837\) 0 0
\(838\) 721.166 + 793.658i 0.860580 + 0.947086i
\(839\) 804.961i 0.959429i −0.877425 0.479715i \(-0.840740\pi\)
0.877425 0.479715i \(-0.159260\pi\)
\(840\) 0 0
\(841\) −897.650 −1.06736
\(842\) −761.683 + 692.111i −0.904611 + 0.821985i
\(843\) 0 0
\(844\) −88.0751 + 918.120i −0.104354 + 1.08782i
\(845\) 662.052 + 374.314i 0.783493 + 0.442975i
\(846\) 0 0
\(847\) 927.268 1.09477
\(848\) −626.760 121.367i −0.739104 0.143121i
\(849\) 0 0
\(850\) 108.304 + 32.5055i 0.127417 + 0.0382417i
\(851\) 503.607 0.591782
\(852\) 0 0
\(853\) 470.811 0.551948 0.275974 0.961165i \(-0.411000\pi\)
0.275974 + 0.961165i \(0.411000\pi\)
\(854\) 167.793 152.467i 0.196479 0.178533i
\(855\) 0 0
\(856\) −158.053 211.423i −0.184641 0.246989i
\(857\) 266.105i 0.310508i −0.987875 0.155254i \(-0.950380\pi\)
0.987875 0.155254i \(-0.0496196\pi\)
\(858\) 0 0
\(859\) 1442.02 1.67872 0.839360 0.543576i \(-0.182930\pi\)
0.839360 + 0.543576i \(0.182930\pi\)
\(860\) −152.646 106.736i −0.177496 0.124112i
\(861\) 0 0
\(862\) −128.503 + 116.766i −0.149076 + 0.135459i
\(863\) 364.495 0.422358 0.211179 0.977447i \(-0.432270\pi\)
0.211179 + 0.977447i \(0.432270\pi\)
\(864\) 0 0
\(865\) −237.889 134.499i −0.275016 0.155490i
\(866\) 731.242 664.451i 0.844391 0.767265i
\(867\) 0 0
\(868\) 672.852 + 64.5466i 0.775176 + 0.0743625i
\(869\) 47.5711i 0.0547424i
\(870\) 0 0
\(871\) 311.696i 0.357860i
\(872\) 869.645 + 1163.30i 0.997299 + 1.33406i
\(873\) 0 0
\(874\) −345.066 379.752i −0.394812 0.434499i
\(875\) 25.9675 + 959.338i 0.0296771 + 1.09639i
\(876\) 0 0
\(877\) 77.4289 0.0882883 0.0441442 0.999025i \(-0.485944\pi\)
0.0441442 + 0.999025i \(0.485944\pi\)
\(878\) 776.659 705.719i 0.884577 0.803781i
\(879\) 0 0
\(880\) 28.7459 + 24.5013i 0.0326657 + 0.0278424i
\(881\) −724.932 −0.822851 −0.411426 0.911443i \(-0.634969\pi\)
−0.411426 + 0.911443i \(0.634969\pi\)
\(882\) 0 0
\(883\) 493.342i 0.558711i −0.960188 0.279356i \(-0.909879\pi\)
0.960188 0.279356i \(-0.0901208\pi\)
\(884\) 37.0093 + 3.55030i 0.0418657 + 0.00401618i
\(885\) 0 0
\(886\) 735.029 667.892i 0.829604 0.753828i
\(887\) −1514.47 −1.70741 −0.853705 0.520758i \(-0.825649\pi\)
−0.853705 + 0.520758i \(0.825649\pi\)
\(888\) 0 0
\(889\) −1097.59 −1.23464
\(890\) −189.210 834.357i −0.212595 0.937480i
\(891\) 0 0
\(892\) −67.9067 + 707.879i −0.0761286 + 0.793586i
\(893\) 230.979 0.258655
\(894\) 0 0
\(895\) −464.876 262.834i −0.519414 0.293669i
\(896\) 884.604 428.041i 0.987281 0.477725i
\(897\) 0 0
\(898\) −446.751 491.659i −0.497496 0.547505i
\(899\) −917.771 −1.02088
\(900\) 0 0
\(901\) 90.2359i 0.100151i
\(902\) 9.56071 + 10.5218i 0.0105995 + 0.0116649i
\(903\) 0 0
\(904\) 367.108 + 491.071i 0.406093 + 0.543220i
\(905\) −356.276 + 630.147i −0.393675 + 0.696295i
\(906\) 0 0
\(907\) 851.570i 0.938887i −0.882963 0.469443i \(-0.844455\pi\)
0.882963 0.469443i \(-0.155545\pi\)
\(908\) −809.489 77.6542i −0.891508 0.0855223i
\(909\) 0 0
\(910\) 69.7844 + 307.728i 0.0766862 + 0.338163i
\(911\) 517.728i 0.568308i 0.958779 + 0.284154i \(0.0917127\pi\)
−0.958779 + 0.284154i \(0.908287\pi\)
\(912\) 0 0
\(913\) 0.126031i 0.000138041i
\(914\) −374.177 + 340.000i −0.409383 + 0.371991i
\(915\) 0 0
\(916\) −322.800 30.9662i −0.352402 0.0338059i
\(917\) 845.585 0.922121
\(918\) 0 0
\(919\) 657.730i 0.715701i 0.933779 + 0.357851i \(0.116490\pi\)
−0.933779 + 0.357851i \(0.883510\pi\)
\(920\) −386.146 + 49.4488i −0.419724 + 0.0537487i
\(921\) 0 0
\(922\) −1232.58 + 1120.00i −1.33686 + 1.21475i
\(923\) 333.195i 0.360992i
\(924\) 0 0
\(925\) 666.917 + 1108.46i 0.720991 + 1.19833i
\(926\) −1148.90 1264.39i −1.24072 1.36543i
\(927\) 0 0
\(928\) −1140.10 + 693.218i −1.22856 + 0.747002i
\(929\) −1206.28 −1.29847 −0.649237 0.760586i \(-0.724912\pi\)
−0.649237 + 0.760586i \(0.724912\pi\)
\(930\) 0 0
\(931\) 262.138 0.281566
\(932\) 224.117 + 21.4995i 0.240469 + 0.0230681i
\(933\) 0 0
\(934\) 152.055 138.166i 0.162799 0.147929i
\(935\) 2.62757 4.64740i 0.00281024 0.00497048i
\(936\) 0 0
\(937\) 216.730i 0.231302i 0.993290 + 0.115651i \(0.0368954\pi\)
−0.993290 + 0.115651i \(0.963105\pi\)
\(938\) −861.858 + 783.136i −0.918825 + 0.834900i
\(939\) 0 0
\(940\) 100.423 143.618i 0.106833 0.152785i
\(941\) 749.322i 0.796304i 0.917320 + 0.398152i \(0.130348\pi\)
−0.917320 + 0.398152i \(0.869652\pi\)
\(942\) 0 0
\(943\) −146.530 −0.155387
\(944\) −1212.57 234.804i −1.28450 0.248733i
\(945\) 0 0
\(946\) −6.50850 + 5.91402i −0.00688002 + 0.00625160i
\(947\) 114.160i 0.120549i −0.998182 0.0602743i \(-0.980802\pi\)
0.998182 0.0602743i \(-0.0191976\pi\)
\(948\) 0 0
\(949\) 342.872i 0.361298i
\(950\) 378.886 1262.40i 0.398827 1.32884i
\(951\) 0 0
\(952\) −83.1691 111.253i −0.0873625 0.116862i
\(953\) 820.680i 0.861154i −0.902554 0.430577i \(-0.858310\pi\)
0.902554 0.430577i \(-0.141690\pi\)
\(954\) 0 0
\(955\) −518.768 + 917.548i −0.543212 + 0.960783i
\(956\) −1434.35 137.597i −1.50037 0.143930i
\(957\) 0 0
\(958\) 397.836 361.498i 0.415278 0.377347i
\(959\) 1730.50i 1.80448i
\(960\) 0 0
\(961\) 476.542 0.495881
\(962\) 286.039 + 314.792i 0.297338 + 0.327226i
\(963\) 0 0
\(964\) 75.4365 786.371i 0.0782536 0.815738i
\(965\) −266.203 + 470.835i −0.275858 + 0.487912i
\(966\) 0 0
\(967\) −1108.56 −1.14639 −0.573194 0.819420i \(-0.694296\pi\)
−0.573194 + 0.819420i \(0.694296\pi\)
\(968\) −773.876 + 578.524i −0.799459 + 0.597649i
\(969\) 0 0
\(970\) −966.750 + 219.233i −0.996650 + 0.226013i
\(971\) 1372.41 1.41340 0.706698 0.707516i \(-0.250184\pi\)
0.706698 + 0.707516i \(0.250184\pi\)
\(972\) 0 0
\(973\) −747.916 −0.768670
\(974\) 677.966 + 746.115i 0.696063 + 0.766032i
\(975\) 0 0
\(976\) −44.9117 + 231.932i −0.0460161 + 0.237635i
\(977\) 927.224i 0.949052i −0.880241 0.474526i \(-0.842619\pi\)
0.880241 0.474526i \(-0.157381\pi\)
\(978\) 0 0
\(979\) −40.3932 −0.0412597
\(980\) 113.970 162.991i 0.116296 0.166318i
\(981\) 0 0
\(982\) 174.877 + 192.455i 0.178082 + 0.195983i
\(983\) −354.106 −0.360230 −0.180115 0.983646i \(-0.557647\pi\)
−0.180115 + 0.983646i \(0.557647\pi\)
\(984\) 0 0
\(985\) −1341.88 758.677i −1.36231 0.770230i
\(986\) 126.833 + 139.582i 0.128634 + 0.141564i
\(987\) 0 0
\(988\) 41.3826 431.383i 0.0418852 0.436623i
\(989\) 90.6396i 0.0916478i
\(990\) 0 0
\(991\) 537.545i 0.542427i 0.962519 + 0.271213i \(0.0874249\pi\)
−0.962519 + 0.271213i \(0.912575\pi\)
\(992\) −601.817 + 365.925i −0.606671 + 0.368876i
\(993\) 0 0
\(994\) 921.305 837.154i 0.926866 0.842207i
\(995\) 609.941 1078.81i 0.613006 1.08423i
\(996\) 0 0
\(997\) 441.759 0.443088 0.221544 0.975150i \(-0.428890\pi\)
0.221544 + 0.975150i \(0.428890\pi\)
\(998\) −893.326 983.123i −0.895116 0.985094i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 360.3.p.g.19.1 8
3.2 odd 2 40.3.e.c.19.8 yes 8
4.3 odd 2 1440.3.p.g.559.1 8
5.4 even 2 inner 360.3.p.g.19.8 8
8.3 odd 2 inner 360.3.p.g.19.7 8
8.5 even 2 1440.3.p.g.559.8 8
12.11 even 2 160.3.e.c.79.8 8
15.2 even 4 200.3.g.h.51.4 8
15.8 even 4 200.3.g.h.51.5 8
15.14 odd 2 40.3.e.c.19.1 8
20.19 odd 2 1440.3.p.g.559.7 8
24.5 odd 2 160.3.e.c.79.7 8
24.11 even 2 40.3.e.c.19.2 yes 8
40.19 odd 2 inner 360.3.p.g.19.2 8
40.29 even 2 1440.3.p.g.559.2 8
48.5 odd 4 1280.3.h.m.1279.2 16
48.11 even 4 1280.3.h.m.1279.14 16
48.29 odd 4 1280.3.h.m.1279.15 16
48.35 even 4 1280.3.h.m.1279.3 16
60.23 odd 4 800.3.g.h.751.1 8
60.47 odd 4 800.3.g.h.751.8 8
60.59 even 2 160.3.e.c.79.1 8
120.29 odd 2 160.3.e.c.79.2 8
120.53 even 4 800.3.g.h.751.2 8
120.59 even 2 40.3.e.c.19.7 yes 8
120.77 even 4 800.3.g.h.751.7 8
120.83 odd 4 200.3.g.h.51.6 8
120.107 odd 4 200.3.g.h.51.3 8
240.29 odd 4 1280.3.h.m.1279.4 16
240.59 even 4 1280.3.h.m.1279.1 16
240.149 odd 4 1280.3.h.m.1279.13 16
240.179 even 4 1280.3.h.m.1279.16 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.3.e.c.19.1 8 15.14 odd 2
40.3.e.c.19.2 yes 8 24.11 even 2
40.3.e.c.19.7 yes 8 120.59 even 2
40.3.e.c.19.8 yes 8 3.2 odd 2
160.3.e.c.79.1 8 60.59 even 2
160.3.e.c.79.2 8 120.29 odd 2
160.3.e.c.79.7 8 24.5 odd 2
160.3.e.c.79.8 8 12.11 even 2
200.3.g.h.51.3 8 120.107 odd 4
200.3.g.h.51.4 8 15.2 even 4
200.3.g.h.51.5 8 15.8 even 4
200.3.g.h.51.6 8 120.83 odd 4
360.3.p.g.19.1 8 1.1 even 1 trivial
360.3.p.g.19.2 8 40.19 odd 2 inner
360.3.p.g.19.7 8 8.3 odd 2 inner
360.3.p.g.19.8 8 5.4 even 2 inner
800.3.g.h.751.1 8 60.23 odd 4
800.3.g.h.751.2 8 120.53 even 4
800.3.g.h.751.7 8 120.77 even 4
800.3.g.h.751.8 8 60.47 odd 4
1280.3.h.m.1279.1 16 240.59 even 4
1280.3.h.m.1279.2 16 48.5 odd 4
1280.3.h.m.1279.3 16 48.35 even 4
1280.3.h.m.1279.4 16 240.29 odd 4
1280.3.h.m.1279.13 16 240.149 odd 4
1280.3.h.m.1279.14 16 48.11 even 4
1280.3.h.m.1279.15 16 48.29 odd 4
1280.3.h.m.1279.16 16 240.179 even 4
1440.3.p.g.559.1 8 4.3 odd 2
1440.3.p.g.559.2 8 40.29 even 2
1440.3.p.g.559.7 8 20.19 odd 2
1440.3.p.g.559.8 8 8.5 even 2