Properties

Label 1764.2.l.j.949.11
Level $1764$
Weight $2$
Character 1764.949
Analytic conductor $14.086$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1764,2,Mod(949,1764)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1764, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1764.949");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1764.l (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.0856109166\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 949.11
Character \(\chi\) \(=\) 1764.949
Dual form 1764.2.l.j.961.11

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.52658 - 0.818256i) q^{3} -3.89246 q^{5} +(1.66092 - 2.49827i) q^{9} +4.37557 q^{11} +(0.792201 - 1.37213i) q^{13} +(-5.94217 + 3.18503i) q^{15} +(-2.66678 + 4.61900i) q^{17} +(-2.32161 - 4.02115i) q^{19} +0.367799 q^{23} +10.1513 q^{25} +(0.491301 - 5.17287i) q^{27} +(-5.08750 - 8.81180i) q^{29} +(-1.14776 - 1.98798i) q^{31} +(6.67967 - 3.58033i) q^{33} +(-5.44017 - 9.42265i) q^{37} +(0.0866059 - 2.74290i) q^{39} +(0.690443 - 1.19588i) q^{41} +(3.81699 + 6.61122i) q^{43} +(-6.46505 + 9.72443i) q^{45} +(-3.80432 + 6.58928i) q^{47} +(-0.291541 + 9.23339i) q^{51} +(0.462847 - 0.801674i) q^{53} -17.0317 q^{55} +(-6.83447 - 4.23895i) q^{57} +(-0.460475 - 0.797565i) q^{59} +(3.27780 - 5.67731i) q^{61} +(-3.08361 + 5.34097i) q^{65} +(-7.50420 - 12.9976i) q^{67} +(0.561476 - 0.300954i) q^{69} -4.91059 q^{71} +(3.78353 - 6.55327i) q^{73} +(15.4968 - 8.30634i) q^{75} +(-0.987715 + 1.71077i) q^{79} +(-3.48272 - 8.29883i) q^{81} +(0.253011 + 0.438227i) q^{83} +(10.3803 - 17.9793i) q^{85} +(-14.9768 - 9.28908i) q^{87} +(-6.10987 - 10.5826i) q^{89} +(-3.37883 - 2.09566i) q^{93} +(9.03679 + 15.6522i) q^{95} +(-4.45315 - 7.71308i) q^{97} +(7.26745 - 10.9314i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 4 q^{9} + 8 q^{11} - 28 q^{15} + 16 q^{23} + 24 q^{25} - 32 q^{29} - 12 q^{37} + 32 q^{51} - 16 q^{53} + 52 q^{57} - 36 q^{65} + 12 q^{67} + 48 q^{71} + 12 q^{79} - 8 q^{81} + 12 q^{85} + 32 q^{95}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1764\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(883\) \(1081\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.52658 0.818256i 0.881373 0.472420i
\(4\) 0 0
\(5\) −3.89246 −1.74076 −0.870381 0.492378i \(-0.836128\pi\)
−0.870381 + 0.492378i \(0.836128\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 1.66092 2.49827i 0.553638 0.832757i
\(10\) 0 0
\(11\) 4.37557 1.31928 0.659642 0.751580i \(-0.270708\pi\)
0.659642 + 0.751580i \(0.270708\pi\)
\(12\) 0 0
\(13\) 0.792201 1.37213i 0.219717 0.380561i −0.735004 0.678062i \(-0.762820\pi\)
0.954721 + 0.297501i \(0.0961533\pi\)
\(14\) 0 0
\(15\) −5.94217 + 3.18503i −1.53426 + 0.822371i
\(16\) 0 0
\(17\) −2.66678 + 4.61900i −0.646789 + 1.12027i 0.337096 + 0.941470i \(0.390555\pi\)
−0.983885 + 0.178801i \(0.942778\pi\)
\(18\) 0 0
\(19\) −2.32161 4.02115i −0.532614 0.922515i −0.999275 0.0380786i \(-0.987876\pi\)
0.466660 0.884437i \(-0.345457\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.367799 0.0766914 0.0383457 0.999265i \(-0.487791\pi\)
0.0383457 + 0.999265i \(0.487791\pi\)
\(24\) 0 0
\(25\) 10.1513 2.03025
\(26\) 0 0
\(27\) 0.491301 5.17287i 0.0945509 0.995520i
\(28\) 0 0
\(29\) −5.08750 8.81180i −0.944724 1.63631i −0.756302 0.654222i \(-0.772996\pi\)
−0.188422 0.982088i \(-0.560337\pi\)
\(30\) 0 0
\(31\) −1.14776 1.98798i −0.206144 0.357052i 0.744353 0.667787i \(-0.232758\pi\)
−0.950497 + 0.310735i \(0.899425\pi\)
\(32\) 0 0
\(33\) 6.67967 3.58033i 1.16278 0.623256i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −5.44017 9.42265i −0.894359 1.54907i −0.834596 0.550862i \(-0.814299\pi\)
−0.0597623 0.998213i \(-0.519034\pi\)
\(38\) 0 0
\(39\) 0.0866059 2.74290i 0.0138680 0.439215i
\(40\) 0 0
\(41\) 0.690443 1.19588i 0.107829 0.186766i −0.807061 0.590467i \(-0.798943\pi\)
0.914891 + 0.403702i \(0.132277\pi\)
\(42\) 0 0
\(43\) 3.81699 + 6.61122i 0.582086 + 1.00820i 0.995232 + 0.0975372i \(0.0310965\pi\)
−0.413146 + 0.910665i \(0.635570\pi\)
\(44\) 0 0
\(45\) −6.46505 + 9.72443i −0.963753 + 1.44963i
\(46\) 0 0
\(47\) −3.80432 + 6.58928i −0.554918 + 0.961145i 0.442992 + 0.896525i \(0.353917\pi\)
−0.997910 + 0.0646200i \(0.979416\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −0.291541 + 9.23339i −0.0408239 + 1.29293i
\(52\) 0 0
\(53\) 0.462847 0.801674i 0.0635769 0.110118i −0.832485 0.554048i \(-0.813083\pi\)
0.896062 + 0.443929i \(0.146416\pi\)
\(54\) 0 0
\(55\) −17.0317 −2.29656
\(56\) 0 0
\(57\) −6.83447 4.23895i −0.905247 0.561463i
\(58\) 0 0
\(59\) −0.460475 0.797565i −0.0599487 0.103834i 0.834493 0.551018i \(-0.185760\pi\)
−0.894442 + 0.447184i \(0.852427\pi\)
\(60\) 0 0
\(61\) 3.27780 5.67731i 0.419679 0.726905i −0.576228 0.817289i \(-0.695476\pi\)
0.995907 + 0.0903836i \(0.0288093\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −3.08361 + 5.34097i −0.382475 + 0.662466i
\(66\) 0 0
\(67\) −7.50420 12.9976i −0.916783 1.58792i −0.804269 0.594265i \(-0.797443\pi\)
−0.112514 0.993650i \(-0.535890\pi\)
\(68\) 0 0
\(69\) 0.561476 0.300954i 0.0675938 0.0362306i
\(70\) 0 0
\(71\) −4.91059 −0.582780 −0.291390 0.956604i \(-0.594118\pi\)
−0.291390 + 0.956604i \(0.594118\pi\)
\(72\) 0 0
\(73\) 3.78353 6.55327i 0.442829 0.767003i −0.555069 0.831804i \(-0.687308\pi\)
0.997898 + 0.0648016i \(0.0206415\pi\)
\(74\) 0 0
\(75\) 15.4968 8.30634i 1.78941 0.959133i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −0.987715 + 1.71077i −0.111127 + 0.192477i −0.916225 0.400665i \(-0.868779\pi\)
0.805098 + 0.593142i \(0.202113\pi\)
\(80\) 0 0
\(81\) −3.48272 8.29883i −0.386969 0.922093i
\(82\) 0 0
\(83\) 0.253011 + 0.438227i 0.0277715 + 0.0481017i 0.879577 0.475756i \(-0.157826\pi\)
−0.851806 + 0.523858i \(0.824492\pi\)
\(84\) 0 0
\(85\) 10.3803 17.9793i 1.12591 1.95013i
\(86\) 0 0
\(87\) −14.9768 9.28908i −1.60568 0.995894i
\(88\) 0 0
\(89\) −6.10987 10.5826i −0.647645 1.12175i −0.983684 0.179906i \(-0.942421\pi\)
0.336039 0.941848i \(-0.390913\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −3.37883 2.09566i −0.350369 0.217310i
\(94\) 0 0
\(95\) 9.03679 + 15.6522i 0.927155 + 1.60588i
\(96\) 0 0
\(97\) −4.45315 7.71308i −0.452149 0.783145i 0.546370 0.837544i \(-0.316009\pi\)
−0.998519 + 0.0543987i \(0.982676\pi\)
\(98\) 0 0
\(99\) 7.26745 10.9314i 0.730406 1.09864i
\(100\) 0 0
\(101\) −11.0236 −1.09689 −0.548445 0.836187i \(-0.684780\pi\)
−0.548445 + 0.836187i \(0.684780\pi\)
\(102\) 0 0
\(103\) −2.73085 −0.269079 −0.134540 0.990908i \(-0.542956\pi\)
−0.134540 + 0.990908i \(0.542956\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 5.39605 + 9.34623i 0.521655 + 0.903534i 0.999683 + 0.0251887i \(0.00801867\pi\)
−0.478027 + 0.878345i \(0.658648\pi\)
\(108\) 0 0
\(109\) 4.99187 8.64617i 0.478134 0.828153i −0.521551 0.853220i \(-0.674647\pi\)
0.999686 + 0.0250668i \(0.00797984\pi\)
\(110\) 0 0
\(111\) −16.0150 9.93302i −1.52008 0.942800i
\(112\) 0 0
\(113\) −6.12019 + 10.6005i −0.575739 + 0.997209i 0.420222 + 0.907421i \(0.361952\pi\)
−0.995961 + 0.0897875i \(0.971381\pi\)
\(114\) 0 0
\(115\) −1.43164 −0.133502
\(116\) 0 0
\(117\) −2.11218 4.25813i −0.195271 0.393664i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 8.14559 0.740509
\(122\) 0 0
\(123\) 0.0754814 2.39057i 0.00680593 0.215551i
\(124\) 0 0
\(125\) −20.0511 −1.79343
\(126\) 0 0
\(127\) −13.2005 −1.17135 −0.585677 0.810544i \(-0.699171\pi\)
−0.585677 + 0.810544i \(0.699171\pi\)
\(128\) 0 0
\(129\) 11.2366 + 6.96931i 0.989330 + 0.613613i
\(130\) 0 0
\(131\) −5.08683 −0.444438 −0.222219 0.974997i \(-0.571330\pi\)
−0.222219 + 0.974997i \(0.571330\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −1.91237 + 20.1352i −0.164591 + 1.73296i
\(136\) 0 0
\(137\) 13.3442 1.14007 0.570034 0.821621i \(-0.306930\pi\)
0.570034 + 0.821621i \(0.306930\pi\)
\(138\) 0 0
\(139\) 4.85642 8.41157i 0.411916 0.713460i −0.583183 0.812341i \(-0.698193\pi\)
0.995099 + 0.0988809i \(0.0315263\pi\)
\(140\) 0 0
\(141\) −0.415901 + 13.1720i −0.0350251 + 1.10928i
\(142\) 0 0
\(143\) 3.46633 6.00386i 0.289869 0.502068i
\(144\) 0 0
\(145\) 19.8029 + 34.2996i 1.64454 + 2.84843i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 13.8423 1.13401 0.567004 0.823715i \(-0.308102\pi\)
0.567004 + 0.823715i \(0.308102\pi\)
\(150\) 0 0
\(151\) 22.8759 1.86162 0.930809 0.365506i \(-0.119104\pi\)
0.930809 + 0.365506i \(0.119104\pi\)
\(152\) 0 0
\(153\) 7.11022 + 14.3341i 0.574827 + 1.15884i
\(154\) 0 0
\(155\) 4.46762 + 7.73815i 0.358848 + 0.621543i
\(156\) 0 0
\(157\) 5.78991 + 10.0284i 0.462085 + 0.800355i 0.999065 0.0432404i \(-0.0137681\pi\)
−0.536980 + 0.843595i \(0.680435\pi\)
\(158\) 0 0
\(159\) 0.0505998 1.60255i 0.00401283 0.127090i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −1.70577 2.95449i −0.133607 0.231413i 0.791458 0.611224i \(-0.209323\pi\)
−0.925064 + 0.379811i \(0.875989\pi\)
\(164\) 0 0
\(165\) −26.0004 + 13.9363i −2.02413 + 1.08494i
\(166\) 0 0
\(167\) 4.69996 8.14057i 0.363694 0.629936i −0.624872 0.780727i \(-0.714849\pi\)
0.988566 + 0.150791i \(0.0481821\pi\)
\(168\) 0 0
\(169\) 5.24484 + 9.08432i 0.403449 + 0.698794i
\(170\) 0 0
\(171\) −13.9019 0.878772i −1.06311 0.0672014i
\(172\) 0 0
\(173\) −3.20256 + 5.54700i −0.243486 + 0.421730i −0.961705 0.274087i \(-0.911624\pi\)
0.718219 + 0.695817i \(0.244958\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −1.35557 0.840764i −0.101891 0.0631957i
\(178\) 0 0
\(179\) −8.54038 + 14.7924i −0.638338 + 1.10563i 0.347460 + 0.937695i \(0.387044\pi\)
−0.985797 + 0.167938i \(0.946289\pi\)
\(180\) 0 0
\(181\) −1.35988 −0.101079 −0.0505395 0.998722i \(-0.516094\pi\)
−0.0505395 + 0.998722i \(0.516094\pi\)
\(182\) 0 0
\(183\) 0.358339 11.3490i 0.0264892 0.838940i
\(184\) 0 0
\(185\) 21.1757 + 36.6773i 1.55687 + 2.69657i
\(186\) 0 0
\(187\) −11.6687 + 20.2107i −0.853298 + 1.47796i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 8.94048 15.4854i 0.646911 1.12048i −0.336946 0.941524i \(-0.609394\pi\)
0.983857 0.178958i \(-0.0572727\pi\)
\(192\) 0 0
\(193\) 6.50664 + 11.2698i 0.468358 + 0.811220i 0.999346 0.0361591i \(-0.0115123\pi\)
−0.530988 + 0.847380i \(0.678179\pi\)
\(194\) 0 0
\(195\) −0.337110 + 10.6766i −0.0241410 + 0.764569i
\(196\) 0 0
\(197\) 6.36486 0.453478 0.226739 0.973956i \(-0.427194\pi\)
0.226739 + 0.973956i \(0.427194\pi\)
\(198\) 0 0
\(199\) 11.5764 20.0510i 0.820631 1.42137i −0.0845818 0.996417i \(-0.526955\pi\)
0.905213 0.424958i \(-0.139711\pi\)
\(200\) 0 0
\(201\) −22.0912 13.7016i −1.55819 0.966440i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −2.68753 + 4.65493i −0.187705 + 0.325114i
\(206\) 0 0
\(207\) 0.610883 0.918862i 0.0424593 0.0638653i
\(208\) 0 0
\(209\) −10.1584 17.5948i −0.702669 1.21706i
\(210\) 0 0
\(211\) −5.67737 + 9.83349i −0.390846 + 0.676965i −0.992561 0.121745i \(-0.961151\pi\)
0.601715 + 0.798711i \(0.294484\pi\)
\(212\) 0 0
\(213\) −7.49643 + 4.01812i −0.513647 + 0.275317i
\(214\) 0 0
\(215\) −14.8575 25.7339i −1.01327 1.75504i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0.413628 13.1000i 0.0279504 0.885217i
\(220\) 0 0
\(221\) 4.22525 + 7.31835i 0.284221 + 0.492285i
\(222\) 0 0
\(223\) 13.3206 + 23.0719i 0.892011 + 1.54501i 0.837461 + 0.546498i \(0.184039\pi\)
0.0545504 + 0.998511i \(0.482627\pi\)
\(224\) 0 0
\(225\) 16.8604 25.3606i 1.12403 1.69071i
\(226\) 0 0
\(227\) 16.6027 1.10196 0.550981 0.834518i \(-0.314254\pi\)
0.550981 + 0.834518i \(0.314254\pi\)
\(228\) 0 0
\(229\) 14.5014 0.958282 0.479141 0.877738i \(-0.340948\pi\)
0.479141 + 0.877738i \(0.340948\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −7.99020 13.8394i −0.523456 0.906652i −0.999627 0.0272993i \(-0.991309\pi\)
0.476172 0.879352i \(-0.342024\pi\)
\(234\) 0 0
\(235\) 14.8082 25.6485i 0.965980 1.67313i
\(236\) 0 0
\(237\) −0.107980 + 3.41984i −0.00701407 + 0.222143i
\(238\) 0 0
\(239\) −9.58994 + 16.6103i −0.620322 + 1.07443i 0.369104 + 0.929388i \(0.379665\pi\)
−0.989426 + 0.145040i \(0.953669\pi\)
\(240\) 0 0
\(241\) −23.3569 −1.50455 −0.752276 0.658848i \(-0.771044\pi\)
−0.752276 + 0.658848i \(0.771044\pi\)
\(242\) 0 0
\(243\) −12.1072 9.81911i −0.776679 0.629896i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −7.35673 −0.468098
\(248\) 0 0
\(249\) 0.744824 + 0.461963i 0.0472013 + 0.0292757i
\(250\) 0 0
\(251\) 30.4619 1.92274 0.961371 0.275257i \(-0.0887631\pi\)
0.961371 + 0.275257i \(0.0887631\pi\)
\(252\) 0 0
\(253\) 1.60933 0.101178
\(254\) 0 0
\(255\) 1.13481 35.9407i 0.0710647 2.25069i
\(256\) 0 0
\(257\) 6.80877 0.424719 0.212360 0.977192i \(-0.431885\pi\)
0.212360 + 0.977192i \(0.431885\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −30.4642 1.92571i −1.88569 0.119198i
\(262\) 0 0
\(263\) −4.60001 −0.283649 −0.141824 0.989892i \(-0.545297\pi\)
−0.141824 + 0.989892i \(0.545297\pi\)
\(264\) 0 0
\(265\) −1.80161 + 3.12049i −0.110672 + 0.191690i
\(266\) 0 0
\(267\) −17.9865 11.1558i −1.10076 0.682724i
\(268\) 0 0
\(269\) −4.25090 + 7.36277i −0.259182 + 0.448916i −0.966023 0.258456i \(-0.916786\pi\)
0.706841 + 0.707372i \(0.250120\pi\)
\(270\) 0 0
\(271\) 3.29191 + 5.70175i 0.199969 + 0.346357i 0.948518 0.316723i \(-0.102583\pi\)
−0.748549 + 0.663079i \(0.769249\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 44.4176 2.67848
\(276\) 0 0
\(277\) −11.2697 −0.677129 −0.338564 0.940943i \(-0.609941\pi\)
−0.338564 + 0.940943i \(0.609941\pi\)
\(278\) 0 0
\(279\) −6.87285 0.434448i −0.411467 0.0260097i
\(280\) 0 0
\(281\) 7.50741 + 13.0032i 0.447854 + 0.775707i 0.998246 0.0592000i \(-0.0188550\pi\)
−0.550392 + 0.834907i \(0.685522\pi\)
\(282\) 0 0
\(283\) 7.33657 + 12.7073i 0.436114 + 0.755371i 0.997386 0.0722602i \(-0.0230212\pi\)
−0.561272 + 0.827631i \(0.689688\pi\)
\(284\) 0 0
\(285\) 26.6029 + 16.5000i 1.57582 + 0.977373i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −5.72343 9.91327i −0.336672 0.583133i
\(290\) 0 0
\(291\) −13.1094 8.13085i −0.768486 0.476639i
\(292\) 0 0
\(293\) 9.38981 16.2636i 0.548559 0.950132i −0.449815 0.893122i \(-0.648510\pi\)
0.998374 0.0570099i \(-0.0181567\pi\)
\(294\) 0 0
\(295\) 1.79238 + 3.10449i 0.104356 + 0.180751i
\(296\) 0 0
\(297\) 2.14972 22.6343i 0.124739 1.31337i
\(298\) 0 0
\(299\) 0.291371 0.504669i 0.0168504 0.0291858i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −16.8285 + 9.02013i −0.966770 + 0.518193i
\(304\) 0 0
\(305\) −12.7587 + 22.0987i −0.730562 + 1.26537i
\(306\) 0 0
\(307\) 28.9425 1.65184 0.825919 0.563789i \(-0.190657\pi\)
0.825919 + 0.563789i \(0.190657\pi\)
\(308\) 0 0
\(309\) −4.16888 + 2.23454i −0.237159 + 0.127118i
\(310\) 0 0
\(311\) −6.79681 11.7724i −0.385412 0.667553i 0.606414 0.795149i \(-0.292607\pi\)
−0.991826 + 0.127596i \(0.959274\pi\)
\(312\) 0 0
\(313\) −6.93222 + 12.0070i −0.391832 + 0.678673i −0.992691 0.120682i \(-0.961492\pi\)
0.600859 + 0.799355i \(0.294825\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −11.5428 + 19.9927i −0.648309 + 1.12290i 0.335217 + 0.942141i \(0.391190\pi\)
−0.983527 + 0.180764i \(0.942143\pi\)
\(318\) 0 0
\(319\) −22.2607 38.5566i −1.24636 2.15876i
\(320\) 0 0
\(321\) 15.8851 + 9.85245i 0.886621 + 0.549910i
\(322\) 0 0
\(323\) 24.7649 1.37796
\(324\) 0 0
\(325\) 8.04184 13.9289i 0.446081 0.772635i
\(326\) 0 0
\(327\) 0.545727 17.2837i 0.0301788 0.955793i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 7.82647 13.5558i 0.430182 0.745097i −0.566707 0.823920i \(-0.691783\pi\)
0.996889 + 0.0788227i \(0.0251161\pi\)
\(332\) 0 0
\(333\) −32.5760 2.05920i −1.78515 0.112844i
\(334\) 0 0
\(335\) 29.2098 + 50.5929i 1.59590 + 2.76418i
\(336\) 0 0
\(337\) 3.56686 6.17799i 0.194299 0.336537i −0.752371 0.658739i \(-0.771090\pi\)
0.946671 + 0.322203i \(0.104423\pi\)
\(338\) 0 0
\(339\) −0.669078 + 21.1904i −0.0363393 + 1.15090i
\(340\) 0 0
\(341\) −5.02211 8.69855i −0.271962 0.471053i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −2.18553 + 1.17145i −0.117665 + 0.0630688i
\(346\) 0 0
\(347\) −2.77827 4.81211i −0.149146 0.258328i 0.781766 0.623571i \(-0.214319\pi\)
−0.930912 + 0.365244i \(0.880986\pi\)
\(348\) 0 0
\(349\) 5.33296 + 9.23696i 0.285467 + 0.494443i 0.972722 0.231973i \(-0.0745181\pi\)
−0.687256 + 0.726416i \(0.741185\pi\)
\(350\) 0 0
\(351\) −6.70866 4.77208i −0.358082 0.254715i
\(352\) 0 0
\(353\) 12.8426 0.683545 0.341772 0.939783i \(-0.388973\pi\)
0.341772 + 0.939783i \(0.388973\pi\)
\(354\) 0 0
\(355\) 19.1143 1.01448
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −12.8417 22.2426i −0.677761 1.17392i −0.975653 0.219318i \(-0.929617\pi\)
0.297892 0.954600i \(-0.403716\pi\)
\(360\) 0 0
\(361\) −1.27977 + 2.21663i −0.0673563 + 0.116665i
\(362\) 0 0
\(363\) 12.4349 6.66518i 0.652665 0.349831i
\(364\) 0 0
\(365\) −14.7273 + 25.5084i −0.770861 + 1.33517i
\(366\) 0 0
\(367\) 16.9839 0.886554 0.443277 0.896385i \(-0.353816\pi\)
0.443277 + 0.896385i \(0.353816\pi\)
\(368\) 0 0
\(369\) −1.84087 3.71118i −0.0958320 0.193196i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −8.77005 −0.454096 −0.227048 0.973884i \(-0.572907\pi\)
−0.227048 + 0.973884i \(0.572907\pi\)
\(374\) 0 0
\(375\) −30.6097 + 16.4070i −1.58068 + 0.847252i
\(376\) 0 0
\(377\) −16.1213 −0.830288
\(378\) 0 0
\(379\) 11.7002 0.601001 0.300500 0.953782i \(-0.402846\pi\)
0.300500 + 0.953782i \(0.402846\pi\)
\(380\) 0 0
\(381\) −20.1517 + 10.8014i −1.03240 + 0.553371i
\(382\) 0 0
\(383\) 9.00720 0.460246 0.230123 0.973162i \(-0.426087\pi\)
0.230123 + 0.973162i \(0.426087\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 22.8563 + 1.44480i 1.16185 + 0.0734433i
\(388\) 0 0
\(389\) −9.78781 −0.496262 −0.248131 0.968727i \(-0.579816\pi\)
−0.248131 + 0.968727i \(0.579816\pi\)
\(390\) 0 0
\(391\) −0.980839 + 1.69886i −0.0496032 + 0.0859152i
\(392\) 0 0
\(393\) −7.76547 + 4.16233i −0.391716 + 0.209962i
\(394\) 0 0
\(395\) 3.84465 6.65912i 0.193445 0.335057i
\(396\) 0 0
\(397\) 6.95929 + 12.0538i 0.349277 + 0.604965i 0.986121 0.166027i \(-0.0530940\pi\)
−0.636844 + 0.770992i \(0.719761\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −23.4828 −1.17267 −0.586336 0.810068i \(-0.699430\pi\)
−0.586336 + 0.810068i \(0.699430\pi\)
\(402\) 0 0
\(403\) −3.63703 −0.181173
\(404\) 0 0
\(405\) 13.5564 + 32.3029i 0.673621 + 1.60514i
\(406\) 0 0
\(407\) −23.8038 41.2295i −1.17991 2.04367i
\(408\) 0 0
\(409\) −6.81225 11.7992i −0.336844 0.583431i 0.646993 0.762496i \(-0.276026\pi\)
−0.983837 + 0.179064i \(0.942693\pi\)
\(410\) 0 0
\(411\) 20.3710 10.9189i 1.00483 0.538591i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −0.984835 1.70578i −0.0483436 0.0837336i
\(416\) 0 0
\(417\) 0.530919 16.8148i 0.0259992 0.823422i
\(418\) 0 0
\(419\) 3.97733 6.88894i 0.194305 0.336547i −0.752367 0.658744i \(-0.771088\pi\)
0.946673 + 0.322197i \(0.104421\pi\)
\(420\) 0 0
\(421\) 1.30584 + 2.26178i 0.0636426 + 0.110232i 0.896091 0.443870i \(-0.146395\pi\)
−0.832448 + 0.554102i \(0.813062\pi\)
\(422\) 0 0
\(423\) 10.1432 + 20.4485i 0.493177 + 0.994239i
\(424\) 0 0
\(425\) −27.0712 + 46.8887i −1.31315 + 2.27444i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0.378950 12.0017i 0.0182959 0.579449i
\(430\) 0 0
\(431\) 0.791065 1.37017i 0.0381043 0.0659985i −0.846344 0.532636i \(-0.821201\pi\)
0.884449 + 0.466638i \(0.154535\pi\)
\(432\) 0 0
\(433\) −5.17110 −0.248507 −0.124254 0.992250i \(-0.539654\pi\)
−0.124254 + 0.992250i \(0.539654\pi\)
\(434\) 0 0
\(435\) 58.2966 + 36.1574i 2.79511 + 1.73361i
\(436\) 0 0
\(437\) −0.853887 1.47898i −0.0408470 0.0707490i
\(438\) 0 0
\(439\) −12.4806 + 21.6170i −0.595665 + 1.03172i 0.397788 + 0.917477i \(0.369778\pi\)
−0.993453 + 0.114244i \(0.963555\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −0.542263 + 0.939227i −0.0257637 + 0.0446240i −0.878620 0.477522i \(-0.841535\pi\)
0.852856 + 0.522146i \(0.174868\pi\)
\(444\) 0 0
\(445\) 23.7825 + 41.1924i 1.12740 + 1.95271i
\(446\) 0 0
\(447\) 21.1315 11.3266i 0.999484 0.535728i
\(448\) 0 0
\(449\) 4.23372 0.199802 0.0999008 0.994997i \(-0.468147\pi\)
0.0999008 + 0.994997i \(0.468147\pi\)
\(450\) 0 0
\(451\) 3.02108 5.23267i 0.142257 0.246397i
\(452\) 0 0
\(453\) 34.9220 18.7184i 1.64078 0.879466i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 18.1513 31.4390i 0.849083 1.47065i −0.0329453 0.999457i \(-0.510489\pi\)
0.882028 0.471197i \(-0.156178\pi\)
\(458\) 0 0
\(459\) 22.5833 + 16.0642i 1.05410 + 0.749814i
\(460\) 0 0
\(461\) 1.71236 + 2.96589i 0.0797524 + 0.138135i 0.903143 0.429340i \(-0.141254\pi\)
−0.823391 + 0.567475i \(0.807920\pi\)
\(462\) 0 0
\(463\) 2.38499 4.13092i 0.110840 0.191980i −0.805269 0.592909i \(-0.797979\pi\)
0.916109 + 0.400929i \(0.131313\pi\)
\(464\) 0 0
\(465\) 13.1520 + 8.15727i 0.609908 + 0.378284i
\(466\) 0 0
\(467\) −10.0490 17.4053i −0.465010 0.805422i 0.534192 0.845363i \(-0.320616\pi\)
−0.999202 + 0.0399417i \(0.987283\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 17.0446 + 10.5716i 0.785373 + 0.487113i
\(472\) 0 0
\(473\) 16.7015 + 28.9279i 0.767936 + 1.33010i
\(474\) 0 0
\(475\) −23.5673 40.8198i −1.08134 1.87294i
\(476\) 0 0
\(477\) −1.23405 2.48783i −0.0565033 0.113910i
\(478\) 0 0
\(479\) −16.8506 −0.769922 −0.384961 0.922933i \(-0.625785\pi\)
−0.384961 + 0.922933i \(0.625785\pi\)
\(480\) 0 0
\(481\) −17.2388 −0.786023
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 17.3337 + 30.0229i 0.787084 + 1.36327i
\(486\) 0 0
\(487\) −11.9916 + 20.7700i −0.543389 + 0.941178i 0.455317 + 0.890329i \(0.349526\pi\)
−0.998706 + 0.0508486i \(0.983807\pi\)
\(488\) 0 0
\(489\) −5.02153 3.11451i −0.227082 0.140843i
\(490\) 0 0
\(491\) −1.07281 + 1.85816i −0.0484153 + 0.0838577i −0.889217 0.457485i \(-0.848750\pi\)
0.840802 + 0.541342i \(0.182084\pi\)
\(492\) 0 0
\(493\) 54.2689 2.44415
\(494\) 0 0
\(495\) −28.2883 + 42.5499i −1.27146 + 1.91248i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −27.7154 −1.24071 −0.620357 0.784320i \(-0.713012\pi\)
−0.620357 + 0.784320i \(0.713012\pi\)
\(500\) 0 0
\(501\) 0.513814 16.2730i 0.0229555 0.727025i
\(502\) 0 0
\(503\) −22.4265 −0.999949 −0.499974 0.866040i \(-0.666657\pi\)
−0.499974 + 0.866040i \(0.666657\pi\)
\(504\) 0 0
\(505\) 42.9090 1.90943
\(506\) 0 0
\(507\) 15.4400 + 9.57636i 0.685714 + 0.425301i
\(508\) 0 0
\(509\) −29.3689 −1.30175 −0.650876 0.759184i \(-0.725598\pi\)
−0.650876 + 0.759184i \(0.725598\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −21.9415 + 10.0338i −0.968742 + 0.443004i
\(514\) 0 0
\(515\) 10.6298 0.468403
\(516\) 0 0
\(517\) −16.6461 + 28.8318i −0.732093 + 1.26802i
\(518\) 0 0
\(519\) −0.350114 + 11.0885i −0.0153683 + 0.486730i
\(520\) 0 0
\(521\) 8.25389 14.2962i 0.361610 0.626326i −0.626616 0.779328i \(-0.715561\pi\)
0.988226 + 0.153002i \(0.0488940\pi\)
\(522\) 0 0
\(523\) −22.3476 38.7072i −0.977193 1.69255i −0.672499 0.740098i \(-0.734779\pi\)
−0.304695 0.952450i \(-0.598554\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 12.2433 0.533327
\(528\) 0 0
\(529\) −22.8647 −0.994118
\(530\) 0 0
\(531\) −2.75734 0.174298i −0.119659 0.00756388i
\(532\) 0 0
\(533\) −1.09394 1.89476i −0.0473838 0.0820711i
\(534\) 0 0
\(535\) −21.0039 36.3798i −0.908078 1.57284i
\(536\) 0 0
\(537\) −0.933661 + 29.5700i −0.0402904 + 1.27604i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 10.0369 + 17.3844i 0.431519 + 0.747412i 0.997004 0.0773460i \(-0.0246446\pi\)
−0.565486 + 0.824758i \(0.691311\pi\)
\(542\) 0 0
\(543\) −2.07597 + 1.11273i −0.0890884 + 0.0477518i
\(544\) 0 0
\(545\) −19.4307 + 33.6549i −0.832319 + 1.44162i
\(546\) 0 0
\(547\) 6.35012 + 10.9987i 0.271512 + 0.470272i 0.969249 0.246082i \(-0.0791432\pi\)
−0.697738 + 0.716353i \(0.745810\pi\)
\(548\) 0 0
\(549\) −8.73932 17.6184i −0.372985 0.751933i
\(550\) 0 0
\(551\) −23.6224 + 40.9152i −1.00635 + 1.74305i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 62.3379 + 38.6639i 2.64610 + 1.64119i
\(556\) 0 0
\(557\) −7.34743 + 12.7261i −0.311321 + 0.539223i −0.978649 0.205541i \(-0.934105\pi\)
0.667328 + 0.744764i \(0.267438\pi\)
\(558\) 0 0
\(559\) 12.0953 0.511576
\(560\) 0 0
\(561\) −1.27566 + 40.4013i −0.0538583 + 1.70575i
\(562\) 0 0
\(563\) 13.3930 + 23.1974i 0.564448 + 0.977653i 0.997101 + 0.0760922i \(0.0242443\pi\)
−0.432653 + 0.901561i \(0.642422\pi\)
\(564\) 0 0
\(565\) 23.8226 41.2620i 1.00222 1.73590i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −3.24168 + 5.61475i −0.135898 + 0.235383i −0.925940 0.377670i \(-0.876725\pi\)
0.790042 + 0.613053i \(0.210059\pi\)
\(570\) 0 0
\(571\) −7.81632 13.5383i −0.327103 0.566559i 0.654833 0.755774i \(-0.272739\pi\)
−0.981936 + 0.189215i \(0.939406\pi\)
\(572\) 0 0
\(573\) 0.977402 30.9553i 0.0408315 1.29318i
\(574\) 0 0
\(575\) 3.73363 0.155703
\(576\) 0 0
\(577\) −14.5800 + 25.2533i −0.606974 + 1.05131i 0.384763 + 0.923016i \(0.374283\pi\)
−0.991736 + 0.128294i \(0.959050\pi\)
\(578\) 0 0
\(579\) 19.1545 + 11.8802i 0.796036 + 0.493726i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 2.02522 3.50778i 0.0838759 0.145277i
\(584\) 0 0
\(585\) 8.22158 + 16.5746i 0.339921 + 0.685275i
\(586\) 0 0
\(587\) 2.33110 + 4.03758i 0.0962146 + 0.166649i 0.910115 0.414356i \(-0.135993\pi\)
−0.813900 + 0.581005i \(0.802660\pi\)
\(588\) 0 0
\(589\) −5.32932 + 9.23065i −0.219591 + 0.380342i
\(590\) 0 0
\(591\) 9.71649 5.20808i 0.399683 0.214232i
\(592\) 0 0
\(593\) 15.8322 + 27.4222i 0.650150 + 1.12609i 0.983086 + 0.183144i \(0.0586275\pi\)
−0.332936 + 0.942950i \(0.608039\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 1.26557 40.0819i 0.0517964 1.64044i
\(598\) 0 0
\(599\) 5.15268 + 8.92470i 0.210533 + 0.364653i 0.951881 0.306467i \(-0.0991468\pi\)
−0.741349 + 0.671120i \(0.765813\pi\)
\(600\) 0 0
\(601\) 4.64993 + 8.05391i 0.189674 + 0.328526i 0.945142 0.326661i \(-0.105923\pi\)
−0.755467 + 0.655186i \(0.772590\pi\)
\(602\) 0 0
\(603\) −44.9355 2.84047i −1.82991 0.115673i
\(604\) 0 0
\(605\) −31.7064 −1.28905
\(606\) 0 0
\(607\) −20.4968 −0.831938 −0.415969 0.909379i \(-0.636558\pi\)
−0.415969 + 0.909379i \(0.636558\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 6.02757 + 10.4401i 0.243850 + 0.422360i
\(612\) 0 0
\(613\) 7.17240 12.4230i 0.289691 0.501759i −0.684045 0.729440i \(-0.739781\pi\)
0.973736 + 0.227681i \(0.0731143\pi\)
\(614\) 0 0
\(615\) −0.293809 + 9.30522i −0.0118475 + 0.375223i
\(616\) 0 0
\(617\) −6.47499 + 11.2150i −0.260673 + 0.451499i −0.966421 0.256964i \(-0.917278\pi\)
0.705748 + 0.708463i \(0.250611\pi\)
\(618\) 0 0
\(619\) 35.3980 1.42277 0.711383 0.702804i \(-0.248069\pi\)
0.711383 + 0.702804i \(0.248069\pi\)
\(620\) 0 0
\(621\) 0.180700 1.90258i 0.00725124 0.0763479i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 27.2920 1.09168
\(626\) 0 0
\(627\) −29.9047 18.5478i −1.19428 0.740728i
\(628\) 0 0
\(629\) 58.0310 2.31385
\(630\) 0 0
\(631\) 33.1936 1.32141 0.660707 0.750644i \(-0.270256\pi\)
0.660707 + 0.750644i \(0.270256\pi\)
\(632\) 0 0
\(633\) −0.620668 + 19.6572i −0.0246693 + 0.781303i
\(634\) 0 0
\(635\) 51.3824 2.03905
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −8.15608 + 12.2680i −0.322649 + 0.485314i
\(640\) 0 0
\(641\) −0.239269 −0.00945056 −0.00472528 0.999989i \(-0.501504\pi\)
−0.00472528 + 0.999989i \(0.501504\pi\)
\(642\) 0 0
\(643\) 4.57211 7.91913i 0.180307 0.312300i −0.761678 0.647955i \(-0.775624\pi\)
0.941985 + 0.335655i \(0.108958\pi\)
\(644\) 0 0
\(645\) −43.7382 27.1278i −1.72219 1.06816i
\(646\) 0 0
\(647\) 3.15607 5.46648i 0.124078 0.214909i −0.797294 0.603591i \(-0.793736\pi\)
0.921372 + 0.388682i \(0.127069\pi\)
\(648\) 0 0
\(649\) −2.01484 3.48980i −0.0790893 0.136987i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −4.55775 −0.178359 −0.0891793 0.996016i \(-0.528424\pi\)
−0.0891793 + 0.996016i \(0.528424\pi\)
\(654\) 0 0
\(655\) 19.8003 0.773662
\(656\) 0 0
\(657\) −10.0877 20.3367i −0.393560 0.793411i
\(658\) 0 0
\(659\) −16.4631 28.5149i −0.641311 1.11078i −0.985140 0.171751i \(-0.945058\pi\)
0.343829 0.939032i \(-0.388276\pi\)
\(660\) 0 0
\(661\) 0.270668 + 0.468811i 0.0105278 + 0.0182346i 0.871241 0.490855i \(-0.163316\pi\)
−0.860714 + 0.509090i \(0.829982\pi\)
\(662\) 0 0
\(663\) 12.4385 + 7.71473i 0.483070 + 0.299615i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −1.87118 3.24097i −0.0724523 0.125491i
\(668\) 0 0
\(669\) 39.2137 + 24.3216i 1.51609 + 0.940326i
\(670\) 0 0
\(671\) 14.3422 24.8415i 0.553676 0.958994i
\(672\) 0 0
\(673\) −11.8205 20.4737i −0.455647 0.789204i 0.543078 0.839682i \(-0.317259\pi\)
−0.998725 + 0.0504780i \(0.983926\pi\)
\(674\) 0 0
\(675\) 4.98733 52.5113i 0.191962 2.02116i
\(676\) 0 0
\(677\) −1.36494 + 2.36415i −0.0524591 + 0.0908618i −0.891062 0.453881i \(-0.850039\pi\)
0.838603 + 0.544742i \(0.183373\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 25.3454 13.5853i 0.971239 0.520589i
\(682\) 0 0
\(683\) 15.9640 27.6504i 0.610844 1.05801i −0.380254 0.924882i \(-0.624164\pi\)
0.991098 0.133131i \(-0.0425032\pi\)
\(684\) 0 0
\(685\) −51.9417 −1.98459
\(686\) 0 0
\(687\) 22.1377 11.8659i 0.844605 0.452712i
\(688\) 0 0
\(689\) −0.733335 1.27017i −0.0279378 0.0483897i
\(690\) 0 0
\(691\) −1.19103 + 2.06292i −0.0453089 + 0.0784773i −0.887790 0.460248i \(-0.847761\pi\)
0.842482 + 0.538725i \(0.181094\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −18.9034 + 32.7417i −0.717048 + 1.24196i
\(696\) 0 0
\(697\) 3.68252 + 6.37831i 0.139485 + 0.241596i
\(698\) 0 0
\(699\) −23.5219 14.5890i −0.889680 0.551808i
\(700\) 0 0
\(701\) 50.3767 1.90270 0.951350 0.308111i \(-0.0996968\pi\)
0.951350 + 0.308111i \(0.0996968\pi\)
\(702\) 0 0
\(703\) −25.2599 + 43.7515i −0.952697 + 1.65012i
\(704\) 0 0
\(705\) 1.61888 51.2715i 0.0609705 1.93100i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −20.1600 + 34.9182i −0.757126 + 1.31138i 0.187184 + 0.982325i \(0.440064\pi\)
−0.944310 + 0.329056i \(0.893269\pi\)
\(710\) 0 0
\(711\) 2.63346 + 5.30903i 0.0987626 + 0.199104i
\(712\) 0 0
\(713\) −0.422146 0.731178i −0.0158095 0.0273828i
\(714\) 0 0
\(715\) −13.4926 + 23.3698i −0.504593 + 0.873981i
\(716\) 0 0
\(717\) −1.04840 + 33.2040i −0.0391533 + 1.24003i
\(718\) 0 0
\(719\) −17.0446 29.5222i −0.635658 1.10099i −0.986375 0.164510i \(-0.947396\pi\)
0.350718 0.936481i \(-0.385938\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −35.6563 + 19.1119i −1.32607 + 0.710781i
\(724\) 0 0
\(725\) −51.6446 89.4510i −1.91803 3.32213i
\(726\) 0 0
\(727\) −10.9453 18.9578i −0.405938 0.703105i 0.588492 0.808503i \(-0.299722\pi\)
−0.994430 + 0.105398i \(0.966388\pi\)
\(728\) 0 0
\(729\) −26.5172 5.08288i −0.982120 0.188255i
\(730\) 0 0
\(731\) −40.7163 −1.50595
\(732\) 0 0
\(733\) 8.68831 0.320910 0.160455 0.987043i \(-0.448704\pi\)
0.160455 + 0.987043i \(0.448704\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −32.8351 56.8721i −1.20950 2.09491i
\(738\) 0 0
\(739\) −3.34692 + 5.79704i −0.123119 + 0.213248i −0.920996 0.389572i \(-0.872623\pi\)
0.797877 + 0.602820i \(0.205956\pi\)
\(740\) 0 0
\(741\) −11.2307 + 6.01969i −0.412569 + 0.221139i
\(742\) 0 0
\(743\) 21.5001 37.2392i 0.788761 1.36617i −0.137965 0.990437i \(-0.544056\pi\)
0.926726 0.375737i \(-0.122611\pi\)
\(744\) 0 0
\(745\) −53.8807 −1.97404
\(746\) 0 0
\(747\) 1.51504 + 0.0957691i 0.0554324 + 0.00350401i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −16.7274 −0.610391 −0.305196 0.952290i \(-0.598722\pi\)
−0.305196 + 0.952290i \(0.598722\pi\)
\(752\) 0 0
\(753\) 46.5027 24.9257i 1.69465 0.908342i
\(754\) 0 0
\(755\) −89.0438 −3.24064
\(756\) 0 0
\(757\) −4.68561 −0.170301 −0.0851507 0.996368i \(-0.527137\pi\)
−0.0851507 + 0.996368i \(0.527137\pi\)
\(758\) 0 0
\(759\) 2.45678 1.31684i 0.0891754 0.0477984i
\(760\) 0 0
\(761\) 51.6484 1.87225 0.936127 0.351663i \(-0.114384\pi\)
0.936127 + 0.351663i \(0.114384\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −27.6763 55.7950i −1.00064 2.01727i
\(766\) 0 0
\(767\) −1.45915 −0.0526870
\(768\) 0 0
\(769\) −15.3910 + 26.6580i −0.555014 + 0.961313i 0.442888 + 0.896577i \(0.353954\pi\)
−0.997902 + 0.0647361i \(0.979379\pi\)
\(770\) 0 0
\(771\) 10.3942 5.57131i 0.374336 0.200646i
\(772\) 0 0
\(773\) 13.5259 23.4275i 0.486491 0.842627i −0.513388 0.858156i \(-0.671610\pi\)
0.999879 + 0.0155292i \(0.00494329\pi\)
\(774\) 0 0
\(775\) −11.6512 20.1805i −0.418525 0.724907i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −6.41177 −0.229725
\(780\) 0 0
\(781\) −21.4866 −0.768852
\(782\) 0 0
\(783\) −48.0818 + 21.9877i −1.71830 + 0.785777i
\(784\) 0 0
\(785\) −22.5370 39.0352i −0.804380 1.39323i
\(786\) 0 0
\(787\) −17.5997 30.4837i −0.627363 1.08662i −0.988079 0.153949i \(-0.950801\pi\)
0.360716 0.932676i \(-0.382532\pi\)
\(788\) 0 0
\(789\) −7.02230 + 3.76398i −0.250000 + 0.134001i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −5.19335 8.99514i −0.184421 0.319427i
\(794\) 0 0
\(795\) −0.196958 + 6.23786i −0.00698538 + 0.221234i
\(796\) 0 0
\(797\) 23.8268 41.2692i 0.843988 1.46183i −0.0425084 0.999096i \(-0.513535\pi\)
0.886497 0.462735i \(-0.153132\pi\)
\(798\) 0 0
\(799\) −20.2906 35.1443i −0.717829 1.24332i
\(800\) 0 0
\(801\) −36.5862 2.31270i −1.29271 0.0817151i
\(802\) 0 0
\(803\) 16.5551 28.6743i 0.584217 1.01189i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −0.464721 + 14.7182i −0.0163590 + 0.518105i
\(808\) 0 0
\(809\) −9.87711 + 17.1077i −0.347261 + 0.601473i −0.985762 0.168148i \(-0.946221\pi\)
0.638501 + 0.769621i \(0.279555\pi\)
\(810\) 0 0
\(811\) 49.2424 1.72913 0.864567 0.502518i \(-0.167593\pi\)
0.864567 + 0.502518i \(0.167593\pi\)
\(812\) 0 0
\(813\) 9.69086 + 6.01057i 0.339873 + 0.210800i
\(814\) 0 0
\(815\) 6.63967 + 11.5002i 0.232577 + 0.402836i
\(816\) 0 0
\(817\) 17.7231 30.6974i 0.620054 1.07397i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −5.00013 + 8.66048i −0.174506 + 0.302253i −0.939990 0.341202i \(-0.889166\pi\)
0.765484 + 0.643455i \(0.222499\pi\)
\(822\) 0 0
\(823\) 17.5138 + 30.3348i 0.610493 + 1.05741i 0.991157 + 0.132692i \(0.0423621\pi\)
−0.380664 + 0.924713i \(0.624305\pi\)
\(824\) 0 0
\(825\) 67.8072 36.3449i 2.36074 1.26537i
\(826\) 0 0
\(827\) −22.7079 −0.789631 −0.394816 0.918760i \(-0.629192\pi\)
−0.394816 + 0.918760i \(0.629192\pi\)
\(828\) 0 0
\(829\) −6.22083 + 10.7748i −0.216058 + 0.374224i −0.953599 0.301078i \(-0.902653\pi\)
0.737541 + 0.675302i \(0.235987\pi\)
\(830\) 0 0
\(831\) −17.2041 + 9.22147i −0.596803 + 0.319889i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −18.2944 + 31.6869i −0.633105 + 1.09657i
\(836\) 0 0
\(837\) −10.8475 + 4.96053i −0.374944 + 0.171461i
\(838\) 0 0
\(839\) 13.8249 + 23.9455i 0.477290 + 0.826690i 0.999661 0.0260281i \(-0.00828595\pi\)
−0.522372 + 0.852718i \(0.674953\pi\)
\(840\) 0 0
\(841\) −37.2652 + 64.5453i −1.28501 + 2.22570i
\(842\) 0 0
\(843\) 22.1006 + 13.7075i 0.761186 + 0.472112i
\(844\) 0 0
\(845\) −20.4153 35.3604i −0.702309 1.21643i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 21.5977 + 13.3956i 0.741232 + 0.459735i
\(850\) 0 0
\(851\) −2.00089 3.46564i −0.0685896 0.118801i
\(852\) 0 0
\(853\) 22.0459 + 38.1847i 0.754839 + 1.30742i 0.945454 + 0.325754i \(0.105618\pi\)
−0.190616 + 0.981665i \(0.561048\pi\)
\(854\) 0 0
\(855\) 54.1127 + 3.42059i 1.85062 + 0.116982i
\(856\) 0 0
\(857\) 26.7676 0.914363 0.457182 0.889373i \(-0.348859\pi\)
0.457182 + 0.889373i \(0.348859\pi\)
\(858\) 0 0
\(859\) 20.1901 0.688879 0.344439 0.938809i \(-0.388069\pi\)
0.344439 + 0.938809i \(0.388069\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −4.74538 8.21923i −0.161534 0.279786i 0.773885 0.633327i \(-0.218311\pi\)
−0.935419 + 0.353541i \(0.884978\pi\)
\(864\) 0 0
\(865\) 12.4659 21.5915i 0.423852 0.734133i
\(866\) 0 0
\(867\) −16.8489 10.4502i −0.572218 0.354908i
\(868\) 0 0
\(869\) −4.32182 + 7.48560i −0.146608 + 0.253932i
\(870\) 0 0
\(871\) −23.7793 −0.805731
\(872\) 0 0
\(873\) −26.6657 1.68560i −0.902497 0.0570488i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 29.2455 0.987549 0.493774 0.869590i \(-0.335617\pi\)
0.493774 + 0.869590i \(0.335617\pi\)
\(878\) 0 0
\(879\) 1.02652 32.5111i 0.0346238 1.09657i
\(880\) 0 0
\(881\) −37.2768 −1.25589 −0.627944 0.778259i \(-0.716103\pi\)
−0.627944 + 0.778259i \(0.716103\pi\)
\(882\) 0 0
\(883\) −56.9436 −1.91630 −0.958152 0.286260i \(-0.907588\pi\)
−0.958152 + 0.286260i \(0.907588\pi\)
\(884\) 0 0
\(885\) 5.27649 + 3.27264i 0.177367 + 0.110009i
\(886\) 0 0
\(887\) 9.92253 0.333166 0.166583 0.986027i \(-0.446727\pi\)
0.166583 + 0.986027i \(0.446727\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −15.2389 36.3121i −0.510522 1.21650i
\(892\) 0 0
\(893\) 35.3287 1.18223
\(894\) 0 0
\(895\) 33.2431 57.5787i 1.11119 1.92465i
\(896\) 0 0
\(897\) 0.0318536 1.00884i 0.00106356 0.0336840i
\(898\) 0 0
\(899\) −11.6785 + 20.2277i −0.389499 + 0.674632i
\(900\) 0 0
\(901\) 2.46862 + 4.27577i 0.0822416 + 0.142447i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 5.29328 0.175955
\(906\) 0 0
\(907\) −24.5775 −0.816081 −0.408040 0.912964i \(-0.633788\pi\)
−0.408040 + 0.912964i \(0.633788\pi\)
\(908\) 0 0
\(909\) −18.3093 + 27.5400i −0.607280 + 0.913443i
\(910\) 0 0
\(911\) 9.73496 + 16.8614i 0.322534 + 0.558645i 0.981010 0.193957i \(-0.0621321\pi\)
−0.658476 + 0.752601i \(0.728799\pi\)
\(912\) 0 0
\(913\) 1.10707 + 1.91749i 0.0366385 + 0.0634598i
\(914\) 0 0
\(915\) −1.39482 + 44.1754i −0.0461114 + 1.46040i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 6.61992 + 11.4660i 0.218371 + 0.378230i 0.954310 0.298818i \(-0.0965923\pi\)
−0.735939 + 0.677048i \(0.763259\pi\)
\(920\) 0 0
\(921\) 44.1832 23.6824i 1.45589 0.780361i
\(922\) 0 0
\(923\) −3.89017 + 6.73798i −0.128047 + 0.221783i
\(924\) 0 0
\(925\) −55.2247 95.6519i −1.81578 3.14502i
\(926\) 0 0
\(927\) −4.53572 + 6.82242i −0.148973 + 0.224078i
\(928\) 0 0
\(929\) 15.8682 27.4845i 0.520618 0.901737i −0.479095 0.877763i \(-0.659035\pi\)
0.999713 0.0239734i \(-0.00763170\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −20.0088 12.4101i −0.655057 0.406287i
\(934\) 0 0
\(935\) 45.4199 78.6696i 1.48539 2.57277i
\(936\) 0 0
\(937\) 13.5019 0.441087 0.220543 0.975377i \(-0.429217\pi\)
0.220543 + 0.975377i \(0.429217\pi\)
\(938\) 0 0
\(939\) −0.757852 + 24.0020i −0.0247316 + 0.783274i
\(940\) 0 0
\(941\) −19.8286 34.3441i −0.646394 1.11959i −0.983978 0.178291i \(-0.942943\pi\)
0.337584 0.941295i \(-0.390390\pi\)
\(942\) 0 0
\(943\) 0.253944 0.439845i 0.00826957 0.0143233i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 30.5172 52.8573i 0.991675 1.71763i 0.384325 0.923198i \(-0.374434\pi\)
0.607350 0.794434i \(-0.292232\pi\)
\(948\) 0 0
\(949\) −5.99464 10.3830i −0.194594 0.337047i
\(950\) 0 0
\(951\) −1.26190 + 39.9656i −0.0409198 + 1.29597i
\(952\) 0 0
\(953\) 5.22726 0.169328 0.0846638 0.996410i \(-0.473018\pi\)
0.0846638 + 0.996410i \(0.473018\pi\)
\(954\) 0 0
\(955\) −34.8005 + 60.2762i −1.12612 + 1.95049i
\(956\) 0 0
\(957\) −65.5320 40.6450i −2.11835 1.31387i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 12.8653 22.2833i 0.415009 0.718817i
\(962\) 0 0
\(963\) 32.3118 + 2.04250i 1.04123 + 0.0658186i
\(964\) 0 0
\(965\) −25.3269 43.8674i −0.815301 1.41214i
\(966\) 0 0
\(967\) 10.2035 17.6729i 0.328121 0.568323i −0.654018 0.756479i \(-0.726918\pi\)
0.982139 + 0.188156i \(0.0602511\pi\)
\(968\) 0 0
\(969\) 37.8057 20.2640i 1.21449 0.650975i
\(970\) 0 0
\(971\) 0.589402 + 1.02087i 0.0189148 + 0.0327614i 0.875328 0.483530i \(-0.160646\pi\)
−0.856413 + 0.516291i \(0.827312\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0.879160 27.8439i 0.0281556 0.891718i
\(976\) 0 0
\(977\) −4.10487 7.10984i −0.131326 0.227464i 0.792862 0.609402i \(-0.208590\pi\)
−0.924188 + 0.381938i \(0.875257\pi\)
\(978\) 0 0
\(979\) −26.7342 46.3049i −0.854427 1.47991i
\(980\) 0 0
\(981\) −13.3094 26.8316i −0.424937 0.856667i
\(982\) 0 0
\(983\) 1.50696 0.0480646 0.0240323 0.999711i \(-0.492350\pi\)
0.0240323 + 0.999711i \(0.492350\pi\)
\(984\) 0 0
\(985\) −24.7750 −0.789397
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1.40389 + 2.43160i 0.0446410 + 0.0773204i
\(990\) 0 0
\(991\) −16.2229 + 28.0990i −0.515339 + 0.892593i 0.484503 + 0.874790i \(0.339001\pi\)
−0.999842 + 0.0178030i \(0.994333\pi\)
\(992\) 0 0
\(993\) 0.855615 27.0982i 0.0271521 0.859935i
\(994\) 0 0
\(995\) −45.0608 + 78.0476i −1.42852 + 2.47428i
\(996\) 0 0
\(997\) 12.5240 0.396638 0.198319 0.980138i \(-0.436452\pi\)
0.198319 + 0.980138i \(0.436452\pi\)
\(998\) 0 0
\(999\) −51.4150 + 23.5120i −1.62670 + 0.743886i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1764.2.l.j.949.11 24
3.2 odd 2 5292.2.l.j.361.12 24
7.2 even 3 1764.2.i.j.373.6 24
7.3 odd 6 1764.2.j.i.589.10 yes 24
7.4 even 3 1764.2.j.i.589.3 24
7.5 odd 6 1764.2.i.j.373.7 24
7.6 odd 2 inner 1764.2.l.j.949.2 24
9.2 odd 6 5292.2.i.j.2125.1 24
9.7 even 3 1764.2.i.j.1537.6 24
21.2 odd 6 5292.2.i.j.1549.1 24
21.5 even 6 5292.2.i.j.1549.12 24
21.11 odd 6 5292.2.j.i.1765.1 24
21.17 even 6 5292.2.j.i.1765.12 24
21.20 even 2 5292.2.l.j.361.1 24
63.2 odd 6 5292.2.l.j.3313.12 24
63.11 odd 6 5292.2.j.i.3529.1 24
63.16 even 3 inner 1764.2.l.j.961.11 24
63.20 even 6 5292.2.i.j.2125.12 24
63.25 even 3 1764.2.j.i.1177.3 yes 24
63.34 odd 6 1764.2.i.j.1537.7 24
63.38 even 6 5292.2.j.i.3529.12 24
63.47 even 6 5292.2.l.j.3313.1 24
63.52 odd 6 1764.2.j.i.1177.10 yes 24
63.61 odd 6 inner 1764.2.l.j.961.2 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1764.2.i.j.373.6 24 7.2 even 3
1764.2.i.j.373.7 24 7.5 odd 6
1764.2.i.j.1537.6 24 9.7 even 3
1764.2.i.j.1537.7 24 63.34 odd 6
1764.2.j.i.589.3 24 7.4 even 3
1764.2.j.i.589.10 yes 24 7.3 odd 6
1764.2.j.i.1177.3 yes 24 63.25 even 3
1764.2.j.i.1177.10 yes 24 63.52 odd 6
1764.2.l.j.949.2 24 7.6 odd 2 inner
1764.2.l.j.949.11 24 1.1 even 1 trivial
1764.2.l.j.961.2 24 63.61 odd 6 inner
1764.2.l.j.961.11 24 63.16 even 3 inner
5292.2.i.j.1549.1 24 21.2 odd 6
5292.2.i.j.1549.12 24 21.5 even 6
5292.2.i.j.2125.1 24 9.2 odd 6
5292.2.i.j.2125.12 24 63.20 even 6
5292.2.j.i.1765.1 24 21.11 odd 6
5292.2.j.i.1765.12 24 21.17 even 6
5292.2.j.i.3529.1 24 63.11 odd 6
5292.2.j.i.3529.12 24 63.38 even 6
5292.2.l.j.361.1 24 21.20 even 2
5292.2.l.j.361.12 24 3.2 odd 2
5292.2.l.j.3313.1 24 63.47 even 6
5292.2.l.j.3313.12 24 63.2 odd 6