Properties

Label 1764.2.i.j.1537.7
Level $1764$
Weight $2$
Character 1764.1537
Analytic conductor $14.086$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1764,2,Mod(373,1764)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1764, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1764.373");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1764.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.0856109166\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1537.7
Character \(\chi\) \(=\) 1764.1537
Dual form 1764.2.i.j.373.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0546616 + 1.73119i) q^{3} +(-1.94623 + 3.37097i) q^{5} +(-2.99402 + 0.189259i) q^{9} +O(q^{10})\) \(q+(0.0546616 + 1.73119i) q^{3} +(-1.94623 + 3.37097i) q^{5} +(-2.99402 + 0.189259i) q^{9} +(-2.18778 - 3.78935i) q^{11} +(-0.792201 - 1.37213i) q^{13} +(-5.94217 - 3.18503i) q^{15} +(2.66678 - 4.61900i) q^{17} +(2.32161 + 4.02115i) q^{19} +(-0.183900 + 0.318523i) q^{23} +(-5.07564 - 8.79126i) q^{25} +(-0.491301 - 5.17287i) q^{27} +(-5.08750 + 8.81180i) q^{29} -2.29552 q^{31} +(6.44049 - 3.99460i) q^{33} +(-5.44017 - 9.42265i) q^{37} +(2.33212 - 1.44645i) q^{39} +(-0.690443 - 1.19588i) q^{41} +(3.81699 - 6.61122i) q^{43} +(5.18908 - 10.4611i) q^{45} -7.60865 q^{47} +(8.14212 + 4.36422i) q^{51} +(0.462847 - 0.801674i) q^{53} +17.0317 q^{55} +(-6.83447 + 4.23895i) q^{57} -0.920949 q^{59} +6.55560 q^{61} +6.16722 q^{65} +15.0084 q^{67} +(-0.561476 - 0.300954i) q^{69} -4.91059 q^{71} +(-3.78353 + 6.55327i) q^{73} +(14.9419 - 9.26743i) q^{75} +1.97543 q^{79} +(8.92836 - 1.13329i) q^{81} +(-0.253011 + 0.438227i) q^{83} +(10.3803 + 17.9793i) q^{85} +(-15.5330 - 8.32575i) q^{87} +(6.10987 + 10.5826i) q^{89} +(-0.125477 - 3.97398i) q^{93} -18.0736 q^{95} +(4.45315 - 7.71308i) q^{97} +(7.26745 + 10.9314i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 24 q - 4 q^{9} - 4 q^{11} - 28 q^{15} - 8 q^{23} - 12 q^{25} - 32 q^{29} - 12 q^{37} + 8 q^{51} - 16 q^{53} + 52 q^{57} + 72 q^{65} - 24 q^{67} + 48 q^{71} - 24 q^{79} - 8 q^{81} + 12 q^{85} - 48 q^{93} - 64 q^{95} - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1764\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(883\) \(1081\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.0546616 + 1.73119i 0.0315589 + 0.999502i
\(4\) 0 0
\(5\) −1.94623 + 3.37097i −0.870381 + 1.50754i −0.00877856 + 0.999961i \(0.502794\pi\)
−0.861603 + 0.507583i \(0.830539\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −2.99402 + 0.189259i −0.998008 + 0.0630863i
\(10\) 0 0
\(11\) −2.18778 3.78935i −0.659642 1.14253i −0.980708 0.195476i \(-0.937375\pi\)
0.321067 0.947057i \(-0.395959\pi\)
\(12\) 0 0
\(13\) −0.792201 1.37213i −0.219717 0.380561i 0.735004 0.678062i \(-0.237180\pi\)
−0.954721 + 0.297501i \(0.903847\pi\)
\(14\) 0 0
\(15\) −5.94217 3.18503i −1.53426 0.822371i
\(16\) 0 0
\(17\) 2.66678 4.61900i 0.646789 1.12027i −0.337096 0.941470i \(-0.609445\pi\)
0.983885 0.178801i \(-0.0572219\pi\)
\(18\) 0 0
\(19\) 2.32161 + 4.02115i 0.532614 + 0.922515i 0.999275 + 0.0380786i \(0.0121237\pi\)
−0.466660 + 0.884437i \(0.654543\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −0.183900 + 0.318523i −0.0383457 + 0.0664167i −0.884561 0.466424i \(-0.845542\pi\)
0.846216 + 0.532841i \(0.178875\pi\)
\(24\) 0 0
\(25\) −5.07564 8.79126i −1.01513 1.75825i
\(26\) 0 0
\(27\) −0.491301 5.17287i −0.0945509 0.995520i
\(28\) 0 0
\(29\) −5.08750 + 8.81180i −0.944724 + 1.63631i −0.188422 + 0.982088i \(0.560337\pi\)
−0.756302 + 0.654222i \(0.772996\pi\)
\(30\) 0 0
\(31\) −2.29552 −0.412288 −0.206144 0.978522i \(-0.566092\pi\)
−0.206144 + 0.978522i \(0.566092\pi\)
\(32\) 0 0
\(33\) 6.44049 3.99460i 1.12115 0.695370i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −5.44017 9.42265i −0.894359 1.54907i −0.834596 0.550862i \(-0.814299\pi\)
−0.0597623 0.998213i \(-0.519034\pi\)
\(38\) 0 0
\(39\) 2.33212 1.44645i 0.373437 0.231618i
\(40\) 0 0
\(41\) −0.690443 1.19588i −0.107829 0.186766i 0.807061 0.590467i \(-0.201057\pi\)
−0.914891 + 0.403702i \(0.867723\pi\)
\(42\) 0 0
\(43\) 3.81699 6.61122i 0.582086 1.00820i −0.413146 0.910665i \(-0.635570\pi\)
0.995232 0.0975372i \(-0.0310965\pi\)
\(44\) 0 0
\(45\) 5.18908 10.4611i 0.773542 1.55945i
\(46\) 0 0
\(47\) −7.60865 −1.10984 −0.554918 0.831905i \(-0.687250\pi\)
−0.554918 + 0.831905i \(0.687250\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 8.14212 + 4.36422i 1.14013 + 0.611112i
\(52\) 0 0
\(53\) 0.462847 0.801674i 0.0635769 0.110118i −0.832485 0.554048i \(-0.813083\pi\)
0.896062 + 0.443929i \(0.146416\pi\)
\(54\) 0 0
\(55\) 17.0317 2.29656
\(56\) 0 0
\(57\) −6.83447 + 4.23895i −0.905247 + 0.561463i
\(58\) 0 0
\(59\) −0.920949 −0.119897 −0.0599487 0.998201i \(-0.519094\pi\)
−0.0599487 + 0.998201i \(0.519094\pi\)
\(60\) 0 0
\(61\) 6.55560 0.839358 0.419679 0.907673i \(-0.362143\pi\)
0.419679 + 0.907673i \(0.362143\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 6.16722 0.764950
\(66\) 0 0
\(67\) 15.0084 1.83357 0.916783 0.399385i \(-0.130776\pi\)
0.916783 + 0.399385i \(0.130776\pi\)
\(68\) 0 0
\(69\) −0.561476 0.300954i −0.0675938 0.0362306i
\(70\) 0 0
\(71\) −4.91059 −0.582780 −0.291390 0.956604i \(-0.594118\pi\)
−0.291390 + 0.956604i \(0.594118\pi\)
\(72\) 0 0
\(73\) −3.78353 + 6.55327i −0.442829 + 0.767003i −0.997898 0.0648016i \(-0.979359\pi\)
0.555069 + 0.831804i \(0.312692\pi\)
\(74\) 0 0
\(75\) 14.9419 9.26743i 1.72534 1.07011i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 1.97543 0.222253 0.111127 0.993806i \(-0.464554\pi\)
0.111127 + 0.993806i \(0.464554\pi\)
\(80\) 0 0
\(81\) 8.92836 1.13329i 0.992040 0.125921i
\(82\) 0 0
\(83\) −0.253011 + 0.438227i −0.0277715 + 0.0481017i −0.879577 0.475756i \(-0.842174\pi\)
0.851806 + 0.523858i \(0.175508\pi\)
\(84\) 0 0
\(85\) 10.3803 + 17.9793i 1.12591 + 1.95013i
\(86\) 0 0
\(87\) −15.5330 8.32575i −1.66531 0.892614i
\(88\) 0 0
\(89\) 6.10987 + 10.5826i 0.647645 + 1.12175i 0.983684 + 0.179906i \(0.0575794\pi\)
−0.336039 + 0.941848i \(0.609087\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −0.125477 3.97398i −0.0130114 0.412083i
\(94\) 0 0
\(95\) −18.0736 −1.85431
\(96\) 0 0
\(97\) 4.45315 7.71308i 0.452149 0.783145i −0.546370 0.837544i \(-0.683991\pi\)
0.998519 + 0.0543987i \(0.0173242\pi\)
\(98\) 0 0
\(99\) 7.26745 + 10.9314i 0.730406 + 1.09864i
\(100\) 0 0
\(101\) −5.51180 9.54672i −0.548445 0.949935i −0.998381 0.0568740i \(-0.981887\pi\)
0.449936 0.893061i \(-0.351447\pi\)
\(102\) 0 0
\(103\) −1.36543 + 2.36499i −0.134540 + 0.233029i −0.925421 0.378939i \(-0.876289\pi\)
0.790882 + 0.611969i \(0.209622\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 5.39605 + 9.34623i 0.521655 + 0.903534i 0.999683 + 0.0251887i \(0.00801867\pi\)
−0.478027 + 0.878345i \(0.658648\pi\)
\(108\) 0 0
\(109\) 4.99187 8.64617i 0.478134 0.828153i −0.521551 0.853220i \(-0.674647\pi\)
0.999686 + 0.0250668i \(0.00797984\pi\)
\(110\) 0 0
\(111\) 16.0150 9.93302i 1.52008 0.942800i
\(112\) 0 0
\(113\) −6.12019 10.6005i −0.575739 0.997209i −0.995961 0.0897875i \(-0.971381\pi\)
0.420222 0.907421i \(-0.361952\pi\)
\(114\) 0 0
\(115\) −0.715822 1.23984i −0.0667508 0.115616i
\(116\) 0 0
\(117\) 2.63156 + 3.95826i 0.243287 + 0.365942i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −4.07280 + 7.05429i −0.370254 + 0.641299i
\(122\) 0 0
\(123\) 2.03256 1.26066i 0.183270 0.113670i
\(124\) 0 0
\(125\) 20.0511 1.79343
\(126\) 0 0
\(127\) −13.2005 −1.17135 −0.585677 0.810544i \(-0.699171\pi\)
−0.585677 + 0.810544i \(0.699171\pi\)
\(128\) 0 0
\(129\) 11.6539 + 6.24655i 1.02607 + 0.549978i
\(130\) 0 0
\(131\) −2.54342 + 4.40532i −0.222219 + 0.384895i −0.955482 0.295051i \(-0.904663\pi\)
0.733262 + 0.679946i \(0.237997\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 18.3938 + 8.41145i 1.58309 + 0.723942i
\(136\) 0 0
\(137\) −6.67208 11.5564i −0.570034 0.987328i −0.996562 0.0828538i \(-0.973597\pi\)
0.426527 0.904475i \(-0.359737\pi\)
\(138\) 0 0
\(139\) −4.85642 8.41157i −0.411916 0.713460i 0.583183 0.812341i \(-0.301807\pi\)
−0.995099 + 0.0988809i \(0.968474\pi\)
\(140\) 0 0
\(141\) −0.415901 13.1720i −0.0350251 1.10928i
\(142\) 0 0
\(143\) −3.46633 + 6.00386i −0.289869 + 0.502068i
\(144\) 0 0
\(145\) −19.8029 34.2996i −1.64454 2.84843i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −6.92116 + 11.9878i −0.567004 + 0.982079i 0.429856 + 0.902897i \(0.358564\pi\)
−0.996860 + 0.0791820i \(0.974769\pi\)
\(150\) 0 0
\(151\) −11.4380 19.8112i −0.930809 1.61221i −0.781942 0.623352i \(-0.785771\pi\)
−0.148867 0.988857i \(-0.547563\pi\)
\(152\) 0 0
\(153\) −7.11022 + 14.3341i −0.574827 + 1.15884i
\(154\) 0 0
\(155\) 4.46762 7.73815i 0.358848 0.621543i
\(156\) 0 0
\(157\) 11.5798 0.924170 0.462085 0.886836i \(-0.347101\pi\)
0.462085 + 0.886836i \(0.347101\pi\)
\(158\) 0 0
\(159\) 1.41315 + 0.757454i 0.112070 + 0.0600700i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −1.70577 2.95449i −0.133607 0.231413i 0.791458 0.611224i \(-0.209323\pi\)
−0.925064 + 0.379811i \(0.875989\pi\)
\(164\) 0 0
\(165\) 0.930982 + 29.4851i 0.0724768 + 2.29542i
\(166\) 0 0
\(167\) −4.69996 8.14057i −0.363694 0.629936i 0.624872 0.780727i \(-0.285151\pi\)
−0.988566 + 0.150791i \(0.951818\pi\)
\(168\) 0 0
\(169\) 5.24484 9.08432i 0.403449 0.698794i
\(170\) 0 0
\(171\) −7.71200 11.6000i −0.589752 0.887077i
\(172\) 0 0
\(173\) −6.40512 −0.486972 −0.243486 0.969904i \(-0.578291\pi\)
−0.243486 + 0.969904i \(0.578291\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −0.0503405 1.59434i −0.00378383 0.119838i
\(178\) 0 0
\(179\) −8.54038 + 14.7924i −0.638338 + 1.10563i 0.347460 + 0.937695i \(0.387044\pi\)
−0.985797 + 0.167938i \(0.946289\pi\)
\(180\) 0 0
\(181\) 1.35988 0.101079 0.0505395 0.998722i \(-0.483906\pi\)
0.0505395 + 0.998722i \(0.483906\pi\)
\(182\) 0 0
\(183\) 0.358339 + 11.3490i 0.0264892 + 0.838940i
\(184\) 0 0
\(185\) 42.3513 3.11373
\(186\) 0 0
\(187\) −23.3374 −1.70660
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −17.8810 −1.29382 −0.646911 0.762566i \(-0.723939\pi\)
−0.646911 + 0.762566i \(0.723939\pi\)
\(192\) 0 0
\(193\) −13.0133 −0.936717 −0.468358 0.883539i \(-0.655154\pi\)
−0.468358 + 0.883539i \(0.655154\pi\)
\(194\) 0 0
\(195\) 0.337110 + 10.6766i 0.0241410 + 0.764569i
\(196\) 0 0
\(197\) 6.36486 0.453478 0.226739 0.973956i \(-0.427194\pi\)
0.226739 + 0.973956i \(0.427194\pi\)
\(198\) 0 0
\(199\) −11.5764 + 20.0510i −0.820631 + 1.42137i 0.0845818 + 0.996417i \(0.473045\pi\)
−0.905213 + 0.424958i \(0.860289\pi\)
\(200\) 0 0
\(201\) 0.820382 + 25.9823i 0.0578653 + 1.83265i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 5.37505 0.375410
\(206\) 0 0
\(207\) 0.490316 0.988471i 0.0340793 0.0687035i
\(208\) 0 0
\(209\) 10.1584 17.5948i 0.702669 1.21706i
\(210\) 0 0
\(211\) −5.67737 9.83349i −0.390846 0.676965i 0.601715 0.798711i \(-0.294484\pi\)
−0.992561 + 0.121745i \(0.961151\pi\)
\(212\) 0 0
\(213\) −0.268421 8.50116i −0.0183919 0.582490i
\(214\) 0 0
\(215\) 14.8575 + 25.7339i 1.01327 + 1.75504i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −11.5518 6.19180i −0.780596 0.418403i
\(220\) 0 0
\(221\) −8.45050 −0.568442
\(222\) 0 0
\(223\) −13.3206 + 23.0719i −0.892011 + 1.54501i −0.0545504 + 0.998511i \(0.517373\pi\)
−0.837461 + 0.546498i \(0.815961\pi\)
\(224\) 0 0
\(225\) 16.8604 + 25.3606i 1.12403 + 1.69071i
\(226\) 0 0
\(227\) 8.30136 + 14.3784i 0.550981 + 0.954326i 0.998204 + 0.0599042i \(0.0190795\pi\)
−0.447224 + 0.894422i \(0.647587\pi\)
\(228\) 0 0
\(229\) 7.25072 12.5586i 0.479141 0.829897i −0.520573 0.853817i \(-0.674282\pi\)
0.999714 + 0.0239205i \(0.00761485\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −7.99020 13.8394i −0.523456 0.906652i −0.999627 0.0272993i \(-0.991309\pi\)
0.476172 0.879352i \(-0.342024\pi\)
\(234\) 0 0
\(235\) 14.8082 25.6485i 0.965980 1.67313i
\(236\) 0 0
\(237\) 0.107980 + 3.41984i 0.00701407 + 0.222143i
\(238\) 0 0
\(239\) −9.58994 16.6103i −0.620322 1.07443i −0.989426 0.145040i \(-0.953669\pi\)
0.369104 0.929388i \(-0.379665\pi\)
\(240\) 0 0
\(241\) −11.6785 20.2277i −0.752276 1.30298i −0.946717 0.322067i \(-0.895623\pi\)
0.194441 0.980914i \(-0.437711\pi\)
\(242\) 0 0
\(243\) 2.44998 + 15.3947i 0.157166 + 0.987572i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 3.67837 6.37112i 0.234049 0.405384i
\(248\) 0 0
\(249\) −0.772484 0.414055i −0.0489542 0.0262397i
\(250\) 0 0
\(251\) −30.4619 −1.92274 −0.961371 0.275257i \(-0.911237\pi\)
−0.961371 + 0.275257i \(0.911237\pi\)
\(252\) 0 0
\(253\) 1.60933 0.101178
\(254\) 0 0
\(255\) −30.5581 + 18.9531i −1.91362 + 1.18689i
\(256\) 0 0
\(257\) 3.40438 5.89657i 0.212360 0.367818i −0.740093 0.672505i \(-0.765218\pi\)
0.952453 + 0.304687i \(0.0985518\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 13.5644 27.3456i 0.839614 1.69265i
\(262\) 0 0
\(263\) 2.30000 + 3.98372i 0.141824 + 0.245647i 0.928184 0.372122i \(-0.121370\pi\)
−0.786359 + 0.617769i \(0.788037\pi\)
\(264\) 0 0
\(265\) 1.80161 + 3.12049i 0.110672 + 0.191690i
\(266\) 0 0
\(267\) −17.9865 + 11.1558i −1.10076 + 0.682724i
\(268\) 0 0
\(269\) 4.25090 7.36277i 0.259182 0.448916i −0.706841 0.707372i \(-0.749880\pi\)
0.966023 + 0.258456i \(0.0832138\pi\)
\(270\) 0 0
\(271\) −3.29191 5.70175i −0.199969 0.346357i 0.748549 0.663079i \(-0.230751\pi\)
−0.948518 + 0.316723i \(0.897417\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −22.2088 + 38.4668i −1.33924 + 2.31963i
\(276\) 0 0
\(277\) 5.63483 + 9.75982i 0.338564 + 0.586411i 0.984163 0.177266i \(-0.0567254\pi\)
−0.645599 + 0.763677i \(0.723392\pi\)
\(278\) 0 0
\(279\) 6.87285 0.434448i 0.411467 0.0260097i
\(280\) 0 0
\(281\) 7.50741 13.0032i 0.447854 0.775707i −0.550392 0.834907i \(-0.685522\pi\)
0.998246 + 0.0592000i \(0.0188550\pi\)
\(282\) 0 0
\(283\) 14.6731 0.872227 0.436114 0.899892i \(-0.356355\pi\)
0.436114 + 0.899892i \(0.356355\pi\)
\(284\) 0 0
\(285\) −0.987931 31.2888i −0.0585200 1.85339i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −5.72343 9.91327i −0.336672 0.583133i
\(290\) 0 0
\(291\) 13.5962 + 7.28763i 0.797024 + 0.427209i
\(292\) 0 0
\(293\) −9.38981 16.2636i −0.548559 0.950132i −0.998374 0.0570099i \(-0.981843\pi\)
0.449815 0.893122i \(-0.351490\pi\)
\(294\) 0 0
\(295\) 1.79238 3.10449i 0.104356 0.180751i
\(296\) 0 0
\(297\) −18.5270 + 13.1788i −1.07504 + 0.764714i
\(298\) 0 0
\(299\) 0.582741 0.0337008
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 16.2259 10.0638i 0.932153 0.578151i
\(304\) 0 0
\(305\) −12.7587 + 22.0987i −0.730562 + 1.26537i
\(306\) 0 0
\(307\) −28.9425 −1.65184 −0.825919 0.563789i \(-0.809343\pi\)
−0.825919 + 0.563789i \(0.809343\pi\)
\(308\) 0 0
\(309\) −4.16888 2.23454i −0.237159 0.127118i
\(310\) 0 0
\(311\) −13.5936 −0.770824 −0.385412 0.922745i \(-0.625941\pi\)
−0.385412 + 0.922745i \(0.625941\pi\)
\(312\) 0 0
\(313\) −13.8644 −0.783665 −0.391832 0.920037i \(-0.628159\pi\)
−0.391832 + 0.920037i \(0.628159\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 23.0856 1.29662 0.648309 0.761377i \(-0.275476\pi\)
0.648309 + 0.761377i \(0.275476\pi\)
\(318\) 0 0
\(319\) 44.5214 2.49272
\(320\) 0 0
\(321\) −15.8851 + 9.85245i −0.886621 + 0.549910i
\(322\) 0 0
\(323\) 24.7649 1.37796
\(324\) 0 0
\(325\) −8.04184 + 13.9289i −0.446081 + 0.772635i
\(326\) 0 0
\(327\) 15.2410 + 8.16925i 0.842830 + 0.451761i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −15.6529 −0.860364 −0.430182 0.902742i \(-0.641551\pi\)
−0.430182 + 0.902742i \(0.641551\pi\)
\(332\) 0 0
\(333\) 18.0713 + 27.1821i 0.990303 + 1.48957i
\(334\) 0 0
\(335\) −29.2098 + 50.5929i −1.59590 + 2.76418i
\(336\) 0 0
\(337\) 3.56686 + 6.17799i 0.194299 + 0.336537i 0.946671 0.322203i \(-0.104423\pi\)
−0.752371 + 0.658739i \(0.771090\pi\)
\(338\) 0 0
\(339\) 18.0169 11.1746i 0.978542 0.606923i
\(340\) 0 0
\(341\) 5.02211 + 8.69855i 0.271962 + 0.471053i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 2.10727 1.30699i 0.113452 0.0703662i
\(346\) 0 0
\(347\) 5.55655 0.298291 0.149146 0.988815i \(-0.452348\pi\)
0.149146 + 0.988815i \(0.452348\pi\)
\(348\) 0 0
\(349\) −5.33296 + 9.23696i −0.285467 + 0.494443i −0.972722 0.231973i \(-0.925482\pi\)
0.687256 + 0.726416i \(0.258815\pi\)
\(350\) 0 0
\(351\) −6.70866 + 4.77208i −0.358082 + 0.254715i
\(352\) 0 0
\(353\) 6.42132 + 11.1221i 0.341772 + 0.591967i 0.984762 0.173908i \(-0.0556394\pi\)
−0.642989 + 0.765875i \(0.722306\pi\)
\(354\) 0 0
\(355\) 9.55715 16.5535i 0.507241 0.878567i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −12.8417 22.2426i −0.677761 1.17392i −0.975653 0.219318i \(-0.929617\pi\)
0.297892 0.954600i \(-0.403716\pi\)
\(360\) 0 0
\(361\) −1.27977 + 2.21663i −0.0673563 + 0.116665i
\(362\) 0 0
\(363\) −12.4349 6.66518i −0.652665 0.349831i
\(364\) 0 0
\(365\) −14.7273 25.5084i −0.770861 1.33517i
\(366\) 0 0
\(367\) 8.49197 + 14.7085i 0.443277 + 0.767778i 0.997930 0.0643031i \(-0.0204824\pi\)
−0.554653 + 0.832082i \(0.687149\pi\)
\(368\) 0 0
\(369\) 2.29354 + 3.44983i 0.119397 + 0.179591i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 4.38503 7.59509i 0.227048 0.393259i −0.729884 0.683571i \(-0.760426\pi\)
0.956932 + 0.290312i \(0.0937592\pi\)
\(374\) 0 0
\(375\) 1.09603 + 34.7123i 0.0565986 + 1.79254i
\(376\) 0 0
\(377\) 16.1213 0.830288
\(378\) 0 0
\(379\) 11.7002 0.601001 0.300500 0.953782i \(-0.402846\pi\)
0.300500 + 0.953782i \(0.402846\pi\)
\(380\) 0 0
\(381\) −0.721560 22.8525i −0.0369666 1.17077i
\(382\) 0 0
\(383\) 4.50360 7.80046i 0.230123 0.398585i −0.727721 0.685873i \(-0.759420\pi\)
0.957844 + 0.287288i \(0.0927538\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −10.1769 + 20.5166i −0.517322 + 1.04292i
\(388\) 0 0
\(389\) 4.89390 + 8.47649i 0.248131 + 0.429775i 0.963007 0.269476i \(-0.0868504\pi\)
−0.714876 + 0.699251i \(0.753517\pi\)
\(390\) 0 0
\(391\) 0.980839 + 1.69886i 0.0496032 + 0.0859152i
\(392\) 0 0
\(393\) −7.76547 4.16233i −0.391716 0.209962i
\(394\) 0 0
\(395\) −3.84465 + 6.65912i −0.193445 + 0.335057i
\(396\) 0 0
\(397\) −6.95929 12.0538i −0.349277 0.604965i 0.636844 0.770992i \(-0.280239\pi\)
−0.986121 + 0.166027i \(0.946906\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 11.7414 20.3367i 0.586336 1.01556i −0.408371 0.912816i \(-0.633903\pi\)
0.994707 0.102748i \(-0.0327636\pi\)
\(402\) 0 0
\(403\) 1.81852 + 3.14976i 0.0905867 + 0.156901i
\(404\) 0 0
\(405\) −13.5564 + 32.3029i −0.673621 + 1.60514i
\(406\) 0 0
\(407\) −23.8038 + 41.2295i −1.17991 + 2.04367i
\(408\) 0 0
\(409\) −13.6245 −0.673689 −0.336844 0.941560i \(-0.609360\pi\)
−0.336844 + 0.941560i \(0.609360\pi\)
\(410\) 0 0
\(411\) 19.6416 12.1823i 0.968847 0.600909i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −0.984835 1.70578i −0.0483436 0.0837336i
\(416\) 0 0
\(417\) 14.2965 8.86717i 0.700105 0.434227i
\(418\) 0 0
\(419\) −3.97733 6.88894i −0.194305 0.336547i 0.752367 0.658744i \(-0.228912\pi\)
−0.946673 + 0.322197i \(0.895579\pi\)
\(420\) 0 0
\(421\) 1.30584 2.26178i 0.0636426 0.110232i −0.832448 0.554102i \(-0.813062\pi\)
0.896091 + 0.443870i \(0.146395\pi\)
\(422\) 0 0
\(423\) 22.7805 1.44000i 1.10762 0.0700154i
\(424\) 0 0
\(425\) −54.1424 −2.62629
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −10.5833 5.67268i −0.510965 0.273880i
\(430\) 0 0
\(431\) 0.791065 1.37017i 0.0381043 0.0659985i −0.846344 0.532636i \(-0.821201\pi\)
0.884449 + 0.466638i \(0.154535\pi\)
\(432\) 0 0
\(433\) 5.17110 0.248507 0.124254 0.992250i \(-0.460346\pi\)
0.124254 + 0.992250i \(0.460346\pi\)
\(434\) 0 0
\(435\) 58.2966 36.1574i 2.79511 1.73361i
\(436\) 0 0
\(437\) −1.70777 −0.0816939
\(438\) 0 0
\(439\) −24.9611 −1.19133 −0.595665 0.803233i \(-0.703111\pi\)
−0.595665 + 0.803233i \(0.703111\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 1.08453 0.0515274 0.0257637 0.999668i \(-0.491798\pi\)
0.0257637 + 0.999668i \(0.491798\pi\)
\(444\) 0 0
\(445\) −47.5649 −2.25479
\(446\) 0 0
\(447\) −21.1315 11.3266i −0.999484 0.535728i
\(448\) 0 0
\(449\) 4.23372 0.199802 0.0999008 0.994997i \(-0.468147\pi\)
0.0999008 + 0.994997i \(0.468147\pi\)
\(450\) 0 0
\(451\) −3.02108 + 5.23267i −0.142257 + 0.246397i
\(452\) 0 0
\(453\) 33.6716 20.8842i 1.58203 0.981225i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −36.3026 −1.69817 −0.849083 0.528260i \(-0.822845\pi\)
−0.849083 + 0.528260i \(0.822845\pi\)
\(458\) 0 0
\(459\) −25.2037 11.5256i −1.17641 0.537969i
\(460\) 0 0
\(461\) −1.71236 + 2.96589i −0.0797524 + 0.138135i −0.903143 0.429340i \(-0.858746\pi\)
0.823391 + 0.567475i \(0.192080\pi\)
\(462\) 0 0
\(463\) 2.38499 + 4.13092i 0.110840 + 0.191980i 0.916109 0.400929i \(-0.131313\pi\)
−0.805269 + 0.592909i \(0.797979\pi\)
\(464\) 0 0
\(465\) 13.6404 + 7.31131i 0.632558 + 0.339054i
\(466\) 0 0
\(467\) 10.0490 + 17.4053i 0.465010 + 0.805422i 0.999202 0.0399417i \(-0.0127172\pi\)
−0.534192 + 0.845363i \(0.679384\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0.632971 + 20.0468i 0.0291658 + 0.923710i
\(472\) 0 0
\(473\) −33.4030 −1.53587
\(474\) 0 0
\(475\) 23.5673 40.8198i 1.08134 1.87294i
\(476\) 0 0
\(477\) −1.23405 + 2.48783i −0.0565033 + 0.113910i
\(478\) 0 0
\(479\) −8.42528 14.5930i −0.384961 0.666772i 0.606803 0.794852i \(-0.292452\pi\)
−0.991764 + 0.128080i \(0.959118\pi\)
\(480\) 0 0
\(481\) −8.61941 + 14.9293i −0.393011 + 0.680716i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 17.3337 + 30.0229i 0.787084 + 1.36327i
\(486\) 0 0
\(487\) −11.9916 + 20.7700i −0.543389 + 0.941178i 0.455317 + 0.890329i \(0.349526\pi\)
−0.998706 + 0.0508486i \(0.983807\pi\)
\(488\) 0 0
\(489\) 5.02153 3.11451i 0.227082 0.140843i
\(490\) 0 0
\(491\) −1.07281 1.85816i −0.0484153 0.0838577i 0.840802 0.541342i \(-0.182084\pi\)
−0.889217 + 0.457485i \(0.848750\pi\)
\(492\) 0 0
\(493\) 27.1345 + 46.9983i 1.22207 + 2.11670i
\(494\) 0 0
\(495\) −50.9934 + 3.22341i −2.29198 + 0.144881i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 13.8577 24.0023i 0.620357 1.07449i −0.369062 0.929405i \(-0.620321\pi\)
0.989419 0.145085i \(-0.0463455\pi\)
\(500\) 0 0
\(501\) 13.8359 8.58149i 0.618145 0.383393i
\(502\) 0 0
\(503\) 22.4265 0.999949 0.499974 0.866040i \(-0.333343\pi\)
0.499974 + 0.866040i \(0.333343\pi\)
\(504\) 0 0
\(505\) 42.9090 1.90943
\(506\) 0 0
\(507\) 16.0134 + 8.58323i 0.711178 + 0.381195i
\(508\) 0 0
\(509\) −14.6844 + 25.4342i −0.650876 + 1.12735i 0.332034 + 0.943267i \(0.392265\pi\)
−0.982911 + 0.184083i \(0.941068\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 19.6603 13.9850i 0.868023 0.617453i
\(514\) 0 0
\(515\) −5.31488 9.20563i −0.234201 0.405649i
\(516\) 0 0
\(517\) 16.6461 + 28.8318i 0.732093 + 1.26802i
\(518\) 0 0
\(519\) −0.350114 11.0885i −0.0153683 0.486730i
\(520\) 0 0
\(521\) −8.25389 + 14.2962i −0.361610 + 0.626326i −0.988226 0.153002i \(-0.951106\pi\)
0.626616 + 0.779328i \(0.284439\pi\)
\(522\) 0 0
\(523\) 22.3476 + 38.7072i 0.977193 + 1.69255i 0.672499 + 0.740098i \(0.265221\pi\)
0.304695 + 0.952450i \(0.401446\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −6.12166 + 10.6030i −0.266664 + 0.461875i
\(528\) 0 0
\(529\) 11.4324 + 19.8014i 0.497059 + 0.860932i
\(530\) 0 0
\(531\) 2.75734 0.174298i 0.119659 0.00756388i
\(532\) 0 0
\(533\) −1.09394 + 1.89476i −0.0473838 + 0.0820711i
\(534\) 0 0
\(535\) −42.0078 −1.81616
\(536\) 0 0
\(537\) −26.0752 13.9764i −1.12523 0.603127i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 10.0369 + 17.3844i 0.431519 + 0.747412i 0.997004 0.0773460i \(-0.0246446\pi\)
−0.565486 + 0.824758i \(0.691311\pi\)
\(542\) 0 0
\(543\) 0.0743332 + 2.35421i 0.00318994 + 0.101029i
\(544\) 0 0
\(545\) 19.4307 + 33.6549i 0.832319 + 1.44162i
\(546\) 0 0
\(547\) 6.35012 10.9987i 0.271512 0.470272i −0.697738 0.716353i \(-0.745810\pi\)
0.969249 + 0.246082i \(0.0791432\pi\)
\(548\) 0 0
\(549\) −19.6276 + 1.24071i −0.837686 + 0.0529520i
\(550\) 0 0
\(551\) −47.2448 −2.01270
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 2.31499 + 73.3181i 0.0982659 + 3.11218i
\(556\) 0 0
\(557\) −7.34743 + 12.7261i −0.311321 + 0.539223i −0.978649 0.205541i \(-0.934105\pi\)
0.667328 + 0.744764i \(0.267438\pi\)
\(558\) 0 0
\(559\) −12.0953 −0.511576
\(560\) 0 0
\(561\) −1.27566 40.4013i −0.0538583 1.70575i
\(562\) 0 0
\(563\) 26.7860 1.12890 0.564448 0.825469i \(-0.309089\pi\)
0.564448 + 0.825469i \(0.309089\pi\)
\(564\) 0 0
\(565\) 47.6452 2.00445
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 6.48336 0.271797 0.135898 0.990723i \(-0.456608\pi\)
0.135898 + 0.990723i \(0.456608\pi\)
\(570\) 0 0
\(571\) 15.6326 0.654205 0.327103 0.944989i \(-0.393928\pi\)
0.327103 + 0.944989i \(0.393928\pi\)
\(572\) 0 0
\(573\) −0.977402 30.9553i −0.0408315 1.29318i
\(574\) 0 0
\(575\) 3.73363 0.155703
\(576\) 0 0
\(577\) 14.5800 25.2533i 0.606974 1.05131i −0.384763 0.923016i \(-0.625717\pi\)
0.991736 0.128294i \(-0.0409500\pi\)
\(578\) 0 0
\(579\) −0.711327 22.5284i −0.0295617 0.936250i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −4.05043 −0.167752
\(584\) 0 0
\(585\) −18.4648 + 1.16720i −0.763426 + 0.0482579i
\(586\) 0 0
\(587\) −2.33110 + 4.03758i −0.0962146 + 0.166649i −0.910115 0.414356i \(-0.864007\pi\)
0.813900 + 0.581005i \(0.197340\pi\)
\(588\) 0 0
\(589\) −5.32932 9.23065i −0.219591 0.380342i
\(590\) 0 0
\(591\) 0.347913 + 11.0188i 0.0143112 + 0.453252i
\(592\) 0 0
\(593\) −15.8322 27.4222i −0.650150 1.12609i −0.983086 0.183144i \(-0.941373\pi\)
0.332936 0.942950i \(-0.391961\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −35.3448 18.9450i −1.44657 0.775365i
\(598\) 0 0
\(599\) −10.3054 −0.421065 −0.210533 0.977587i \(-0.567520\pi\)
−0.210533 + 0.977587i \(0.567520\pi\)
\(600\) 0 0
\(601\) −4.64993 + 8.05391i −0.189674 + 0.328526i −0.945142 0.326661i \(-0.894077\pi\)
0.755467 + 0.655186i \(0.227410\pi\)
\(602\) 0 0
\(603\) −44.9355 + 2.84047i −1.82991 + 0.115673i
\(604\) 0 0
\(605\) −15.8532 27.4586i −0.644525 1.11635i
\(606\) 0 0
\(607\) −10.2484 + 17.7507i −0.415969 + 0.720480i −0.995530 0.0944495i \(-0.969891\pi\)
0.579561 + 0.814929i \(0.303224\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 6.02757 + 10.4401i 0.243850 + 0.422360i
\(612\) 0 0
\(613\) 7.17240 12.4230i 0.289691 0.501759i −0.684045 0.729440i \(-0.739781\pi\)
0.973736 + 0.227681i \(0.0731143\pi\)
\(614\) 0 0
\(615\) 0.293809 + 9.30522i 0.0118475 + 0.375223i
\(616\) 0 0
\(617\) −6.47499 11.2150i −0.260673 0.451499i 0.705748 0.708463i \(-0.250611\pi\)
−0.966421 + 0.256964i \(0.917278\pi\)
\(618\) 0 0
\(619\) 17.6990 + 30.6556i 0.711383 + 1.23215i 0.964338 + 0.264674i \(0.0852642\pi\)
−0.252955 + 0.967478i \(0.581402\pi\)
\(620\) 0 0
\(621\) 1.73803 + 0.794798i 0.0697448 + 0.0318942i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −13.6460 + 23.6355i −0.545839 + 0.945422i
\(626\) 0 0
\(627\) 31.0152 + 16.6243i 1.23863 + 0.663910i
\(628\) 0 0
\(629\) −58.0310 −2.31385
\(630\) 0 0
\(631\) 33.1936 1.32141 0.660707 0.750644i \(-0.270256\pi\)
0.660707 + 0.750644i \(0.270256\pi\)
\(632\) 0 0
\(633\) 16.7133 10.3661i 0.664293 0.412016i
\(634\) 0 0
\(635\) 25.6912 44.4985i 1.01952 1.76587i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 14.7024 0.929373i 0.581619 0.0367654i
\(640\) 0 0
\(641\) 0.119634 + 0.207213i 0.00472528 + 0.00818442i 0.868378 0.495902i \(-0.165163\pi\)
−0.863653 + 0.504087i \(0.831829\pi\)
\(642\) 0 0
\(643\) −4.57211 7.91913i −0.180307 0.312300i 0.761678 0.647955i \(-0.224376\pi\)
−0.941985 + 0.335655i \(0.891042\pi\)
\(644\) 0 0
\(645\) −43.7382 + 27.1278i −1.72219 + 1.06816i
\(646\) 0 0
\(647\) −3.15607 + 5.46648i −0.124078 + 0.214909i −0.921372 0.388682i \(-0.872931\pi\)
0.797294 + 0.603591i \(0.206264\pi\)
\(648\) 0 0
\(649\) 2.01484 + 3.48980i 0.0790893 + 0.136987i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 2.27888 3.94713i 0.0891793 0.154463i −0.817985 0.575239i \(-0.804909\pi\)
0.907164 + 0.420776i \(0.138242\pi\)
\(654\) 0 0
\(655\) −9.90015 17.1476i −0.386831 0.670011i
\(656\) 0 0
\(657\) 10.0877 20.3367i 0.393560 0.793411i
\(658\) 0 0
\(659\) −16.4631 + 28.5149i −0.641311 + 1.11078i 0.343829 + 0.939032i \(0.388276\pi\)
−0.985140 + 0.171751i \(0.945058\pi\)
\(660\) 0 0
\(661\) 0.541337 0.0210556 0.0105278 0.999945i \(-0.496649\pi\)
0.0105278 + 0.999945i \(0.496649\pi\)
\(662\) 0 0
\(663\) −0.461918 14.6294i −0.0179394 0.568159i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −1.87118 3.24097i −0.0724523 0.125491i
\(668\) 0 0
\(669\) −40.6699 21.7993i −1.57239 0.842808i
\(670\) 0 0
\(671\) −14.3422 24.8415i −0.553676 0.958994i
\(672\) 0 0
\(673\) −11.8205 + 20.4737i −0.455647 + 0.789204i −0.998725 0.0504780i \(-0.983926\pi\)
0.543078 + 0.839682i \(0.317259\pi\)
\(674\) 0 0
\(675\) −42.9824 + 30.5748i −1.65439 + 1.17682i
\(676\) 0 0
\(677\) −2.72989 −0.104918 −0.0524591 0.998623i \(-0.516706\pi\)
−0.0524591 + 0.998623i \(0.516706\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −24.4379 + 15.1572i −0.936463 + 0.580824i
\(682\) 0 0
\(683\) 15.9640 27.6504i 0.610844 1.05801i −0.380254 0.924882i \(-0.624164\pi\)
0.991098 0.133131i \(-0.0425032\pi\)
\(684\) 0 0
\(685\) 51.9417 1.98459
\(686\) 0 0
\(687\) 22.1377 + 11.8659i 0.844605 + 0.452712i
\(688\) 0 0
\(689\) −1.46667 −0.0558756
\(690\) 0 0
\(691\) −2.38206 −0.0906178 −0.0453089 0.998973i \(-0.514427\pi\)
−0.0453089 + 0.998973i \(0.514427\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 37.8069 1.43410
\(696\) 0 0
\(697\) −7.36504 −0.278971
\(698\) 0 0
\(699\) 23.5219 14.5890i 0.889680 0.551808i
\(700\) 0 0
\(701\) 50.3767 1.90270 0.951350 0.308111i \(-0.0996968\pi\)
0.951350 + 0.308111i \(0.0996968\pi\)
\(702\) 0 0
\(703\) 25.2599 43.7515i 0.952697 1.65012i
\(704\) 0 0
\(705\) 45.2119 + 24.2338i 1.70278 + 0.912697i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 40.3201 1.51425 0.757126 0.653268i \(-0.226603\pi\)
0.757126 + 0.653268i \(0.226603\pi\)
\(710\) 0 0
\(711\) −5.91449 + 0.373868i −0.221811 + 0.0140211i
\(712\) 0 0
\(713\) 0.422146 0.731178i 0.0158095 0.0273828i
\(714\) 0 0
\(715\) −13.4926 23.3698i −0.504593 0.873981i
\(716\) 0 0
\(717\) 28.2313 17.5099i 1.05432 0.653920i
\(718\) 0 0
\(719\) 17.0446 + 29.5222i 0.635658 + 1.10099i 0.986375 + 0.164510i \(0.0526043\pi\)
−0.350718 + 0.936481i \(0.614062\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 34.3796 21.3233i 1.27859 0.793022i
\(724\) 0 0
\(725\) 103.289 3.83606
\(726\) 0 0
\(727\) 10.9453 18.9578i 0.405938 0.703105i −0.588492 0.808503i \(-0.700278\pi\)
0.994430 + 0.105398i \(0.0336117\pi\)
\(728\) 0 0
\(729\) −26.5172 + 5.08288i −0.982120 + 0.188255i
\(730\) 0 0
\(731\) −20.3581 35.2613i −0.752973 1.30419i
\(732\) 0 0
\(733\) 4.34416 7.52430i 0.160455 0.277916i −0.774577 0.632480i \(-0.782037\pi\)
0.935032 + 0.354563i \(0.115370\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −32.8351 56.8721i −1.20950 2.09491i
\(738\) 0 0
\(739\) −3.34692 + 5.79704i −0.123119 + 0.213248i −0.920996 0.389572i \(-0.872623\pi\)
0.797877 + 0.602820i \(0.205956\pi\)
\(740\) 0 0
\(741\) 11.2307 + 6.01969i 0.412569 + 0.221139i
\(742\) 0 0
\(743\) 21.5001 + 37.2392i 0.788761 + 1.36617i 0.926726 + 0.375737i \(0.122611\pi\)
−0.137965 + 0.990437i \(0.544056\pi\)
\(744\) 0 0
\(745\) −26.9404 46.6621i −0.987019 1.70957i
\(746\) 0 0
\(747\) 0.674582 1.35995i 0.0246816 0.0497579i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 8.36369 14.4863i 0.305196 0.528614i −0.672109 0.740452i \(-0.734612\pi\)
0.977305 + 0.211838i \(0.0679448\pi\)
\(752\) 0 0
\(753\) −1.66510 52.7354i −0.0606796 1.92178i
\(754\) 0 0
\(755\) 89.0438 3.24064
\(756\) 0 0
\(757\) −4.68561 −0.170301 −0.0851507 0.996368i \(-0.527137\pi\)
−0.0851507 + 0.996368i \(0.527137\pi\)
\(758\) 0 0
\(759\) 0.0879685 + 2.78605i 0.00319306 + 0.101127i
\(760\) 0 0
\(761\) 25.8242 44.7288i 0.936127 1.62142i 0.163514 0.986541i \(-0.447717\pi\)
0.772613 0.634878i \(-0.218950\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −34.4817 51.8658i −1.24669 1.87521i
\(766\) 0 0
\(767\) 0.729576 + 1.26366i 0.0263435 + 0.0456282i
\(768\) 0 0
\(769\) 15.3910 + 26.6580i 0.555014 + 0.961313i 0.997902 + 0.0647361i \(0.0206205\pi\)
−0.442888 + 0.896577i \(0.646046\pi\)
\(770\) 0 0
\(771\) 10.3942 + 5.57131i 0.374336 + 0.200646i
\(772\) 0 0
\(773\) −13.5259 + 23.4275i −0.486491 + 0.842627i −0.999879 0.0155292i \(-0.995057\pi\)
0.513388 + 0.858156i \(0.328390\pi\)
\(774\) 0 0
\(775\) 11.6512 + 20.1805i 0.418525 + 0.724907i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 3.20588 5.55275i 0.114863 0.198948i
\(780\) 0 0
\(781\) 10.7433 + 18.6080i 0.384426 + 0.665845i
\(782\) 0 0
\(783\) 48.0818 + 21.9877i 1.71830 + 0.785777i
\(784\) 0 0
\(785\) −22.5370 + 39.0352i −0.804380 + 1.39323i
\(786\) 0 0
\(787\) −35.1995 −1.25473 −0.627363 0.778727i \(-0.715866\pi\)
−0.627363 + 0.778727i \(0.715866\pi\)
\(788\) 0 0
\(789\) −6.77085 + 4.19950i −0.241049 + 0.149506i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −5.19335 8.99514i −0.184421 0.319427i
\(794\) 0 0
\(795\) −5.30367 + 3.28950i −0.188102 + 0.116667i
\(796\) 0 0
\(797\) −23.8268 41.2692i −0.843988 1.46183i −0.886497 0.462735i \(-0.846868\pi\)
0.0425084 0.999096i \(-0.486465\pi\)
\(798\) 0 0
\(799\) −20.2906 + 35.1443i −0.717829 + 1.24332i
\(800\) 0 0
\(801\) −20.2960 30.5282i −0.717122 1.07866i
\(802\) 0 0
\(803\) 33.1102 1.16843
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 12.9787 + 6.95664i 0.456872 + 0.244885i
\(808\) 0 0
\(809\) −9.87711 + 17.1077i −0.347261 + 0.601473i −0.985762 0.168148i \(-0.946221\pi\)
0.638501 + 0.769621i \(0.279555\pi\)
\(810\) 0 0
\(811\) −49.2424 −1.72913 −0.864567 0.502518i \(-0.832407\pi\)
−0.864567 + 0.502518i \(0.832407\pi\)
\(812\) 0 0
\(813\) 9.69086 6.01057i 0.339873 0.210800i
\(814\) 0 0
\(815\) 13.2793 0.465155
\(816\) 0 0
\(817\) 35.4463 1.24011
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 10.0003 0.349012 0.174506 0.984656i \(-0.444167\pi\)
0.174506 + 0.984656i \(0.444167\pi\)
\(822\) 0 0
\(823\) −35.0276 −1.22099 −0.610493 0.792021i \(-0.709029\pi\)
−0.610493 + 0.792021i \(0.709029\pi\)
\(824\) 0 0
\(825\) −67.8072 36.3449i −2.36074 1.26537i
\(826\) 0 0
\(827\) −22.7079 −0.789631 −0.394816 0.918760i \(-0.629192\pi\)
−0.394816 + 0.918760i \(0.629192\pi\)
\(828\) 0 0
\(829\) 6.22083 10.7748i 0.216058 0.374224i −0.737541 0.675302i \(-0.764013\pi\)
0.953599 + 0.301078i \(0.0973465\pi\)
\(830\) 0 0
\(831\) −16.5881 + 10.2884i −0.575434 + 0.356902i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 36.5888 1.26621
\(836\) 0 0
\(837\) 1.12779 + 11.8745i 0.0389822 + 0.410441i
\(838\) 0 0
\(839\) −13.8249 + 23.9455i −0.477290 + 0.826690i −0.999661 0.0260281i \(-0.991714\pi\)
0.522372 + 0.852718i \(0.325047\pi\)
\(840\) 0 0
\(841\) −37.2652 64.5453i −1.28501 2.22570i
\(842\) 0 0
\(843\) 22.9214 + 12.2860i 0.789454 + 0.423151i
\(844\) 0 0
\(845\) 20.4153 + 35.3604i 0.702309 + 1.21643i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0.802057 + 25.4020i 0.0275265 + 0.871793i
\(850\) 0 0
\(851\) 4.00178 0.137179
\(852\) 0 0
\(853\) −22.0459 + 38.1847i −0.754839 + 1.30742i 0.190616 + 0.981665i \(0.438952\pi\)
−0.945454 + 0.325754i \(0.894382\pi\)
\(854\) 0 0
\(855\) 54.1127 3.42059i 1.85062 0.116982i
\(856\) 0 0
\(857\) 13.3838 + 23.1814i 0.457182 + 0.791862i 0.998811 0.0487557i \(-0.0155256\pi\)
−0.541629 + 0.840618i \(0.682192\pi\)
\(858\) 0 0
\(859\) 10.0951 17.4852i 0.344439 0.596587i −0.640812 0.767698i \(-0.721402\pi\)
0.985252 + 0.171111i \(0.0547357\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −4.74538 8.21923i −0.161534 0.279786i 0.773885 0.633327i \(-0.218311\pi\)
−0.935419 + 0.353541i \(0.884978\pi\)
\(864\) 0 0
\(865\) 12.4659 21.5915i 0.423852 0.734133i
\(866\) 0 0
\(867\) 16.8489 10.4502i 0.572218 0.354908i
\(868\) 0 0
\(869\) −4.32182 7.48560i −0.146608 0.253932i
\(870\) 0 0
\(871\) −11.8897 20.5935i −0.402866 0.697784i
\(872\) 0 0
\(873\) −11.8731 + 23.9360i −0.401843 + 0.810110i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −14.6227 + 25.3273i −0.493774 + 0.855242i −0.999974 0.00717380i \(-0.997716\pi\)
0.506200 + 0.862416i \(0.331050\pi\)
\(878\) 0 0
\(879\) 27.6422 17.1445i 0.932347 0.578271i
\(880\) 0 0
\(881\) 37.2768 1.25589 0.627944 0.778259i \(-0.283897\pi\)
0.627944 + 0.778259i \(0.283897\pi\)
\(882\) 0 0
\(883\) −56.9436 −1.91630 −0.958152 0.286260i \(-0.907588\pi\)
−0.958152 + 0.286260i \(0.907588\pi\)
\(884\) 0 0
\(885\) 5.47244 + 2.93325i 0.183954 + 0.0986002i
\(886\) 0 0
\(887\) 4.96127 8.59316i 0.166583 0.288530i −0.770633 0.637279i \(-0.780060\pi\)
0.937216 + 0.348749i \(0.113393\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −23.8278 31.3533i −0.798260 1.05038i
\(892\) 0 0
\(893\) −17.6643 30.5955i −0.591114 1.02384i
\(894\) 0 0
\(895\) −33.2431 57.5787i −1.11119 1.92465i
\(896\) 0 0
\(897\) 0.0318536 + 1.00884i 0.00106356 + 0.0336840i
\(898\) 0 0
\(899\) 11.6785 20.2277i 0.389499 0.674632i
\(900\) 0 0
\(901\) −2.46862 4.27577i −0.0822416 0.142447i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −2.64664 + 4.58412i −0.0879774 + 0.152381i
\(906\) 0 0
\(907\) 12.2887 + 21.2847i 0.408040 + 0.706747i 0.994670 0.103109i \(-0.0328789\pi\)
−0.586630 + 0.809855i \(0.699546\pi\)
\(908\) 0 0
\(909\) 18.3093 + 27.5400i 0.607280 + 0.913443i
\(910\) 0 0
\(911\) 9.73496 16.8614i 0.322534 0.558645i −0.658476 0.752601i \(-0.728799\pi\)
0.981010 + 0.193957i \(0.0621321\pi\)
\(912\) 0 0
\(913\) 2.21413 0.0732770
\(914\) 0 0
\(915\) −38.9545 20.8798i −1.28780 0.690264i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 6.61992 + 11.4660i 0.218371 + 0.378230i 0.954310 0.298818i \(-0.0965923\pi\)
−0.735939 + 0.677048i \(0.763259\pi\)
\(920\) 0 0
\(921\) −1.58204 50.1050i −0.0521301 1.65101i
\(922\) 0 0
\(923\) 3.89017 + 6.73798i 0.128047 + 0.221783i
\(924\) 0 0
\(925\) −55.2247 + 95.6519i −1.81578 + 3.14502i
\(926\) 0 0
\(927\) 3.64053 7.33925i 0.119571 0.241053i
\(928\) 0 0
\(929\) 31.7363 1.04124 0.520618 0.853790i \(-0.325702\pi\)
0.520618 + 0.853790i \(0.325702\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −0.743049 23.5331i −0.0243263 0.770440i
\(934\) 0 0
\(935\) 45.4199 78.6696i 1.48539 2.57277i
\(936\) 0 0
\(937\) −13.5019 −0.441087 −0.220543 0.975377i \(-0.570783\pi\)
−0.220543 + 0.975377i \(0.570783\pi\)
\(938\) 0 0
\(939\) −0.757852 24.0020i −0.0247316 0.783274i
\(940\) 0 0
\(941\) −39.6572 −1.29279 −0.646394 0.763004i \(-0.723724\pi\)
−0.646394 + 0.763004i \(0.723724\pi\)
\(942\) 0 0
\(943\) 0.507889 0.0165391
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −61.0344 −1.98335 −0.991675 0.128764i \(-0.958899\pi\)
−0.991675 + 0.128764i \(0.958899\pi\)
\(948\) 0 0
\(949\) 11.9893 0.389188
\(950\) 0 0
\(951\) 1.26190 + 39.9656i 0.0409198 + 1.29597i
\(952\) 0 0
\(953\) 5.22726 0.169328 0.0846638 0.996410i \(-0.473018\pi\)
0.0846638 + 0.996410i \(0.473018\pi\)
\(954\) 0 0
\(955\) 34.8005 60.2762i 1.12612 1.95049i
\(956\) 0 0
\(957\) 2.43361 + 77.0749i 0.0786674 + 2.49148i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −25.7306 −0.830018
\(962\) 0 0
\(963\) −17.9247 26.9616i −0.577617 0.868825i
\(964\) 0 0
\(965\) 25.3269 43.8674i 0.815301 1.41214i
\(966\) 0 0
\(967\) 10.2035 + 17.6729i 0.328121 + 0.568323i 0.982139 0.188156i \(-0.0602511\pi\)
−0.654018 + 0.756479i \(0.726918\pi\)
\(968\) 0 0
\(969\) 1.35369 + 42.8727i 0.0434868 + 1.37727i
\(970\) 0 0
\(971\) −0.589402 1.02087i −0.0189148 0.0327614i 0.856413 0.516291i \(-0.172688\pi\)
−0.875328 + 0.483530i \(0.839354\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −24.5531 13.1606i −0.786328 0.421476i
\(976\) 0 0
\(977\) 8.20973 0.262653 0.131326 0.991339i \(-0.458076\pi\)
0.131326 + 0.991339i \(0.458076\pi\)
\(978\) 0 0
\(979\) 26.7342 46.3049i 0.854427 1.47991i
\(980\) 0 0
\(981\) −13.3094 + 26.8316i −0.424937 + 0.856667i
\(982\) 0 0
\(983\) 0.753481 + 1.30507i 0.0240323 + 0.0416252i 0.877791 0.479043i \(-0.159016\pi\)
−0.853759 + 0.520668i \(0.825683\pi\)
\(984\) 0 0
\(985\) −12.3875 + 21.4558i −0.394698 + 0.683638i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1.40389 + 2.43160i 0.0446410 + 0.0773204i
\(990\) 0 0
\(991\) −16.2229 + 28.0990i −0.515339 + 0.892593i 0.484503 + 0.874790i \(0.339001\pi\)
−0.999842 + 0.0178030i \(0.994333\pi\)
\(992\) 0 0
\(993\) −0.855615 27.0982i −0.0271521 0.859935i
\(994\) 0 0
\(995\) −45.0608 78.0476i −1.42852 2.47428i
\(996\) 0 0
\(997\) 6.26198 + 10.8461i 0.198319 + 0.343498i 0.947983 0.318320i \(-0.103119\pi\)
−0.749665 + 0.661818i \(0.769785\pi\)
\(998\) 0 0
\(999\) −46.0694 + 32.7707i −1.45757 + 1.03682i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1764.2.i.j.1537.7 24
3.2 odd 2 5292.2.i.j.2125.12 24
7.2 even 3 1764.2.l.j.961.2 24
7.3 odd 6 1764.2.j.i.1177.3 yes 24
7.4 even 3 1764.2.j.i.1177.10 yes 24
7.5 odd 6 1764.2.l.j.961.11 24
7.6 odd 2 inner 1764.2.i.j.1537.6 24
9.4 even 3 1764.2.l.j.949.2 24
9.5 odd 6 5292.2.l.j.361.1 24
21.2 odd 6 5292.2.l.j.3313.1 24
21.5 even 6 5292.2.l.j.3313.12 24
21.11 odd 6 5292.2.j.i.3529.12 24
21.17 even 6 5292.2.j.i.3529.1 24
21.20 even 2 5292.2.i.j.2125.1 24
63.4 even 3 1764.2.j.i.589.10 yes 24
63.5 even 6 5292.2.i.j.1549.1 24
63.13 odd 6 1764.2.l.j.949.11 24
63.23 odd 6 5292.2.i.j.1549.12 24
63.31 odd 6 1764.2.j.i.589.3 24
63.32 odd 6 5292.2.j.i.1765.12 24
63.40 odd 6 inner 1764.2.i.j.373.6 24
63.41 even 6 5292.2.l.j.361.12 24
63.58 even 3 inner 1764.2.i.j.373.7 24
63.59 even 6 5292.2.j.i.1765.1 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1764.2.i.j.373.6 24 63.40 odd 6 inner
1764.2.i.j.373.7 24 63.58 even 3 inner
1764.2.i.j.1537.6 24 7.6 odd 2 inner
1764.2.i.j.1537.7 24 1.1 even 1 trivial
1764.2.j.i.589.3 24 63.31 odd 6
1764.2.j.i.589.10 yes 24 63.4 even 3
1764.2.j.i.1177.3 yes 24 7.3 odd 6
1764.2.j.i.1177.10 yes 24 7.4 even 3
1764.2.l.j.949.2 24 9.4 even 3
1764.2.l.j.949.11 24 63.13 odd 6
1764.2.l.j.961.2 24 7.2 even 3
1764.2.l.j.961.11 24 7.5 odd 6
5292.2.i.j.1549.1 24 63.5 even 6
5292.2.i.j.1549.12 24 63.23 odd 6
5292.2.i.j.2125.1 24 21.20 even 2
5292.2.i.j.2125.12 24 3.2 odd 2
5292.2.j.i.1765.1 24 63.59 even 6
5292.2.j.i.1765.12 24 63.32 odd 6
5292.2.j.i.3529.1 24 21.17 even 6
5292.2.j.i.3529.12 24 21.11 odd 6
5292.2.l.j.361.1 24 9.5 odd 6
5292.2.l.j.361.12 24 63.41 even 6
5292.2.l.j.3313.1 24 21.2 odd 6
5292.2.l.j.3313.12 24 21.5 even 6