Properties

Label 1764.2.l.j.961.11
Level $1764$
Weight $2$
Character 1764.961
Analytic conductor $14.086$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1764,2,Mod(949,1764)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1764, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1764.949");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1764.l (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.0856109166\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 961.11
Character \(\chi\) \(=\) 1764.961
Dual form 1764.2.l.j.949.11

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.52658 + 0.818256i) q^{3} -3.89246 q^{5} +(1.66092 + 2.49827i) q^{9} +O(q^{10})\) \(q+(1.52658 + 0.818256i) q^{3} -3.89246 q^{5} +(1.66092 + 2.49827i) q^{9} +4.37557 q^{11} +(0.792201 + 1.37213i) q^{13} +(-5.94217 - 3.18503i) q^{15} +(-2.66678 - 4.61900i) q^{17} +(-2.32161 + 4.02115i) q^{19} +0.367799 q^{23} +10.1513 q^{25} +(0.491301 + 5.17287i) q^{27} +(-5.08750 + 8.81180i) q^{29} +(-1.14776 + 1.98798i) q^{31} +(6.67967 + 3.58033i) q^{33} +(-5.44017 + 9.42265i) q^{37} +(0.0866059 + 2.74290i) q^{39} +(0.690443 + 1.19588i) q^{41} +(3.81699 - 6.61122i) q^{43} +(-6.46505 - 9.72443i) q^{45} +(-3.80432 - 6.58928i) q^{47} +(-0.291541 - 9.23339i) q^{51} +(0.462847 + 0.801674i) q^{53} -17.0317 q^{55} +(-6.83447 + 4.23895i) q^{57} +(-0.460475 + 0.797565i) q^{59} +(3.27780 + 5.67731i) q^{61} +(-3.08361 - 5.34097i) q^{65} +(-7.50420 + 12.9976i) q^{67} +(0.561476 + 0.300954i) q^{69} -4.91059 q^{71} +(3.78353 + 6.55327i) q^{73} +(15.4968 + 8.30634i) q^{75} +(-0.987715 - 1.71077i) q^{79} +(-3.48272 + 8.29883i) q^{81} +(0.253011 - 0.438227i) q^{83} +(10.3803 + 17.9793i) q^{85} +(-14.9768 + 9.28908i) q^{87} +(-6.10987 + 10.5826i) q^{89} +(-3.37883 + 2.09566i) q^{93} +(9.03679 - 15.6522i) q^{95} +(-4.45315 + 7.71308i) q^{97} +(7.26745 + 10.9314i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 24 q - 4 q^{9} + 8 q^{11} - 28 q^{15} + 16 q^{23} + 24 q^{25} - 32 q^{29} - 12 q^{37} + 32 q^{51} - 16 q^{53} + 52 q^{57} - 36 q^{65} + 12 q^{67} + 48 q^{71} + 12 q^{79} - 8 q^{81} + 12 q^{85} + 32 q^{95} - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1764\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(883\) \(1081\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.52658 + 0.818256i 0.881373 + 0.472420i
\(4\) 0 0
\(5\) −3.89246 −1.74076 −0.870381 0.492378i \(-0.836128\pi\)
−0.870381 + 0.492378i \(0.836128\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 1.66092 + 2.49827i 0.553638 + 0.832757i
\(10\) 0 0
\(11\) 4.37557 1.31928 0.659642 0.751580i \(-0.270708\pi\)
0.659642 + 0.751580i \(0.270708\pi\)
\(12\) 0 0
\(13\) 0.792201 + 1.37213i 0.219717 + 0.380561i 0.954721 0.297501i \(-0.0961533\pi\)
−0.735004 + 0.678062i \(0.762820\pi\)
\(14\) 0 0
\(15\) −5.94217 3.18503i −1.53426 0.822371i
\(16\) 0 0
\(17\) −2.66678 4.61900i −0.646789 1.12027i −0.983885 0.178801i \(-0.942778\pi\)
0.337096 0.941470i \(-0.390555\pi\)
\(18\) 0 0
\(19\) −2.32161 + 4.02115i −0.532614 + 0.922515i 0.466660 + 0.884437i \(0.345457\pi\)
−0.999275 + 0.0380786i \(0.987876\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.367799 0.0766914 0.0383457 0.999265i \(-0.487791\pi\)
0.0383457 + 0.999265i \(0.487791\pi\)
\(24\) 0 0
\(25\) 10.1513 2.03025
\(26\) 0 0
\(27\) 0.491301 + 5.17287i 0.0945509 + 0.995520i
\(28\) 0 0
\(29\) −5.08750 + 8.81180i −0.944724 + 1.63631i −0.188422 + 0.982088i \(0.560337\pi\)
−0.756302 + 0.654222i \(0.772996\pi\)
\(30\) 0 0
\(31\) −1.14776 + 1.98798i −0.206144 + 0.357052i −0.950497 0.310735i \(-0.899425\pi\)
0.744353 + 0.667787i \(0.232758\pi\)
\(32\) 0 0
\(33\) 6.67967 + 3.58033i 1.16278 + 0.623256i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −5.44017 + 9.42265i −0.894359 + 1.54907i −0.0597623 + 0.998213i \(0.519034\pi\)
−0.834596 + 0.550862i \(0.814299\pi\)
\(38\) 0 0
\(39\) 0.0866059 + 2.74290i 0.0138680 + 0.439215i
\(40\) 0 0
\(41\) 0.690443 + 1.19588i 0.107829 + 0.186766i 0.914891 0.403702i \(-0.132277\pi\)
−0.807061 + 0.590467i \(0.798943\pi\)
\(42\) 0 0
\(43\) 3.81699 6.61122i 0.582086 1.00820i −0.413146 0.910665i \(-0.635570\pi\)
0.995232 0.0975372i \(-0.0310965\pi\)
\(44\) 0 0
\(45\) −6.46505 9.72443i −0.963753 1.44963i
\(46\) 0 0
\(47\) −3.80432 6.58928i −0.554918 0.961145i −0.997910 0.0646200i \(-0.979416\pi\)
0.442992 0.896525i \(-0.353917\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −0.291541 9.23339i −0.0408239 1.29293i
\(52\) 0 0
\(53\) 0.462847 + 0.801674i 0.0635769 + 0.110118i 0.896062 0.443929i \(-0.146416\pi\)
−0.832485 + 0.554048i \(0.813083\pi\)
\(54\) 0 0
\(55\) −17.0317 −2.29656
\(56\) 0 0
\(57\) −6.83447 + 4.23895i −0.905247 + 0.561463i
\(58\) 0 0
\(59\) −0.460475 + 0.797565i −0.0599487 + 0.103834i −0.894442 0.447184i \(-0.852427\pi\)
0.834493 + 0.551018i \(0.185760\pi\)
\(60\) 0 0
\(61\) 3.27780 + 5.67731i 0.419679 + 0.726905i 0.995907 0.0903836i \(-0.0288093\pi\)
−0.576228 + 0.817289i \(0.695476\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −3.08361 5.34097i −0.382475 0.662466i
\(66\) 0 0
\(67\) −7.50420 + 12.9976i −0.916783 + 1.58792i −0.112514 + 0.993650i \(0.535890\pi\)
−0.804269 + 0.594265i \(0.797443\pi\)
\(68\) 0 0
\(69\) 0.561476 + 0.300954i 0.0675938 + 0.0362306i
\(70\) 0 0
\(71\) −4.91059 −0.582780 −0.291390 0.956604i \(-0.594118\pi\)
−0.291390 + 0.956604i \(0.594118\pi\)
\(72\) 0 0
\(73\) 3.78353 + 6.55327i 0.442829 + 0.767003i 0.997898 0.0648016i \(-0.0206415\pi\)
−0.555069 + 0.831804i \(0.687308\pi\)
\(74\) 0 0
\(75\) 15.4968 + 8.30634i 1.78941 + 0.959133i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −0.987715 1.71077i −0.111127 0.192477i 0.805098 0.593142i \(-0.202113\pi\)
−0.916225 + 0.400665i \(0.868779\pi\)
\(80\) 0 0
\(81\) −3.48272 + 8.29883i −0.386969 + 0.922093i
\(82\) 0 0
\(83\) 0.253011 0.438227i 0.0277715 0.0481017i −0.851806 0.523858i \(-0.824492\pi\)
0.879577 + 0.475756i \(0.157826\pi\)
\(84\) 0 0
\(85\) 10.3803 + 17.9793i 1.12591 + 1.95013i
\(86\) 0 0
\(87\) −14.9768 + 9.28908i −1.60568 + 0.995894i
\(88\) 0 0
\(89\) −6.10987 + 10.5826i −0.647645 + 1.12175i 0.336039 + 0.941848i \(0.390913\pi\)
−0.983684 + 0.179906i \(0.942421\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −3.37883 + 2.09566i −0.350369 + 0.217310i
\(94\) 0 0
\(95\) 9.03679 15.6522i 0.927155 1.60588i
\(96\) 0 0
\(97\) −4.45315 + 7.71308i −0.452149 + 0.783145i −0.998519 0.0543987i \(-0.982676\pi\)
0.546370 + 0.837544i \(0.316009\pi\)
\(98\) 0 0
\(99\) 7.26745 + 10.9314i 0.730406 + 1.09864i
\(100\) 0 0
\(101\) −11.0236 −1.09689 −0.548445 0.836187i \(-0.684780\pi\)
−0.548445 + 0.836187i \(0.684780\pi\)
\(102\) 0 0
\(103\) −2.73085 −0.269079 −0.134540 0.990908i \(-0.542956\pi\)
−0.134540 + 0.990908i \(0.542956\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 5.39605 9.34623i 0.521655 0.903534i −0.478027 0.878345i \(-0.658648\pi\)
0.999683 0.0251887i \(-0.00801867\pi\)
\(108\) 0 0
\(109\) 4.99187 + 8.64617i 0.478134 + 0.828153i 0.999686 0.0250668i \(-0.00797984\pi\)
−0.521551 + 0.853220i \(0.674647\pi\)
\(110\) 0 0
\(111\) −16.0150 + 9.93302i −1.52008 + 0.942800i
\(112\) 0 0
\(113\) −6.12019 10.6005i −0.575739 0.997209i −0.995961 0.0897875i \(-0.971381\pi\)
0.420222 0.907421i \(-0.361952\pi\)
\(114\) 0 0
\(115\) −1.43164 −0.133502
\(116\) 0 0
\(117\) −2.11218 + 4.25813i −0.195271 + 0.393664i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 8.14559 0.740509
\(122\) 0 0
\(123\) 0.0754814 + 2.39057i 0.00680593 + 0.215551i
\(124\) 0 0
\(125\) −20.0511 −1.79343
\(126\) 0 0
\(127\) −13.2005 −1.17135 −0.585677 0.810544i \(-0.699171\pi\)
−0.585677 + 0.810544i \(0.699171\pi\)
\(128\) 0 0
\(129\) 11.2366 6.96931i 0.989330 0.613613i
\(130\) 0 0
\(131\) −5.08683 −0.444438 −0.222219 0.974997i \(-0.571330\pi\)
−0.222219 + 0.974997i \(0.571330\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −1.91237 20.1352i −0.164591 1.73296i
\(136\) 0 0
\(137\) 13.3442 1.14007 0.570034 0.821621i \(-0.306930\pi\)
0.570034 + 0.821621i \(0.306930\pi\)
\(138\) 0 0
\(139\) 4.85642 + 8.41157i 0.411916 + 0.713460i 0.995099 0.0988809i \(-0.0315263\pi\)
−0.583183 + 0.812341i \(0.698193\pi\)
\(140\) 0 0
\(141\) −0.415901 13.1720i −0.0350251 1.10928i
\(142\) 0 0
\(143\) 3.46633 + 6.00386i 0.289869 + 0.502068i
\(144\) 0 0
\(145\) 19.8029 34.2996i 1.64454 2.84843i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 13.8423 1.13401 0.567004 0.823715i \(-0.308102\pi\)
0.567004 + 0.823715i \(0.308102\pi\)
\(150\) 0 0
\(151\) 22.8759 1.86162 0.930809 0.365506i \(-0.119104\pi\)
0.930809 + 0.365506i \(0.119104\pi\)
\(152\) 0 0
\(153\) 7.11022 14.3341i 0.574827 1.15884i
\(154\) 0 0
\(155\) 4.46762 7.73815i 0.358848 0.621543i
\(156\) 0 0
\(157\) 5.78991 10.0284i 0.462085 0.800355i −0.536980 0.843595i \(-0.680435\pi\)
0.999065 + 0.0432404i \(0.0137681\pi\)
\(158\) 0 0
\(159\) 0.0505998 + 1.60255i 0.00401283 + 0.127090i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −1.70577 + 2.95449i −0.133607 + 0.231413i −0.925064 0.379811i \(-0.875989\pi\)
0.791458 + 0.611224i \(0.209323\pi\)
\(164\) 0 0
\(165\) −26.0004 13.9363i −2.02413 1.08494i
\(166\) 0 0
\(167\) 4.69996 + 8.14057i 0.363694 + 0.629936i 0.988566 0.150791i \(-0.0481821\pi\)
−0.624872 + 0.780727i \(0.714849\pi\)
\(168\) 0 0
\(169\) 5.24484 9.08432i 0.403449 0.698794i
\(170\) 0 0
\(171\) −13.9019 + 0.878772i −1.06311 + 0.0672014i
\(172\) 0 0
\(173\) −3.20256 5.54700i −0.243486 0.421730i 0.718219 0.695817i \(-0.244958\pi\)
−0.961705 + 0.274087i \(0.911624\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −1.35557 + 0.840764i −0.101891 + 0.0631957i
\(178\) 0 0
\(179\) −8.54038 14.7924i −0.638338 1.10563i −0.985797 0.167938i \(-0.946289\pi\)
0.347460 0.937695i \(-0.387044\pi\)
\(180\) 0 0
\(181\) −1.35988 −0.101079 −0.0505395 0.998722i \(-0.516094\pi\)
−0.0505395 + 0.998722i \(0.516094\pi\)
\(182\) 0 0
\(183\) 0.358339 + 11.3490i 0.0264892 + 0.838940i
\(184\) 0 0
\(185\) 21.1757 36.6773i 1.55687 2.69657i
\(186\) 0 0
\(187\) −11.6687 20.2107i −0.853298 1.47796i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 8.94048 + 15.4854i 0.646911 + 1.12048i 0.983857 + 0.178958i \(0.0572727\pi\)
−0.336946 + 0.941524i \(0.609394\pi\)
\(192\) 0 0
\(193\) 6.50664 11.2698i 0.468358 0.811220i −0.530988 0.847380i \(-0.678179\pi\)
0.999346 + 0.0361591i \(0.0115123\pi\)
\(194\) 0 0
\(195\) −0.337110 10.6766i −0.0241410 0.764569i
\(196\) 0 0
\(197\) 6.36486 0.453478 0.226739 0.973956i \(-0.427194\pi\)
0.226739 + 0.973956i \(0.427194\pi\)
\(198\) 0 0
\(199\) 11.5764 + 20.0510i 0.820631 + 1.42137i 0.905213 + 0.424958i \(0.139711\pi\)
−0.0845818 + 0.996417i \(0.526955\pi\)
\(200\) 0 0
\(201\) −22.0912 + 13.7016i −1.55819 + 0.966440i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −2.68753 4.65493i −0.187705 0.325114i
\(206\) 0 0
\(207\) 0.610883 + 0.918862i 0.0424593 + 0.0638653i
\(208\) 0 0
\(209\) −10.1584 + 17.5948i −0.702669 + 1.21706i
\(210\) 0 0
\(211\) −5.67737 9.83349i −0.390846 0.676965i 0.601715 0.798711i \(-0.294484\pi\)
−0.992561 + 0.121745i \(0.961151\pi\)
\(212\) 0 0
\(213\) −7.49643 4.01812i −0.513647 0.275317i
\(214\) 0 0
\(215\) −14.8575 + 25.7339i −1.01327 + 1.75504i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0.413628 + 13.1000i 0.0279504 + 0.885217i
\(220\) 0 0
\(221\) 4.22525 7.31835i 0.284221 0.492285i
\(222\) 0 0
\(223\) 13.3206 23.0719i 0.892011 1.54501i 0.0545504 0.998511i \(-0.482627\pi\)
0.837461 0.546498i \(-0.184039\pi\)
\(224\) 0 0
\(225\) 16.8604 + 25.3606i 1.12403 + 1.69071i
\(226\) 0 0
\(227\) 16.6027 1.10196 0.550981 0.834518i \(-0.314254\pi\)
0.550981 + 0.834518i \(0.314254\pi\)
\(228\) 0 0
\(229\) 14.5014 0.958282 0.479141 0.877738i \(-0.340948\pi\)
0.479141 + 0.877738i \(0.340948\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −7.99020 + 13.8394i −0.523456 + 0.906652i 0.476172 + 0.879352i \(0.342024\pi\)
−0.999627 + 0.0272993i \(0.991309\pi\)
\(234\) 0 0
\(235\) 14.8082 + 25.6485i 0.965980 + 1.67313i
\(236\) 0 0
\(237\) −0.107980 3.41984i −0.00701407 0.222143i
\(238\) 0 0
\(239\) −9.58994 16.6103i −0.620322 1.07443i −0.989426 0.145040i \(-0.953669\pi\)
0.369104 0.929388i \(-0.379665\pi\)
\(240\) 0 0
\(241\) −23.3569 −1.50455 −0.752276 0.658848i \(-0.771044\pi\)
−0.752276 + 0.658848i \(0.771044\pi\)
\(242\) 0 0
\(243\) −12.1072 + 9.81911i −0.776679 + 0.629896i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −7.35673 −0.468098
\(248\) 0 0
\(249\) 0.744824 0.461963i 0.0472013 0.0292757i
\(250\) 0 0
\(251\) 30.4619 1.92274 0.961371 0.275257i \(-0.0887631\pi\)
0.961371 + 0.275257i \(0.0887631\pi\)
\(252\) 0 0
\(253\) 1.60933 0.101178
\(254\) 0 0
\(255\) 1.13481 + 35.9407i 0.0710647 + 2.25069i
\(256\) 0 0
\(257\) 6.80877 0.424719 0.212360 0.977192i \(-0.431885\pi\)
0.212360 + 0.977192i \(0.431885\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −30.4642 + 1.92571i −1.88569 + 0.119198i
\(262\) 0 0
\(263\) −4.60001 −0.283649 −0.141824 0.989892i \(-0.545297\pi\)
−0.141824 + 0.989892i \(0.545297\pi\)
\(264\) 0 0
\(265\) −1.80161 3.12049i −0.110672 0.191690i
\(266\) 0 0
\(267\) −17.9865 + 11.1558i −1.10076 + 0.682724i
\(268\) 0 0
\(269\) −4.25090 7.36277i −0.259182 0.448916i 0.706841 0.707372i \(-0.250120\pi\)
−0.966023 + 0.258456i \(0.916786\pi\)
\(270\) 0 0
\(271\) 3.29191 5.70175i 0.199969 0.346357i −0.748549 0.663079i \(-0.769249\pi\)
0.948518 + 0.316723i \(0.102583\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 44.4176 2.67848
\(276\) 0 0
\(277\) −11.2697 −0.677129 −0.338564 0.940943i \(-0.609941\pi\)
−0.338564 + 0.940943i \(0.609941\pi\)
\(278\) 0 0
\(279\) −6.87285 + 0.434448i −0.411467 + 0.0260097i
\(280\) 0 0
\(281\) 7.50741 13.0032i 0.447854 0.775707i −0.550392 0.834907i \(-0.685522\pi\)
0.998246 + 0.0592000i \(0.0188550\pi\)
\(282\) 0 0
\(283\) 7.33657 12.7073i 0.436114 0.755371i −0.561272 0.827631i \(-0.689688\pi\)
0.997386 + 0.0722602i \(0.0230212\pi\)
\(284\) 0 0
\(285\) 26.6029 16.5000i 1.57582 0.977373i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −5.72343 + 9.91327i −0.336672 + 0.583133i
\(290\) 0 0
\(291\) −13.1094 + 8.13085i −0.768486 + 0.476639i
\(292\) 0 0
\(293\) 9.38981 + 16.2636i 0.548559 + 0.950132i 0.998374 + 0.0570099i \(0.0181567\pi\)
−0.449815 + 0.893122i \(0.648510\pi\)
\(294\) 0 0
\(295\) 1.79238 3.10449i 0.104356 0.180751i
\(296\) 0 0
\(297\) 2.14972 + 22.6343i 0.124739 + 1.31337i
\(298\) 0 0
\(299\) 0.291371 + 0.504669i 0.0168504 + 0.0291858i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −16.8285 9.02013i −0.966770 0.518193i
\(304\) 0 0
\(305\) −12.7587 22.0987i −0.730562 1.26537i
\(306\) 0 0
\(307\) 28.9425 1.65184 0.825919 0.563789i \(-0.190657\pi\)
0.825919 + 0.563789i \(0.190657\pi\)
\(308\) 0 0
\(309\) −4.16888 2.23454i −0.237159 0.127118i
\(310\) 0 0
\(311\) −6.79681 + 11.7724i −0.385412 + 0.667553i −0.991826 0.127596i \(-0.959274\pi\)
0.606414 + 0.795149i \(0.292607\pi\)
\(312\) 0 0
\(313\) −6.93222 12.0070i −0.391832 0.678673i 0.600859 0.799355i \(-0.294825\pi\)
−0.992691 + 0.120682i \(0.961492\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −11.5428 19.9927i −0.648309 1.12290i −0.983527 0.180764i \(-0.942143\pi\)
0.335217 0.942141i \(-0.391190\pi\)
\(318\) 0 0
\(319\) −22.2607 + 38.5566i −1.24636 + 2.15876i
\(320\) 0 0
\(321\) 15.8851 9.85245i 0.886621 0.549910i
\(322\) 0 0
\(323\) 24.7649 1.37796
\(324\) 0 0
\(325\) 8.04184 + 13.9289i 0.446081 + 0.772635i
\(326\) 0 0
\(327\) 0.545727 + 17.2837i 0.0301788 + 0.955793i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 7.82647 + 13.5558i 0.430182 + 0.745097i 0.996889 0.0788227i \(-0.0251161\pi\)
−0.566707 + 0.823920i \(0.691783\pi\)
\(332\) 0 0
\(333\) −32.5760 + 2.05920i −1.78515 + 0.112844i
\(334\) 0 0
\(335\) 29.2098 50.5929i 1.59590 2.76418i
\(336\) 0 0
\(337\) 3.56686 + 6.17799i 0.194299 + 0.336537i 0.946671 0.322203i \(-0.104423\pi\)
−0.752371 + 0.658739i \(0.771090\pi\)
\(338\) 0 0
\(339\) −0.669078 21.1904i −0.0363393 1.15090i
\(340\) 0 0
\(341\) −5.02211 + 8.69855i −0.271962 + 0.471053i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −2.18553 1.17145i −0.117665 0.0630688i
\(346\) 0 0
\(347\) −2.77827 + 4.81211i −0.149146 + 0.258328i −0.930912 0.365244i \(-0.880986\pi\)
0.781766 + 0.623571i \(0.214319\pi\)
\(348\) 0 0
\(349\) 5.33296 9.23696i 0.285467 0.494443i −0.687256 0.726416i \(-0.741185\pi\)
0.972722 + 0.231973i \(0.0745181\pi\)
\(350\) 0 0
\(351\) −6.70866 + 4.77208i −0.358082 + 0.254715i
\(352\) 0 0
\(353\) 12.8426 0.683545 0.341772 0.939783i \(-0.388973\pi\)
0.341772 + 0.939783i \(0.388973\pi\)
\(354\) 0 0
\(355\) 19.1143 1.01448
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −12.8417 + 22.2426i −0.677761 + 1.17392i 0.297892 + 0.954600i \(0.403716\pi\)
−0.975653 + 0.219318i \(0.929617\pi\)
\(360\) 0 0
\(361\) −1.27977 2.21663i −0.0673563 0.116665i
\(362\) 0 0
\(363\) 12.4349 + 6.66518i 0.652665 + 0.349831i
\(364\) 0 0
\(365\) −14.7273 25.5084i −0.770861 1.33517i
\(366\) 0 0
\(367\) 16.9839 0.886554 0.443277 0.896385i \(-0.353816\pi\)
0.443277 + 0.896385i \(0.353816\pi\)
\(368\) 0 0
\(369\) −1.84087 + 3.71118i −0.0958320 + 0.193196i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −8.77005 −0.454096 −0.227048 0.973884i \(-0.572907\pi\)
−0.227048 + 0.973884i \(0.572907\pi\)
\(374\) 0 0
\(375\) −30.6097 16.4070i −1.58068 0.847252i
\(376\) 0 0
\(377\) −16.1213 −0.830288
\(378\) 0 0
\(379\) 11.7002 0.601001 0.300500 0.953782i \(-0.402846\pi\)
0.300500 + 0.953782i \(0.402846\pi\)
\(380\) 0 0
\(381\) −20.1517 10.8014i −1.03240 0.553371i
\(382\) 0 0
\(383\) 9.00720 0.460246 0.230123 0.973162i \(-0.426087\pi\)
0.230123 + 0.973162i \(0.426087\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 22.8563 1.44480i 1.16185 0.0734433i
\(388\) 0 0
\(389\) −9.78781 −0.496262 −0.248131 0.968727i \(-0.579816\pi\)
−0.248131 + 0.968727i \(0.579816\pi\)
\(390\) 0 0
\(391\) −0.980839 1.69886i −0.0496032 0.0859152i
\(392\) 0 0
\(393\) −7.76547 4.16233i −0.391716 0.209962i
\(394\) 0 0
\(395\) 3.84465 + 6.65912i 0.193445 + 0.335057i
\(396\) 0 0
\(397\) 6.95929 12.0538i 0.349277 0.604965i −0.636844 0.770992i \(-0.719761\pi\)
0.986121 + 0.166027i \(0.0530940\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −23.4828 −1.17267 −0.586336 0.810068i \(-0.699430\pi\)
−0.586336 + 0.810068i \(0.699430\pi\)
\(402\) 0 0
\(403\) −3.63703 −0.181173
\(404\) 0 0
\(405\) 13.5564 32.3029i 0.673621 1.60514i
\(406\) 0 0
\(407\) −23.8038 + 41.2295i −1.17991 + 2.04367i
\(408\) 0 0
\(409\) −6.81225 + 11.7992i −0.336844 + 0.583431i −0.983837 0.179064i \(-0.942693\pi\)
0.646993 + 0.762496i \(0.276026\pi\)
\(410\) 0 0
\(411\) 20.3710 + 10.9189i 1.00483 + 0.538591i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −0.984835 + 1.70578i −0.0483436 + 0.0837336i
\(416\) 0 0
\(417\) 0.530919 + 16.8148i 0.0259992 + 0.823422i
\(418\) 0 0
\(419\) 3.97733 + 6.88894i 0.194305 + 0.336547i 0.946673 0.322197i \(-0.104421\pi\)
−0.752367 + 0.658744i \(0.771088\pi\)
\(420\) 0 0
\(421\) 1.30584 2.26178i 0.0636426 0.110232i −0.832448 0.554102i \(-0.813062\pi\)
0.896091 + 0.443870i \(0.146395\pi\)
\(422\) 0 0
\(423\) 10.1432 20.4485i 0.493177 0.994239i
\(424\) 0 0
\(425\) −27.0712 46.8887i −1.31315 2.27444i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0.378950 + 12.0017i 0.0182959 + 0.579449i
\(430\) 0 0
\(431\) 0.791065 + 1.37017i 0.0381043 + 0.0659985i 0.884449 0.466638i \(-0.154535\pi\)
−0.846344 + 0.532636i \(0.821201\pi\)
\(432\) 0 0
\(433\) −5.17110 −0.248507 −0.124254 0.992250i \(-0.539654\pi\)
−0.124254 + 0.992250i \(0.539654\pi\)
\(434\) 0 0
\(435\) 58.2966 36.1574i 2.79511 1.73361i
\(436\) 0 0
\(437\) −0.853887 + 1.47898i −0.0408470 + 0.0707490i
\(438\) 0 0
\(439\) −12.4806 21.6170i −0.595665 1.03172i −0.993453 0.114244i \(-0.963555\pi\)
0.397788 0.917477i \(-0.369778\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −0.542263 0.939227i −0.0257637 0.0446240i 0.852856 0.522146i \(-0.174868\pi\)
−0.878620 + 0.477522i \(0.841535\pi\)
\(444\) 0 0
\(445\) 23.7825 41.1924i 1.12740 1.95271i
\(446\) 0 0
\(447\) 21.1315 + 11.3266i 0.999484 + 0.535728i
\(448\) 0 0
\(449\) 4.23372 0.199802 0.0999008 0.994997i \(-0.468147\pi\)
0.0999008 + 0.994997i \(0.468147\pi\)
\(450\) 0 0
\(451\) 3.02108 + 5.23267i 0.142257 + 0.246397i
\(452\) 0 0
\(453\) 34.9220 + 18.7184i 1.64078 + 0.879466i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 18.1513 + 31.4390i 0.849083 + 1.47065i 0.882028 + 0.471197i \(0.156178\pi\)
−0.0329453 + 0.999457i \(0.510489\pi\)
\(458\) 0 0
\(459\) 22.5833 16.0642i 1.05410 0.749814i
\(460\) 0 0
\(461\) 1.71236 2.96589i 0.0797524 0.138135i −0.823391 0.567475i \(-0.807920\pi\)
0.903143 + 0.429340i \(0.141254\pi\)
\(462\) 0 0
\(463\) 2.38499 + 4.13092i 0.110840 + 0.191980i 0.916109 0.400929i \(-0.131313\pi\)
−0.805269 + 0.592909i \(0.797979\pi\)
\(464\) 0 0
\(465\) 13.1520 8.15727i 0.609908 0.378284i
\(466\) 0 0
\(467\) −10.0490 + 17.4053i −0.465010 + 0.805422i −0.999202 0.0399417i \(-0.987283\pi\)
0.534192 + 0.845363i \(0.320616\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 17.0446 10.5716i 0.785373 0.487113i
\(472\) 0 0
\(473\) 16.7015 28.9279i 0.767936 1.33010i
\(474\) 0 0
\(475\) −23.5673 + 40.8198i −1.08134 + 1.87294i
\(476\) 0 0
\(477\) −1.23405 + 2.48783i −0.0565033 + 0.113910i
\(478\) 0 0
\(479\) −16.8506 −0.769922 −0.384961 0.922933i \(-0.625785\pi\)
−0.384961 + 0.922933i \(0.625785\pi\)
\(480\) 0 0
\(481\) −17.2388 −0.786023
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 17.3337 30.0229i 0.787084 1.36327i
\(486\) 0 0
\(487\) −11.9916 20.7700i −0.543389 0.941178i −0.998706 0.0508486i \(-0.983807\pi\)
0.455317 0.890329i \(-0.349526\pi\)
\(488\) 0 0
\(489\) −5.02153 + 3.11451i −0.227082 + 0.140843i
\(490\) 0 0
\(491\) −1.07281 1.85816i −0.0484153 0.0838577i 0.840802 0.541342i \(-0.182084\pi\)
−0.889217 + 0.457485i \(0.848750\pi\)
\(492\) 0 0
\(493\) 54.2689 2.44415
\(494\) 0 0
\(495\) −28.2883 42.5499i −1.27146 1.91248i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −27.7154 −1.24071 −0.620357 0.784320i \(-0.713012\pi\)
−0.620357 + 0.784320i \(0.713012\pi\)
\(500\) 0 0
\(501\) 0.513814 + 16.2730i 0.0229555 + 0.727025i
\(502\) 0 0
\(503\) −22.4265 −0.999949 −0.499974 0.866040i \(-0.666657\pi\)
−0.499974 + 0.866040i \(0.666657\pi\)
\(504\) 0 0
\(505\) 42.9090 1.90943
\(506\) 0 0
\(507\) 15.4400 9.57636i 0.685714 0.425301i
\(508\) 0 0
\(509\) −29.3689 −1.30175 −0.650876 0.759184i \(-0.725598\pi\)
−0.650876 + 0.759184i \(0.725598\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −21.9415 10.0338i −0.968742 0.443004i
\(514\) 0 0
\(515\) 10.6298 0.468403
\(516\) 0 0
\(517\) −16.6461 28.8318i −0.732093 1.26802i
\(518\) 0 0
\(519\) −0.350114 11.0885i −0.0153683 0.486730i
\(520\) 0 0
\(521\) 8.25389 + 14.2962i 0.361610 + 0.626326i 0.988226 0.153002i \(-0.0488940\pi\)
−0.626616 + 0.779328i \(0.715561\pi\)
\(522\) 0 0
\(523\) −22.3476 + 38.7072i −0.977193 + 1.69255i −0.304695 + 0.952450i \(0.598554\pi\)
−0.672499 + 0.740098i \(0.734779\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 12.2433 0.533327
\(528\) 0 0
\(529\) −22.8647 −0.994118
\(530\) 0 0
\(531\) −2.75734 + 0.174298i −0.119659 + 0.00756388i
\(532\) 0 0
\(533\) −1.09394 + 1.89476i −0.0473838 + 0.0820711i
\(534\) 0 0
\(535\) −21.0039 + 36.3798i −0.908078 + 1.57284i
\(536\) 0 0
\(537\) −0.933661 29.5700i −0.0402904 1.27604i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 10.0369 17.3844i 0.431519 0.747412i −0.565486 0.824758i \(-0.691311\pi\)
0.997004 + 0.0773460i \(0.0246446\pi\)
\(542\) 0 0
\(543\) −2.07597 1.11273i −0.0890884 0.0477518i
\(544\) 0 0
\(545\) −19.4307 33.6549i −0.832319 1.44162i
\(546\) 0 0
\(547\) 6.35012 10.9987i 0.271512 0.470272i −0.697738 0.716353i \(-0.745810\pi\)
0.969249 + 0.246082i \(0.0791432\pi\)
\(548\) 0 0
\(549\) −8.73932 + 17.6184i −0.372985 + 0.751933i
\(550\) 0 0
\(551\) −23.6224 40.9152i −1.00635 1.74305i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 62.3379 38.6639i 2.64610 1.64119i
\(556\) 0 0
\(557\) −7.34743 12.7261i −0.311321 0.539223i 0.667328 0.744764i \(-0.267438\pi\)
−0.978649 + 0.205541i \(0.934105\pi\)
\(558\) 0 0
\(559\) 12.0953 0.511576
\(560\) 0 0
\(561\) −1.27566 40.4013i −0.0538583 1.70575i
\(562\) 0 0
\(563\) 13.3930 23.1974i 0.564448 0.977653i −0.432653 0.901561i \(-0.642422\pi\)
0.997101 0.0760922i \(-0.0242443\pi\)
\(564\) 0 0
\(565\) 23.8226 + 41.2620i 1.00222 + 1.73590i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −3.24168 5.61475i −0.135898 0.235383i 0.790042 0.613053i \(-0.210059\pi\)
−0.925940 + 0.377670i \(0.876725\pi\)
\(570\) 0 0
\(571\) −7.81632 + 13.5383i −0.327103 + 0.566559i −0.981936 0.189215i \(-0.939406\pi\)
0.654833 + 0.755774i \(0.272739\pi\)
\(572\) 0 0
\(573\) 0.977402 + 30.9553i 0.0408315 + 1.29318i
\(574\) 0 0
\(575\) 3.73363 0.155703
\(576\) 0 0
\(577\) −14.5800 25.2533i −0.606974 1.05131i −0.991736 0.128294i \(-0.959050\pi\)
0.384763 0.923016i \(-0.374283\pi\)
\(578\) 0 0
\(579\) 19.1545 11.8802i 0.796036 0.493726i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 2.02522 + 3.50778i 0.0838759 + 0.145277i
\(584\) 0 0
\(585\) 8.22158 16.5746i 0.339921 0.685275i
\(586\) 0 0
\(587\) 2.33110 4.03758i 0.0962146 0.166649i −0.813900 0.581005i \(-0.802660\pi\)
0.910115 + 0.414356i \(0.135993\pi\)
\(588\) 0 0
\(589\) −5.32932 9.23065i −0.219591 0.380342i
\(590\) 0 0
\(591\) 9.71649 + 5.20808i 0.399683 + 0.214232i
\(592\) 0 0
\(593\) 15.8322 27.4222i 0.650150 1.12609i −0.332936 0.942950i \(-0.608039\pi\)
0.983086 0.183144i \(-0.0586275\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 1.26557 + 40.0819i 0.0517964 + 1.64044i
\(598\) 0 0
\(599\) 5.15268 8.92470i 0.210533 0.364653i −0.741349 0.671120i \(-0.765813\pi\)
0.951881 + 0.306467i \(0.0991468\pi\)
\(600\) 0 0
\(601\) 4.64993 8.05391i 0.189674 0.328526i −0.755467 0.655186i \(-0.772590\pi\)
0.945142 + 0.326661i \(0.105923\pi\)
\(602\) 0 0
\(603\) −44.9355 + 2.84047i −1.82991 + 0.115673i
\(604\) 0 0
\(605\) −31.7064 −1.28905
\(606\) 0 0
\(607\) −20.4968 −0.831938 −0.415969 0.909379i \(-0.636558\pi\)
−0.415969 + 0.909379i \(0.636558\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 6.02757 10.4401i 0.243850 0.422360i
\(612\) 0 0
\(613\) 7.17240 + 12.4230i 0.289691 + 0.501759i 0.973736 0.227681i \(-0.0731143\pi\)
−0.684045 + 0.729440i \(0.739781\pi\)
\(614\) 0 0
\(615\) −0.293809 9.30522i −0.0118475 0.375223i
\(616\) 0 0
\(617\) −6.47499 11.2150i −0.260673 0.451499i 0.705748 0.708463i \(-0.250611\pi\)
−0.966421 + 0.256964i \(0.917278\pi\)
\(618\) 0 0
\(619\) 35.3980 1.42277 0.711383 0.702804i \(-0.248069\pi\)
0.711383 + 0.702804i \(0.248069\pi\)
\(620\) 0 0
\(621\) 0.180700 + 1.90258i 0.00725124 + 0.0763479i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 27.2920 1.09168
\(626\) 0 0
\(627\) −29.9047 + 18.5478i −1.19428 + 0.740728i
\(628\) 0 0
\(629\) 58.0310 2.31385
\(630\) 0 0
\(631\) 33.1936 1.32141 0.660707 0.750644i \(-0.270256\pi\)
0.660707 + 0.750644i \(0.270256\pi\)
\(632\) 0 0
\(633\) −0.620668 19.6572i −0.0246693 0.781303i
\(634\) 0 0
\(635\) 51.3824 2.03905
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −8.15608 12.2680i −0.322649 0.485314i
\(640\) 0 0
\(641\) −0.239269 −0.00945056 −0.00472528 0.999989i \(-0.501504\pi\)
−0.00472528 + 0.999989i \(0.501504\pi\)
\(642\) 0 0
\(643\) 4.57211 + 7.91913i 0.180307 + 0.312300i 0.941985 0.335655i \(-0.108958\pi\)
−0.761678 + 0.647955i \(0.775624\pi\)
\(644\) 0 0
\(645\) −43.7382 + 27.1278i −1.72219 + 1.06816i
\(646\) 0 0
\(647\) 3.15607 + 5.46648i 0.124078 + 0.214909i 0.921372 0.388682i \(-0.127069\pi\)
−0.797294 + 0.603591i \(0.793736\pi\)
\(648\) 0 0
\(649\) −2.01484 + 3.48980i −0.0790893 + 0.136987i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −4.55775 −0.178359 −0.0891793 0.996016i \(-0.528424\pi\)
−0.0891793 + 0.996016i \(0.528424\pi\)
\(654\) 0 0
\(655\) 19.8003 0.773662
\(656\) 0 0
\(657\) −10.0877 + 20.3367i −0.393560 + 0.793411i
\(658\) 0 0
\(659\) −16.4631 + 28.5149i −0.641311 + 1.11078i 0.343829 + 0.939032i \(0.388276\pi\)
−0.985140 + 0.171751i \(0.945058\pi\)
\(660\) 0 0
\(661\) 0.270668 0.468811i 0.0105278 0.0182346i −0.860714 0.509090i \(-0.829982\pi\)
0.871241 + 0.490855i \(0.163316\pi\)
\(662\) 0 0
\(663\) 12.4385 7.71473i 0.483070 0.299615i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −1.87118 + 3.24097i −0.0724523 + 0.125491i
\(668\) 0 0
\(669\) 39.2137 24.3216i 1.51609 0.940326i
\(670\) 0 0
\(671\) 14.3422 + 24.8415i 0.553676 + 0.958994i
\(672\) 0 0
\(673\) −11.8205 + 20.4737i −0.455647 + 0.789204i −0.998725 0.0504780i \(-0.983926\pi\)
0.543078 + 0.839682i \(0.317259\pi\)
\(674\) 0 0
\(675\) 4.98733 + 52.5113i 0.191962 + 2.02116i
\(676\) 0 0
\(677\) −1.36494 2.36415i −0.0524591 0.0908618i 0.838603 0.544742i \(-0.183373\pi\)
−0.891062 + 0.453881i \(0.850039\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 25.3454 + 13.5853i 0.971239 + 0.520589i
\(682\) 0 0
\(683\) 15.9640 + 27.6504i 0.610844 + 1.05801i 0.991098 + 0.133131i \(0.0425032\pi\)
−0.380254 + 0.924882i \(0.624164\pi\)
\(684\) 0 0
\(685\) −51.9417 −1.98459
\(686\) 0 0
\(687\) 22.1377 + 11.8659i 0.844605 + 0.452712i
\(688\) 0 0
\(689\) −0.733335 + 1.27017i −0.0279378 + 0.0483897i
\(690\) 0 0
\(691\) −1.19103 2.06292i −0.0453089 0.0784773i 0.842482 0.538725i \(-0.181094\pi\)
−0.887790 + 0.460248i \(0.847761\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −18.9034 32.7417i −0.717048 1.24196i
\(696\) 0 0
\(697\) 3.68252 6.37831i 0.139485 0.241596i
\(698\) 0 0
\(699\) −23.5219 + 14.5890i −0.889680 + 0.551808i
\(700\) 0 0
\(701\) 50.3767 1.90270 0.951350 0.308111i \(-0.0996968\pi\)
0.951350 + 0.308111i \(0.0996968\pi\)
\(702\) 0 0
\(703\) −25.2599 43.7515i −0.952697 1.65012i
\(704\) 0 0
\(705\) 1.61888 + 51.2715i 0.0609705 + 1.93100i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −20.1600 34.9182i −0.757126 1.31138i −0.944310 0.329056i \(-0.893269\pi\)
0.187184 0.982325i \(-0.440064\pi\)
\(710\) 0 0
\(711\) 2.63346 5.30903i 0.0987626 0.199104i
\(712\) 0 0
\(713\) −0.422146 + 0.731178i −0.0158095 + 0.0273828i
\(714\) 0 0
\(715\) −13.4926 23.3698i −0.504593 0.873981i
\(716\) 0 0
\(717\) −1.04840 33.2040i −0.0391533 1.24003i
\(718\) 0 0
\(719\) −17.0446 + 29.5222i −0.635658 + 1.10099i 0.350718 + 0.936481i \(0.385938\pi\)
−0.986375 + 0.164510i \(0.947396\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −35.6563 19.1119i −1.32607 0.710781i
\(724\) 0 0
\(725\) −51.6446 + 89.4510i −1.91803 + 3.32213i
\(726\) 0 0
\(727\) −10.9453 + 18.9578i −0.405938 + 0.703105i −0.994430 0.105398i \(-0.966388\pi\)
0.588492 + 0.808503i \(0.299722\pi\)
\(728\) 0 0
\(729\) −26.5172 + 5.08288i −0.982120 + 0.188255i
\(730\) 0 0
\(731\) −40.7163 −1.50595
\(732\) 0 0
\(733\) 8.68831 0.320910 0.160455 0.987043i \(-0.448704\pi\)
0.160455 + 0.987043i \(0.448704\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −32.8351 + 56.8721i −1.20950 + 2.09491i
\(738\) 0 0
\(739\) −3.34692 5.79704i −0.123119 0.213248i 0.797877 0.602820i \(-0.205956\pi\)
−0.920996 + 0.389572i \(0.872623\pi\)
\(740\) 0 0
\(741\) −11.2307 6.01969i −0.412569 0.221139i
\(742\) 0 0
\(743\) 21.5001 + 37.2392i 0.788761 + 1.36617i 0.926726 + 0.375737i \(0.122611\pi\)
−0.137965 + 0.990437i \(0.544056\pi\)
\(744\) 0 0
\(745\) −53.8807 −1.97404
\(746\) 0 0
\(747\) 1.51504 0.0957691i 0.0554324 0.00350401i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −16.7274 −0.610391 −0.305196 0.952290i \(-0.598722\pi\)
−0.305196 + 0.952290i \(0.598722\pi\)
\(752\) 0 0
\(753\) 46.5027 + 24.9257i 1.69465 + 0.908342i
\(754\) 0 0
\(755\) −89.0438 −3.24064
\(756\) 0 0
\(757\) −4.68561 −0.170301 −0.0851507 0.996368i \(-0.527137\pi\)
−0.0851507 + 0.996368i \(0.527137\pi\)
\(758\) 0 0
\(759\) 2.45678 + 1.31684i 0.0891754 + 0.0477984i
\(760\) 0 0
\(761\) 51.6484 1.87225 0.936127 0.351663i \(-0.114384\pi\)
0.936127 + 0.351663i \(0.114384\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −27.6763 + 55.7950i −1.00064 + 2.01727i
\(766\) 0 0
\(767\) −1.45915 −0.0526870
\(768\) 0 0
\(769\) −15.3910 26.6580i −0.555014 0.961313i −0.997902 0.0647361i \(-0.979379\pi\)
0.442888 0.896577i \(-0.353954\pi\)
\(770\) 0 0
\(771\) 10.3942 + 5.57131i 0.374336 + 0.200646i
\(772\) 0 0
\(773\) 13.5259 + 23.4275i 0.486491 + 0.842627i 0.999879 0.0155292i \(-0.00494329\pi\)
−0.513388 + 0.858156i \(0.671610\pi\)
\(774\) 0 0
\(775\) −11.6512 + 20.1805i −0.418525 + 0.724907i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −6.41177 −0.229725
\(780\) 0 0
\(781\) −21.4866 −0.768852
\(782\) 0 0
\(783\) −48.0818 21.9877i −1.71830 0.785777i
\(784\) 0 0
\(785\) −22.5370 + 39.0352i −0.804380 + 1.39323i
\(786\) 0 0
\(787\) −17.5997 + 30.4837i −0.627363 + 1.08662i 0.360716 + 0.932676i \(0.382532\pi\)
−0.988079 + 0.153949i \(0.950801\pi\)
\(788\) 0 0
\(789\) −7.02230 3.76398i −0.250000 0.134001i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −5.19335 + 8.99514i −0.184421 + 0.319427i
\(794\) 0 0
\(795\) −0.196958 6.23786i −0.00698538 0.221234i
\(796\) 0 0
\(797\) 23.8268 + 41.2692i 0.843988 + 1.46183i 0.886497 + 0.462735i \(0.153132\pi\)
−0.0425084 + 0.999096i \(0.513535\pi\)
\(798\) 0 0
\(799\) −20.2906 + 35.1443i −0.717829 + 1.24332i
\(800\) 0 0
\(801\) −36.5862 + 2.31270i −1.29271 + 0.0817151i
\(802\) 0 0
\(803\) 16.5551 + 28.6743i 0.584217 + 1.01189i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −0.464721 14.7182i −0.0163590 0.518105i
\(808\) 0 0
\(809\) −9.87711 17.1077i −0.347261 0.601473i 0.638501 0.769621i \(-0.279555\pi\)
−0.985762 + 0.168148i \(0.946221\pi\)
\(810\) 0 0
\(811\) 49.2424 1.72913 0.864567 0.502518i \(-0.167593\pi\)
0.864567 + 0.502518i \(0.167593\pi\)
\(812\) 0 0
\(813\) 9.69086 6.01057i 0.339873 0.210800i
\(814\) 0 0
\(815\) 6.63967 11.5002i 0.232577 0.402836i
\(816\) 0 0
\(817\) 17.7231 + 30.6974i 0.620054 + 1.07397i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −5.00013 8.66048i −0.174506 0.302253i 0.765484 0.643455i \(-0.222499\pi\)
−0.939990 + 0.341202i \(0.889166\pi\)
\(822\) 0 0
\(823\) 17.5138 30.3348i 0.610493 1.05741i −0.380664 0.924713i \(-0.624305\pi\)
0.991157 0.132692i \(-0.0423621\pi\)
\(824\) 0 0
\(825\) 67.8072 + 36.3449i 2.36074 + 1.26537i
\(826\) 0 0
\(827\) −22.7079 −0.789631 −0.394816 0.918760i \(-0.629192\pi\)
−0.394816 + 0.918760i \(0.629192\pi\)
\(828\) 0 0
\(829\) −6.22083 10.7748i −0.216058 0.374224i 0.737541 0.675302i \(-0.235987\pi\)
−0.953599 + 0.301078i \(0.902653\pi\)
\(830\) 0 0
\(831\) −17.2041 9.22147i −0.596803 0.319889i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −18.2944 31.6869i −0.633105 1.09657i
\(836\) 0 0
\(837\) −10.8475 4.96053i −0.374944 0.171461i
\(838\) 0 0
\(839\) 13.8249 23.9455i 0.477290 0.826690i −0.522372 0.852718i \(-0.674953\pi\)
0.999661 + 0.0260281i \(0.00828595\pi\)
\(840\) 0 0
\(841\) −37.2652 64.5453i −1.28501 2.22570i
\(842\) 0 0
\(843\) 22.1006 13.7075i 0.761186 0.472112i
\(844\) 0 0
\(845\) −20.4153 + 35.3604i −0.702309 + 1.21643i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 21.5977 13.3956i 0.741232 0.459735i
\(850\) 0 0
\(851\) −2.00089 + 3.46564i −0.0685896 + 0.118801i
\(852\) 0 0
\(853\) 22.0459 38.1847i 0.754839 1.30742i −0.190616 0.981665i \(-0.561048\pi\)
0.945454 0.325754i \(-0.105618\pi\)
\(854\) 0 0
\(855\) 54.1127 3.42059i 1.85062 0.116982i
\(856\) 0 0
\(857\) 26.7676 0.914363 0.457182 0.889373i \(-0.348859\pi\)
0.457182 + 0.889373i \(0.348859\pi\)
\(858\) 0 0
\(859\) 20.1901 0.688879 0.344439 0.938809i \(-0.388069\pi\)
0.344439 + 0.938809i \(0.388069\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −4.74538 + 8.21923i −0.161534 + 0.279786i −0.935419 0.353541i \(-0.884978\pi\)
0.773885 + 0.633327i \(0.218311\pi\)
\(864\) 0 0
\(865\) 12.4659 + 21.5915i 0.423852 + 0.734133i
\(866\) 0 0
\(867\) −16.8489 + 10.4502i −0.572218 + 0.354908i
\(868\) 0 0
\(869\) −4.32182 7.48560i −0.146608 0.253932i
\(870\) 0 0
\(871\) −23.7793 −0.805731
\(872\) 0 0
\(873\) −26.6657 + 1.68560i −0.902497 + 0.0570488i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 29.2455 0.987549 0.493774 0.869590i \(-0.335617\pi\)
0.493774 + 0.869590i \(0.335617\pi\)
\(878\) 0 0
\(879\) 1.02652 + 32.5111i 0.0346238 + 1.09657i
\(880\) 0 0
\(881\) −37.2768 −1.25589 −0.627944 0.778259i \(-0.716103\pi\)
−0.627944 + 0.778259i \(0.716103\pi\)
\(882\) 0 0
\(883\) −56.9436 −1.91630 −0.958152 0.286260i \(-0.907588\pi\)
−0.958152 + 0.286260i \(0.907588\pi\)
\(884\) 0 0
\(885\) 5.27649 3.27264i 0.177367 0.110009i
\(886\) 0 0
\(887\) 9.92253 0.333166 0.166583 0.986027i \(-0.446727\pi\)
0.166583 + 0.986027i \(0.446727\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −15.2389 + 36.3121i −0.510522 + 1.21650i
\(892\) 0 0
\(893\) 35.3287 1.18223
\(894\) 0 0
\(895\) 33.2431 + 57.5787i 1.11119 + 1.92465i
\(896\) 0 0
\(897\) 0.0318536 + 1.00884i 0.00106356 + 0.0336840i
\(898\) 0 0
\(899\) −11.6785 20.2277i −0.389499 0.674632i
\(900\) 0 0
\(901\) 2.46862 4.27577i 0.0822416 0.142447i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 5.29328 0.175955
\(906\) 0 0
\(907\) −24.5775 −0.816081 −0.408040 0.912964i \(-0.633788\pi\)
−0.408040 + 0.912964i \(0.633788\pi\)
\(908\) 0 0
\(909\) −18.3093 27.5400i −0.607280 0.913443i
\(910\) 0 0
\(911\) 9.73496 16.8614i 0.322534 0.558645i −0.658476 0.752601i \(-0.728799\pi\)
0.981010 + 0.193957i \(0.0621321\pi\)
\(912\) 0 0
\(913\) 1.10707 1.91749i 0.0366385 0.0634598i
\(914\) 0 0
\(915\) −1.39482 44.1754i −0.0461114 1.46040i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 6.61992 11.4660i 0.218371 0.378230i −0.735939 0.677048i \(-0.763259\pi\)
0.954310 + 0.298818i \(0.0965923\pi\)
\(920\) 0 0
\(921\) 44.1832 + 23.6824i 1.45589 + 0.780361i
\(922\) 0 0
\(923\) −3.89017 6.73798i −0.128047 0.221783i
\(924\) 0 0
\(925\) −55.2247 + 95.6519i −1.81578 + 3.14502i
\(926\) 0 0
\(927\) −4.53572 6.82242i −0.148973 0.224078i
\(928\) 0 0
\(929\) 15.8682 + 27.4845i 0.520618 + 0.901737i 0.999713 + 0.0239734i \(0.00763170\pi\)
−0.479095 + 0.877763i \(0.659035\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −20.0088 + 12.4101i −0.655057 + 0.406287i
\(934\) 0 0
\(935\) 45.4199 + 78.6696i 1.48539 + 2.57277i
\(936\) 0 0
\(937\) 13.5019 0.441087 0.220543 0.975377i \(-0.429217\pi\)
0.220543 + 0.975377i \(0.429217\pi\)
\(938\) 0 0
\(939\) −0.757852 24.0020i −0.0247316 0.783274i
\(940\) 0 0
\(941\) −19.8286 + 34.3441i −0.646394 + 1.11959i 0.337584 + 0.941295i \(0.390390\pi\)
−0.983978 + 0.178291i \(0.942943\pi\)
\(942\) 0 0
\(943\) 0.253944 + 0.439845i 0.00826957 + 0.0143233i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 30.5172 + 52.8573i 0.991675 + 1.71763i 0.607350 + 0.794434i \(0.292232\pi\)
0.384325 + 0.923198i \(0.374434\pi\)
\(948\) 0 0
\(949\) −5.99464 + 10.3830i −0.194594 + 0.337047i
\(950\) 0 0
\(951\) −1.26190 39.9656i −0.0409198 1.29597i
\(952\) 0 0
\(953\) 5.22726 0.169328 0.0846638 0.996410i \(-0.473018\pi\)
0.0846638 + 0.996410i \(0.473018\pi\)
\(954\) 0 0
\(955\) −34.8005 60.2762i −1.12612 1.95049i
\(956\) 0 0
\(957\) −65.5320 + 40.6450i −2.11835 + 1.31387i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 12.8653 + 22.2833i 0.415009 + 0.718817i
\(962\) 0 0
\(963\) 32.3118 2.04250i 1.04123 0.0658186i
\(964\) 0 0
\(965\) −25.3269 + 43.8674i −0.815301 + 1.41214i
\(966\) 0 0
\(967\) 10.2035 + 17.6729i 0.328121 + 0.568323i 0.982139 0.188156i \(-0.0602511\pi\)
−0.654018 + 0.756479i \(0.726918\pi\)
\(968\) 0 0
\(969\) 37.8057 + 20.2640i 1.21449 + 0.650975i
\(970\) 0 0
\(971\) 0.589402 1.02087i 0.0189148 0.0327614i −0.856413 0.516291i \(-0.827312\pi\)
0.875328 + 0.483530i \(0.160646\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0.879160 + 27.8439i 0.0281556 + 0.891718i
\(976\) 0 0
\(977\) −4.10487 + 7.10984i −0.131326 + 0.227464i −0.924188 0.381938i \(-0.875257\pi\)
0.792862 + 0.609402i \(0.208590\pi\)
\(978\) 0 0
\(979\) −26.7342 + 46.3049i −0.854427 + 1.47991i
\(980\) 0 0
\(981\) −13.3094 + 26.8316i −0.424937 + 0.856667i
\(982\) 0 0
\(983\) 1.50696 0.0480646 0.0240323 0.999711i \(-0.492350\pi\)
0.0240323 + 0.999711i \(0.492350\pi\)
\(984\) 0 0
\(985\) −24.7750 −0.789397
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1.40389 2.43160i 0.0446410 0.0773204i
\(990\) 0 0
\(991\) −16.2229 28.0990i −0.515339 0.892593i −0.999842 0.0178030i \(-0.994333\pi\)
0.484503 0.874790i \(-0.339001\pi\)
\(992\) 0 0
\(993\) 0.855615 + 27.0982i 0.0271521 + 0.859935i
\(994\) 0 0
\(995\) −45.0608 78.0476i −1.42852 2.47428i
\(996\) 0 0
\(997\) 12.5240 0.396638 0.198319 0.980138i \(-0.436452\pi\)
0.198319 + 0.980138i \(0.436452\pi\)
\(998\) 0 0
\(999\) −51.4150 23.5120i −1.62670 0.743886i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1764.2.l.j.961.11 24
3.2 odd 2 5292.2.l.j.3313.12 24
7.2 even 3 1764.2.j.i.1177.3 yes 24
7.3 odd 6 1764.2.i.j.1537.7 24
7.4 even 3 1764.2.i.j.1537.6 24
7.5 odd 6 1764.2.j.i.1177.10 yes 24
7.6 odd 2 inner 1764.2.l.j.961.2 24
9.4 even 3 1764.2.i.j.373.6 24
9.5 odd 6 5292.2.i.j.1549.1 24
21.2 odd 6 5292.2.j.i.3529.1 24
21.5 even 6 5292.2.j.i.3529.12 24
21.11 odd 6 5292.2.i.j.2125.1 24
21.17 even 6 5292.2.i.j.2125.12 24
21.20 even 2 5292.2.l.j.3313.1 24
63.4 even 3 inner 1764.2.l.j.949.11 24
63.5 even 6 5292.2.j.i.1765.12 24
63.13 odd 6 1764.2.i.j.373.7 24
63.23 odd 6 5292.2.j.i.1765.1 24
63.31 odd 6 inner 1764.2.l.j.949.2 24
63.32 odd 6 5292.2.l.j.361.12 24
63.40 odd 6 1764.2.j.i.589.10 yes 24
63.41 even 6 5292.2.i.j.1549.12 24
63.58 even 3 1764.2.j.i.589.3 24
63.59 even 6 5292.2.l.j.361.1 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1764.2.i.j.373.6 24 9.4 even 3
1764.2.i.j.373.7 24 63.13 odd 6
1764.2.i.j.1537.6 24 7.4 even 3
1764.2.i.j.1537.7 24 7.3 odd 6
1764.2.j.i.589.3 24 63.58 even 3
1764.2.j.i.589.10 yes 24 63.40 odd 6
1764.2.j.i.1177.3 yes 24 7.2 even 3
1764.2.j.i.1177.10 yes 24 7.5 odd 6
1764.2.l.j.949.2 24 63.31 odd 6 inner
1764.2.l.j.949.11 24 63.4 even 3 inner
1764.2.l.j.961.2 24 7.6 odd 2 inner
1764.2.l.j.961.11 24 1.1 even 1 trivial
5292.2.i.j.1549.1 24 9.5 odd 6
5292.2.i.j.1549.12 24 63.41 even 6
5292.2.i.j.2125.1 24 21.11 odd 6
5292.2.i.j.2125.12 24 21.17 even 6
5292.2.j.i.1765.1 24 63.23 odd 6
5292.2.j.i.1765.12 24 63.5 even 6
5292.2.j.i.3529.1 24 21.2 odd 6
5292.2.j.i.3529.12 24 21.5 even 6
5292.2.l.j.361.1 24 63.59 even 6
5292.2.l.j.361.12 24 63.32 odd 6
5292.2.l.j.3313.1 24 21.20 even 2
5292.2.l.j.3313.12 24 3.2 odd 2