Properties

Label 1764.2.j.i.589.10
Level $1764$
Weight $2$
Character 1764.589
Analytic conductor $14.086$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1764,2,Mod(589,1764)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1764, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1764.589");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1764.j (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.0856109166\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 589.10
Character \(\chi\) \(=\) 1764.589
Dual form 1764.2.j.i.1177.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.47192 + 0.912932i) q^{3} +(-1.94623 + 3.37097i) q^{5} +(1.33311 + 2.68753i) q^{9} +O(q^{10})\) \(q+(1.47192 + 0.912932i) q^{3} +(-1.94623 + 3.37097i) q^{5} +(1.33311 + 2.68753i) q^{9} +(-2.18778 - 3.78935i) q^{11} +(-0.792201 + 1.37213i) q^{13} +(-5.94217 + 3.18503i) q^{15} -5.33356 q^{17} -4.64323 q^{19} +(-0.183900 + 0.318523i) q^{23} +(-5.07564 - 8.79126i) q^{25} +(-0.491301 + 5.17287i) q^{27} +(-5.08750 - 8.81180i) q^{29} +(1.14776 - 1.98798i) q^{31} +(0.239175 - 7.57493i) q^{33} +10.8803 q^{37} +(-2.41872 + 1.29645i) q^{39} +(-0.690443 + 1.19588i) q^{41} +(3.81699 + 6.61122i) q^{43} +(-11.6541 - 0.736684i) q^{45} +(3.80432 + 6.58928i) q^{47} +(-7.85058 - 4.86918i) q^{51} -0.925693 q^{53} +17.0317 q^{55} +(-6.83447 - 4.23895i) q^{57} +(0.460475 - 0.797565i) q^{59} +(-3.27780 - 5.67731i) q^{61} +(-3.08361 - 5.34097i) q^{65} +(-7.50420 + 12.9976i) q^{67} +(-0.561476 + 0.300954i) q^{69} -4.91059 q^{71} +7.56707 q^{73} +(0.554885 - 17.5738i) q^{75} +(-0.987715 - 1.71077i) q^{79} +(-5.44564 + 7.16554i) q^{81} +(-0.253011 - 0.438227i) q^{83} +(10.3803 - 17.9793i) q^{85} +(0.556181 - 17.6148i) q^{87} -12.2197 q^{89} +(3.50431 - 1.87833i) q^{93} +(9.03679 - 15.6522i) q^{95} +(4.45315 + 7.71308i) q^{97} +(7.26745 - 10.9314i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 24 q + 8 q^{9} - 4 q^{11} - 28 q^{15} - 8 q^{23} - 12 q^{25} - 32 q^{29} + 24 q^{37} - 40 q^{51} + 32 q^{53} + 52 q^{57} - 36 q^{65} + 12 q^{67} + 48 q^{71} + 12 q^{79} + 16 q^{81} + 12 q^{85} + 48 q^{93} + 32 q^{95} - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1764\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(883\) \(1081\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.47192 + 0.912932i 0.849815 + 0.527082i
\(4\) 0 0
\(5\) −1.94623 + 3.37097i −0.870381 + 1.50754i −0.00877856 + 0.999961i \(0.502794\pi\)
−0.861603 + 0.507583i \(0.830539\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 1.33311 + 2.68753i 0.444370 + 0.895844i
\(10\) 0 0
\(11\) −2.18778 3.78935i −0.659642 1.14253i −0.980708 0.195476i \(-0.937375\pi\)
0.321067 0.947057i \(-0.395959\pi\)
\(12\) 0 0
\(13\) −0.792201 + 1.37213i −0.219717 + 0.380561i −0.954721 0.297501i \(-0.903847\pi\)
0.735004 + 0.678062i \(0.237180\pi\)
\(14\) 0 0
\(15\) −5.94217 + 3.18503i −1.53426 + 0.822371i
\(16\) 0 0
\(17\) −5.33356 −1.29358 −0.646789 0.762669i \(-0.723889\pi\)
−0.646789 + 0.762669i \(0.723889\pi\)
\(18\) 0 0
\(19\) −4.64323 −1.06523 −0.532614 0.846358i \(-0.678790\pi\)
−0.532614 + 0.846358i \(0.678790\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −0.183900 + 0.318523i −0.0383457 + 0.0664167i −0.884561 0.466424i \(-0.845542\pi\)
0.846216 + 0.532841i \(0.178875\pi\)
\(24\) 0 0
\(25\) −5.07564 8.79126i −1.01513 1.75825i
\(26\) 0 0
\(27\) −0.491301 + 5.17287i −0.0945509 + 0.995520i
\(28\) 0 0
\(29\) −5.08750 8.81180i −0.944724 1.63631i −0.756302 0.654222i \(-0.772996\pi\)
−0.188422 0.982088i \(-0.560337\pi\)
\(30\) 0 0
\(31\) 1.14776 1.98798i 0.206144 0.357052i −0.744353 0.667787i \(-0.767242\pi\)
0.950497 + 0.310735i \(0.100575\pi\)
\(32\) 0 0
\(33\) 0.239175 7.57493i 0.0416351 1.31863i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 10.8803 1.78872 0.894359 0.447351i \(-0.147632\pi\)
0.894359 + 0.447351i \(0.147632\pi\)
\(38\) 0 0
\(39\) −2.41872 + 1.29645i −0.387305 + 0.207597i
\(40\) 0 0
\(41\) −0.690443 + 1.19588i −0.107829 + 0.186766i −0.914891 0.403702i \(-0.867723\pi\)
0.807061 + 0.590467i \(0.201057\pi\)
\(42\) 0 0
\(43\) 3.81699 + 6.61122i 0.582086 + 1.00820i 0.995232 + 0.0975372i \(0.0310965\pi\)
−0.413146 + 0.910665i \(0.635570\pi\)
\(44\) 0 0
\(45\) −11.6541 0.736684i −1.73730 0.109818i
\(46\) 0 0
\(47\) 3.80432 + 6.58928i 0.554918 + 0.961145i 0.997910 + 0.0646200i \(0.0205835\pi\)
−0.442992 + 0.896525i \(0.646083\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −7.85058 4.86918i −1.09930 0.681821i
\(52\) 0 0
\(53\) −0.925693 −0.127154 −0.0635769 0.997977i \(-0.520251\pi\)
−0.0635769 + 0.997977i \(0.520251\pi\)
\(54\) 0 0
\(55\) 17.0317 2.29656
\(56\) 0 0
\(57\) −6.83447 4.23895i −0.905247 0.561463i
\(58\) 0 0
\(59\) 0.460475 0.797565i 0.0599487 0.103834i −0.834493 0.551018i \(-0.814240\pi\)
0.894442 + 0.447184i \(0.147573\pi\)
\(60\) 0 0
\(61\) −3.27780 5.67731i −0.419679 0.726905i 0.576228 0.817289i \(-0.304524\pi\)
−0.995907 + 0.0903836i \(0.971191\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −3.08361 5.34097i −0.382475 0.662466i
\(66\) 0 0
\(67\) −7.50420 + 12.9976i −0.916783 + 1.58792i −0.112514 + 0.993650i \(0.535890\pi\)
−0.804269 + 0.594265i \(0.797443\pi\)
\(68\) 0 0
\(69\) −0.561476 + 0.300954i −0.0675938 + 0.0362306i
\(70\) 0 0
\(71\) −4.91059 −0.582780 −0.291390 0.956604i \(-0.594118\pi\)
−0.291390 + 0.956604i \(0.594118\pi\)
\(72\) 0 0
\(73\) 7.56707 0.885658 0.442829 0.896606i \(-0.353975\pi\)
0.442829 + 0.896606i \(0.353975\pi\)
\(74\) 0 0
\(75\) 0.554885 17.5738i 0.0640726 2.02924i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −0.987715 1.71077i −0.111127 0.192477i 0.805098 0.593142i \(-0.202113\pi\)
−0.916225 + 0.400665i \(0.868779\pi\)
\(80\) 0 0
\(81\) −5.44564 + 7.16554i −0.605071 + 0.796171i
\(82\) 0 0
\(83\) −0.253011 0.438227i −0.0277715 0.0481017i 0.851806 0.523858i \(-0.175508\pi\)
−0.879577 + 0.475756i \(0.842174\pi\)
\(84\) 0 0
\(85\) 10.3803 17.9793i 1.12591 1.95013i
\(86\) 0 0
\(87\) 0.556181 17.6148i 0.0596289 1.88851i
\(88\) 0 0
\(89\) −12.2197 −1.29529 −0.647645 0.761942i \(-0.724246\pi\)
−0.647645 + 0.761942i \(0.724246\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 3.50431 1.87833i 0.363380 0.194773i
\(94\) 0 0
\(95\) 9.03679 15.6522i 0.927155 1.60588i
\(96\) 0 0
\(97\) 4.45315 + 7.71308i 0.452149 + 0.783145i 0.998519 0.0543987i \(-0.0173242\pi\)
−0.546370 + 0.837544i \(0.683991\pi\)
\(98\) 0 0
\(99\) 7.26745 10.9314i 0.730406 1.09864i
\(100\) 0 0
\(101\) −5.51180 9.54672i −0.548445 0.949935i −0.998381 0.0568740i \(-0.981887\pi\)
0.449936 0.893061i \(-0.351447\pi\)
\(102\) 0 0
\(103\) −1.36543 + 2.36499i −0.134540 + 0.233029i −0.925421 0.378939i \(-0.876289\pi\)
0.790882 + 0.611969i \(0.209622\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −10.7921 −1.04331 −0.521655 0.853156i \(-0.674685\pi\)
−0.521655 + 0.853156i \(0.674685\pi\)
\(108\) 0 0
\(109\) −9.98374 −0.956269 −0.478134 0.878287i \(-0.658687\pi\)
−0.478134 + 0.878287i \(0.658687\pi\)
\(110\) 0 0
\(111\) 16.0150 + 9.93302i 1.52008 + 0.942800i
\(112\) 0 0
\(113\) −6.12019 + 10.6005i −0.575739 + 0.997209i 0.420222 + 0.907421i \(0.361952\pi\)
−0.995961 + 0.0897875i \(0.971381\pi\)
\(114\) 0 0
\(115\) −0.715822 1.23984i −0.0667508 0.115616i
\(116\) 0 0
\(117\) −4.74374 0.299862i −0.438559 0.0277223i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −4.07280 + 7.05429i −0.370254 + 0.641299i
\(122\) 0 0
\(123\) −2.10804 + 1.12992i −0.190075 + 0.101881i
\(124\) 0 0
\(125\) 20.0511 1.79343
\(126\) 0 0
\(127\) −13.2005 −1.17135 −0.585677 0.810544i \(-0.699171\pi\)
−0.585677 + 0.810544i \(0.699171\pi\)
\(128\) 0 0
\(129\) −0.417286 + 13.2159i −0.0367399 + 1.16359i
\(130\) 0 0
\(131\) −2.54342 + 4.40532i −0.222219 + 0.384895i −0.955482 0.295051i \(-0.904663\pi\)
0.733262 + 0.679946i \(0.237997\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −16.4814 11.7238i −1.41850 1.00902i
\(136\) 0 0
\(137\) −6.67208 11.5564i −0.570034 0.987328i −0.996562 0.0828538i \(-0.973597\pi\)
0.426527 0.904475i \(-0.359737\pi\)
\(138\) 0 0
\(139\) −4.85642 + 8.41157i −0.411916 + 0.713460i −0.995099 0.0988809i \(-0.968474\pi\)
0.583183 + 0.812341i \(0.301807\pi\)
\(140\) 0 0
\(141\) −0.415901 + 13.1720i −0.0350251 + 1.10928i
\(142\) 0 0
\(143\) 6.93265 0.579738
\(144\) 0 0
\(145\) 39.6058 3.28908
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −6.92116 + 11.9878i −0.567004 + 0.982079i 0.429856 + 0.902897i \(0.358564\pi\)
−0.996860 + 0.0791820i \(0.974769\pi\)
\(150\) 0 0
\(151\) −11.4380 19.8112i −0.930809 1.61221i −0.781942 0.623352i \(-0.785771\pi\)
−0.148867 0.988857i \(-0.547563\pi\)
\(152\) 0 0
\(153\) −7.11022 14.3341i −0.574827 1.15884i
\(154\) 0 0
\(155\) 4.46762 + 7.73815i 0.358848 + 0.621543i
\(156\) 0 0
\(157\) −5.78991 + 10.0284i −0.462085 + 0.800355i −0.999065 0.0432404i \(-0.986232\pi\)
0.536980 + 0.843595i \(0.319565\pi\)
\(158\) 0 0
\(159\) −1.36255 0.845095i −0.108057 0.0670204i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 3.41155 0.267213 0.133607 0.991034i \(-0.457344\pi\)
0.133607 + 0.991034i \(0.457344\pi\)
\(164\) 0 0
\(165\) 25.0694 + 15.5488i 1.95165 + 1.21047i
\(166\) 0 0
\(167\) −4.69996 + 8.14057i −0.363694 + 0.629936i −0.988566 0.150791i \(-0.951818\pi\)
0.624872 + 0.780727i \(0.285151\pi\)
\(168\) 0 0
\(169\) 5.24484 + 9.08432i 0.403449 + 0.698794i
\(170\) 0 0
\(171\) −6.18993 12.4788i −0.473355 0.954278i
\(172\) 0 0
\(173\) 3.20256 + 5.54700i 0.243486 + 0.421730i 0.961705 0.274087i \(-0.0883756\pi\)
−0.718219 + 0.695817i \(0.755042\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 1.40591 0.753572i 0.105674 0.0566419i
\(178\) 0 0
\(179\) 17.0808 1.27668 0.638338 0.769756i \(-0.279622\pi\)
0.638338 + 0.769756i \(0.279622\pi\)
\(180\) 0 0
\(181\) 1.35988 0.101079 0.0505395 0.998722i \(-0.483906\pi\)
0.0505395 + 0.998722i \(0.483906\pi\)
\(182\) 0 0
\(183\) 0.358339 11.3490i 0.0264892 0.838940i
\(184\) 0 0
\(185\) −21.1757 + 36.6773i −1.55687 + 2.69657i
\(186\) 0 0
\(187\) 11.6687 + 20.2107i 0.853298 + 1.47796i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 8.94048 + 15.4854i 0.646911 + 1.12048i 0.983857 + 0.178958i \(0.0572727\pi\)
−0.336946 + 0.941524i \(0.609394\pi\)
\(192\) 0 0
\(193\) 6.50664 11.2698i 0.468358 0.811220i −0.530988 0.847380i \(-0.678179\pi\)
0.999346 + 0.0361591i \(0.0115123\pi\)
\(194\) 0 0
\(195\) 0.337110 10.6766i 0.0241410 0.764569i
\(196\) 0 0
\(197\) 6.36486 0.453478 0.226739 0.973956i \(-0.427194\pi\)
0.226739 + 0.973956i \(0.427194\pi\)
\(198\) 0 0
\(199\) 23.1529 1.64126 0.820631 0.571458i \(-0.193622\pi\)
0.820631 + 0.571458i \(0.193622\pi\)
\(200\) 0 0
\(201\) −22.9116 + 12.2807i −1.61606 + 0.866214i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −2.68753 4.65493i −0.187705 0.325114i
\(206\) 0 0
\(207\) −1.10120 0.0696093i −0.0765387 0.00483818i
\(208\) 0 0
\(209\) 10.1584 + 17.5948i 0.702669 + 1.21706i
\(210\) 0 0
\(211\) −5.67737 + 9.83349i −0.390846 + 0.676965i −0.992561 0.121745i \(-0.961151\pi\)
0.601715 + 0.798711i \(0.294484\pi\)
\(212\) 0 0
\(213\) −7.22801 4.48304i −0.495255 0.307173i
\(214\) 0 0
\(215\) −29.7150 −2.02655
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 11.1381 + 6.90822i 0.752645 + 0.466814i
\(220\) 0 0
\(221\) 4.22525 7.31835i 0.284221 0.492285i
\(222\) 0 0
\(223\) −13.3206 23.0719i −0.892011 1.54501i −0.837461 0.546498i \(-0.815961\pi\)
−0.0545504 0.998511i \(-0.517373\pi\)
\(224\) 0 0
\(225\) 16.8604 25.3606i 1.12403 1.69071i
\(226\) 0 0
\(227\) 8.30136 + 14.3784i 0.550981 + 0.954326i 0.998204 + 0.0599042i \(0.0190795\pi\)
−0.447224 + 0.894422i \(0.647587\pi\)
\(228\) 0 0
\(229\) 7.25072 12.5586i 0.479141 0.829897i −0.520573 0.853817i \(-0.674282\pi\)
0.999714 + 0.0239205i \(0.00761485\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 15.9804 1.04691 0.523456 0.852053i \(-0.324643\pi\)
0.523456 + 0.852053i \(0.324643\pi\)
\(234\) 0 0
\(235\) −29.6164 −1.93196
\(236\) 0 0
\(237\) 0.107980 3.41984i 0.00701407 0.222143i
\(238\) 0 0
\(239\) −9.58994 + 16.6103i −0.620322 + 1.07443i 0.369104 + 0.929388i \(0.379665\pi\)
−0.989426 + 0.145040i \(0.953669\pi\)
\(240\) 0 0
\(241\) −11.6785 20.2277i −0.752276 1.30298i −0.946717 0.322067i \(-0.895623\pi\)
0.194441 0.980914i \(-0.437711\pi\)
\(242\) 0 0
\(243\) −14.5572 + 5.57562i −0.933846 + 0.357676i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 3.67837 6.37112i 0.234049 0.405384i
\(248\) 0 0
\(249\) 0.0276599 0.876018i 0.00175288 0.0555154i
\(250\) 0 0
\(251\) −30.4619 −1.92274 −0.961371 0.275257i \(-0.911237\pi\)
−0.961371 + 0.275257i \(0.911237\pi\)
\(252\) 0 0
\(253\) 1.60933 0.101178
\(254\) 0 0
\(255\) 31.6929 16.9875i 1.98469 1.06380i
\(256\) 0 0
\(257\) 3.40438 5.89657i 0.212360 0.367818i −0.740093 0.672505i \(-0.765218\pi\)
0.952453 + 0.304687i \(0.0985518\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 16.8998 25.4199i 1.04607 1.57345i
\(262\) 0 0
\(263\) 2.30000 + 3.98372i 0.141824 + 0.245647i 0.928184 0.372122i \(-0.121370\pi\)
−0.786359 + 0.617769i \(0.788037\pi\)
\(264\) 0 0
\(265\) 1.80161 3.12049i 0.110672 0.191690i
\(266\) 0 0
\(267\) −17.9865 11.1558i −1.10076 0.682724i
\(268\) 0 0
\(269\) −8.50179 −0.518363 −0.259182 0.965829i \(-0.583453\pi\)
−0.259182 + 0.965829i \(0.583453\pi\)
\(270\) 0 0
\(271\) 6.58381 0.399938 0.199969 0.979802i \(-0.435916\pi\)
0.199969 + 0.979802i \(0.435916\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −22.2088 + 38.4668i −1.33924 + 2.31963i
\(276\) 0 0
\(277\) 5.63483 + 9.75982i 0.338564 + 0.586411i 0.984163 0.177266i \(-0.0567254\pi\)
−0.645599 + 0.763677i \(0.723392\pi\)
\(278\) 0 0
\(279\) 6.87285 + 0.434448i 0.411467 + 0.0260097i
\(280\) 0 0
\(281\) 7.50741 + 13.0032i 0.447854 + 0.775707i 0.998246 0.0592000i \(-0.0188550\pi\)
−0.550392 + 0.834907i \(0.685522\pi\)
\(282\) 0 0
\(283\) −7.33657 + 12.7073i −0.436114 + 0.755371i −0.997386 0.0722602i \(-0.976979\pi\)
0.561272 + 0.827631i \(0.310312\pi\)
\(284\) 0 0
\(285\) 27.5908 14.7888i 1.63434 0.876014i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 11.4469 0.673344
\(290\) 0 0
\(291\) −0.486833 + 15.4185i −0.0285386 + 0.903848i
\(292\) 0 0
\(293\) −9.38981 + 16.2636i −0.548559 + 0.950132i 0.449815 + 0.893122i \(0.351490\pi\)
−0.998374 + 0.0570099i \(0.981843\pi\)
\(294\) 0 0
\(295\) 1.79238 + 3.10449i 0.104356 + 0.180751i
\(296\) 0 0
\(297\) 20.6767 9.45542i 1.19978 0.548659i
\(298\) 0 0
\(299\) −0.291371 0.504669i −0.0168504 0.0291858i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0.602568 19.0839i 0.0346166 1.09634i
\(304\) 0 0
\(305\) 25.5174 1.46112
\(306\) 0 0
\(307\) −28.9425 −1.65184 −0.825919 0.563789i \(-0.809343\pi\)
−0.825919 + 0.563789i \(0.809343\pi\)
\(308\) 0 0
\(309\) −4.16888 + 2.23454i −0.237159 + 0.127118i
\(310\) 0 0
\(311\) 6.79681 11.7724i 0.385412 0.667553i −0.606414 0.795149i \(-0.707393\pi\)
0.991826 + 0.127596i \(0.0407261\pi\)
\(312\) 0 0
\(313\) 6.93222 + 12.0070i 0.391832 + 0.678673i 0.992691 0.120682i \(-0.0385080\pi\)
−0.600859 + 0.799355i \(0.705175\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −11.5428 19.9927i −0.648309 1.12290i −0.983527 0.180764i \(-0.942143\pi\)
0.335217 0.942141i \(-0.391190\pi\)
\(318\) 0 0
\(319\) −22.2607 + 38.5566i −1.24636 + 2.15876i
\(320\) 0 0
\(321\) −15.8851 9.85245i −0.886621 0.549910i
\(322\) 0 0
\(323\) 24.7649 1.37796
\(324\) 0 0
\(325\) 16.0837 0.892163
\(326\) 0 0
\(327\) −14.6953 9.11448i −0.812651 0.504032i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 7.82647 + 13.5558i 0.430182 + 0.745097i 0.996889 0.0788227i \(-0.0251161\pi\)
−0.566707 + 0.823920i \(0.691783\pi\)
\(332\) 0 0
\(333\) 14.5047 + 29.2413i 0.794852 + 1.60241i
\(334\) 0 0
\(335\) −29.2098 50.5929i −1.59590 2.76418i
\(336\) 0 0
\(337\) 3.56686 6.17799i 0.194299 0.336537i −0.752371 0.658739i \(-0.771090\pi\)
0.946671 + 0.322203i \(0.104423\pi\)
\(338\) 0 0
\(339\) −18.6860 + 10.0158i −1.01488 + 0.543981i
\(340\) 0 0
\(341\) −10.0442 −0.543925
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0.0782560 2.47845i 0.00421316 0.133435i
\(346\) 0 0
\(347\) −2.77827 + 4.81211i −0.149146 + 0.258328i −0.930912 0.365244i \(-0.880986\pi\)
0.781766 + 0.623571i \(0.214319\pi\)
\(348\) 0 0
\(349\) −5.33296 9.23696i −0.285467 0.494443i 0.687256 0.726416i \(-0.258815\pi\)
−0.972722 + 0.231973i \(0.925482\pi\)
\(350\) 0 0
\(351\) −6.70866 4.77208i −0.358082 0.254715i
\(352\) 0 0
\(353\) 6.42132 + 11.1221i 0.341772 + 0.591967i 0.984762 0.173908i \(-0.0556394\pi\)
−0.642989 + 0.765875i \(0.722306\pi\)
\(354\) 0 0
\(355\) 9.55715 16.5535i 0.507241 0.878567i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 25.6835 1.35552 0.677761 0.735282i \(-0.262950\pi\)
0.677761 + 0.735282i \(0.262950\pi\)
\(360\) 0 0
\(361\) 2.55954 0.134713
\(362\) 0 0
\(363\) −12.4349 + 6.66518i −0.652665 + 0.349831i
\(364\) 0 0
\(365\) −14.7273 + 25.5084i −0.770861 + 1.33517i
\(366\) 0 0
\(367\) 8.49197 + 14.7085i 0.443277 + 0.767778i 0.997930 0.0643031i \(-0.0204824\pi\)
−0.554653 + 0.832082i \(0.687149\pi\)
\(368\) 0 0
\(369\) −4.13441 0.261345i −0.215229 0.0136051i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 4.38503 7.59509i 0.227048 0.393259i −0.729884 0.683571i \(-0.760426\pi\)
0.956932 + 0.290312i \(0.0937592\pi\)
\(374\) 0 0
\(375\) 29.5137 + 18.3053i 1.52408 + 0.945283i
\(376\) 0 0
\(377\) 16.1213 0.830288
\(378\) 0 0
\(379\) 11.7002 0.601001 0.300500 0.953782i \(-0.402846\pi\)
0.300500 + 0.953782i \(0.402846\pi\)
\(380\) 0 0
\(381\) −19.4301 12.0512i −0.995434 0.617400i
\(382\) 0 0
\(383\) 4.50360 7.80046i 0.230123 0.398585i −0.727721 0.685873i \(-0.759420\pi\)
0.957844 + 0.287288i \(0.0927538\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −12.6794 + 19.0718i −0.644530 + 0.969472i
\(388\) 0 0
\(389\) 4.89390 + 8.47649i 0.248131 + 0.429775i 0.963007 0.269476i \(-0.0868504\pi\)
−0.714876 + 0.699251i \(0.753517\pi\)
\(390\) 0 0
\(391\) 0.980839 1.69886i 0.0496032 0.0859152i
\(392\) 0 0
\(393\) −7.76547 + 4.16233i −0.391716 + 0.209962i
\(394\) 0 0
\(395\) 7.68929 0.386890
\(396\) 0 0
\(397\) 13.9186 0.698554 0.349277 0.937020i \(-0.386427\pi\)
0.349277 + 0.937020i \(0.386427\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 11.7414 20.3367i 0.586336 1.01556i −0.408371 0.912816i \(-0.633903\pi\)
0.994707 0.102748i \(-0.0327636\pi\)
\(402\) 0 0
\(403\) 1.81852 + 3.14976i 0.0905867 + 0.156901i
\(404\) 0 0
\(405\) −13.5564 32.3029i −0.673621 1.60514i
\(406\) 0 0
\(407\) −23.8038 41.2295i −1.17991 2.04367i
\(408\) 0 0
\(409\) 6.81225 11.7992i 0.336844 0.583431i −0.646993 0.762496i \(-0.723974\pi\)
0.983837 + 0.179064i \(0.0573071\pi\)
\(410\) 0 0
\(411\) 0.729413 23.1013i 0.0359793 1.13950i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 1.96967 0.0966873
\(416\) 0 0
\(417\) −14.8275 + 7.94759i −0.726104 + 0.389195i
\(418\) 0 0
\(419\) −3.97733 + 6.88894i −0.194305 + 0.336547i −0.946673 0.322197i \(-0.895579\pi\)
0.752367 + 0.658744i \(0.228912\pi\)
\(420\) 0 0
\(421\) 1.30584 + 2.26178i 0.0636426 + 0.110232i 0.896091 0.443870i \(-0.146395\pi\)
−0.832448 + 0.554102i \(0.813062\pi\)
\(422\) 0 0
\(423\) −12.6373 + 19.0085i −0.614447 + 0.924223i
\(424\) 0 0
\(425\) 27.0712 + 46.8887i 1.31315 + 2.27444i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 10.2043 + 6.32904i 0.492670 + 0.305569i
\(430\) 0 0
\(431\) −1.58213 −0.0762086 −0.0381043 0.999274i \(-0.512132\pi\)
−0.0381043 + 0.999274i \(0.512132\pi\)
\(432\) 0 0
\(433\) 5.17110 0.248507 0.124254 0.992250i \(-0.460346\pi\)
0.124254 + 0.992250i \(0.460346\pi\)
\(434\) 0 0
\(435\) 58.2966 + 36.1574i 2.79511 + 1.73361i
\(436\) 0 0
\(437\) 0.853887 1.47898i 0.0408470 0.0707490i
\(438\) 0 0
\(439\) 12.4806 + 21.6170i 0.595665 + 1.03172i 0.993453 + 0.114244i \(0.0364446\pi\)
−0.397788 + 0.917477i \(0.630222\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −0.542263 0.939227i −0.0257637 0.0446240i 0.852856 0.522146i \(-0.174868\pi\)
−0.878620 + 0.477522i \(0.841535\pi\)
\(444\) 0 0
\(445\) 23.7825 41.1924i 1.12740 1.95271i
\(446\) 0 0
\(447\) −21.1315 + 11.3266i −0.999484 + 0.535728i
\(448\) 0 0
\(449\) 4.23372 0.199802 0.0999008 0.994997i \(-0.468147\pi\)
0.0999008 + 0.994997i \(0.468147\pi\)
\(450\) 0 0
\(451\) 6.04216 0.284514
\(452\) 0 0
\(453\) 1.25044 39.6026i 0.0587506 1.86069i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 18.1513 + 31.4390i 0.849083 + 1.47065i 0.882028 + 0.471197i \(0.156178\pi\)
−0.0329453 + 0.999457i \(0.510489\pi\)
\(458\) 0 0
\(459\) 2.62038 27.5898i 0.122309 1.28778i
\(460\) 0 0
\(461\) −1.71236 2.96589i −0.0797524 0.138135i 0.823391 0.567475i \(-0.192080\pi\)
−0.903143 + 0.429340i \(0.858746\pi\)
\(462\) 0 0
\(463\) 2.38499 4.13092i 0.110840 0.191980i −0.805269 0.592909i \(-0.797979\pi\)
0.916109 + 0.400929i \(0.131313\pi\)
\(464\) 0 0
\(465\) −0.488414 + 15.4686i −0.0226497 + 0.717338i
\(466\) 0 0
\(467\) −20.0979 −0.930021 −0.465010 0.885305i \(-0.653949\pi\)
−0.465010 + 0.885305i \(0.653949\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −17.6776 + 9.47525i −0.814539 + 0.436597i
\(472\) 0 0
\(473\) 16.7015 28.9279i 0.767936 1.33010i
\(474\) 0 0
\(475\) 23.5673 + 40.8198i 1.08134 + 1.87294i
\(476\) 0 0
\(477\) −1.23405 2.48783i −0.0565033 0.113910i
\(478\) 0 0
\(479\) −8.42528 14.5930i −0.384961 0.666772i 0.606803 0.794852i \(-0.292452\pi\)
−0.991764 + 0.128080i \(0.959118\pi\)
\(480\) 0 0
\(481\) −8.61941 + 14.9293i −0.393011 + 0.680716i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −34.6675 −1.57417
\(486\) 0 0
\(487\) 23.9831 1.08678 0.543389 0.839481i \(-0.317141\pi\)
0.543389 + 0.839481i \(0.317141\pi\)
\(488\) 0 0
\(489\) 5.02153 + 3.11451i 0.227082 + 0.140843i
\(490\) 0 0
\(491\) −1.07281 + 1.85816i −0.0484153 + 0.0838577i −0.889217 0.457485i \(-0.848750\pi\)
0.840802 + 0.541342i \(0.182084\pi\)
\(492\) 0 0
\(493\) 27.1345 + 46.9983i 1.22207 + 2.11670i
\(494\) 0 0
\(495\) 22.7052 + 45.7733i 1.02052 + 2.05736i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 13.8577 24.0023i 0.620357 1.07449i −0.369062 0.929405i \(-0.620321\pi\)
0.989419 0.145085i \(-0.0463455\pi\)
\(500\) 0 0
\(501\) −14.3498 + 7.69154i −0.641100 + 0.343633i
\(502\) 0 0
\(503\) 22.4265 0.999949 0.499974 0.866040i \(-0.333343\pi\)
0.499974 + 0.866040i \(0.333343\pi\)
\(504\) 0 0
\(505\) 42.9090 1.90943
\(506\) 0 0
\(507\) −0.573382 + 18.1596i −0.0254648 + 0.806496i
\(508\) 0 0
\(509\) −14.6844 + 25.4342i −0.650876 + 1.12735i 0.332034 + 0.943267i \(0.392265\pi\)
−0.982911 + 0.184083i \(0.941068\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 2.28122 24.0188i 0.100718 1.06046i
\(514\) 0 0
\(515\) −5.31488 9.20563i −0.234201 0.405649i
\(516\) 0 0
\(517\) 16.6461 28.8318i 0.732093 1.26802i
\(518\) 0 0
\(519\) −0.350114 + 11.0885i −0.0153683 + 0.486730i
\(520\) 0 0
\(521\) 16.5078 0.723219 0.361610 0.932330i \(-0.382227\pi\)
0.361610 + 0.932330i \(0.382227\pi\)
\(522\) 0 0
\(523\) −44.6952 −1.95439 −0.977193 0.212352i \(-0.931888\pi\)
−0.977193 + 0.212352i \(0.931888\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −6.12166 + 10.6030i −0.266664 + 0.461875i
\(528\) 0 0
\(529\) 11.4324 + 19.8014i 0.497059 + 0.860932i
\(530\) 0 0
\(531\) 2.75734 + 0.174298i 0.119659 + 0.00756388i
\(532\) 0 0
\(533\) −1.09394 1.89476i −0.0473838 0.0820711i
\(534\) 0 0
\(535\) 21.0039 36.3798i 0.908078 1.57284i
\(536\) 0 0
\(537\) 25.1415 + 15.5936i 1.08494 + 0.672912i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −20.0737 −0.863037 −0.431519 0.902104i \(-0.642022\pi\)
−0.431519 + 0.902104i \(0.642022\pi\)
\(542\) 0 0
\(543\) 2.00164 + 1.24148i 0.0858985 + 0.0532769i
\(544\) 0 0
\(545\) 19.4307 33.6549i 0.832319 1.44162i
\(546\) 0 0
\(547\) 6.35012 + 10.9987i 0.271512 + 0.470272i 0.969249 0.246082i \(-0.0791432\pi\)
−0.697738 + 0.716353i \(0.745810\pi\)
\(548\) 0 0
\(549\) 10.8883 16.3777i 0.464701 0.698981i
\(550\) 0 0
\(551\) 23.6224 + 40.9152i 1.00635 + 1.74305i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −64.6529 + 34.6542i −2.74436 + 1.47099i
\(556\) 0 0
\(557\) 14.6949 0.622642 0.311321 0.950305i \(-0.399229\pi\)
0.311321 + 0.950305i \(0.399229\pi\)
\(558\) 0 0
\(559\) −12.0953 −0.511576
\(560\) 0 0
\(561\) −1.27566 + 40.4013i −0.0538583 + 1.70575i
\(562\) 0 0
\(563\) −13.3930 + 23.1974i −0.564448 + 0.977653i 0.432653 + 0.901561i \(0.357578\pi\)
−0.997101 + 0.0760922i \(0.975756\pi\)
\(564\) 0 0
\(565\) −23.8226 41.2620i −1.00222 1.73590i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −3.24168 5.61475i −0.135898 0.235383i 0.790042 0.613053i \(-0.210059\pi\)
−0.925940 + 0.377670i \(0.876725\pi\)
\(570\) 0 0
\(571\) −7.81632 + 13.5383i −0.327103 + 0.566559i −0.981936 0.189215i \(-0.939406\pi\)
0.654833 + 0.755774i \(0.272739\pi\)
\(572\) 0 0
\(573\) −0.977402 + 30.9553i −0.0408315 + 1.29318i
\(574\) 0 0
\(575\) 3.73363 0.155703
\(576\) 0 0
\(577\) −29.1600 −1.21395 −0.606974 0.794722i \(-0.707617\pi\)
−0.606974 + 0.794722i \(0.707617\pi\)
\(578\) 0 0
\(579\) 19.8659 10.6482i 0.825597 0.442524i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 2.02522 + 3.50778i 0.0838759 + 0.145277i
\(584\) 0 0
\(585\) 10.2432 15.4074i 0.423506 0.637018i
\(586\) 0 0
\(587\) −2.33110 4.03758i −0.0962146 0.166649i 0.813900 0.581005i \(-0.197340\pi\)
−0.910115 + 0.414356i \(0.864007\pi\)
\(588\) 0 0
\(589\) −5.32932 + 9.23065i −0.219591 + 0.380342i
\(590\) 0 0
\(591\) 9.36858 + 5.81069i 0.385372 + 0.239020i
\(592\) 0 0
\(593\) 31.6644 1.30030 0.650150 0.759805i \(-0.274706\pi\)
0.650150 + 0.759805i \(0.274706\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 34.0792 + 21.1370i 1.39477 + 0.865079i
\(598\) 0 0
\(599\) 5.15268 8.92470i 0.210533 0.364653i −0.741349 0.671120i \(-0.765813\pi\)
0.951881 + 0.306467i \(0.0991468\pi\)
\(600\) 0 0
\(601\) −4.64993 8.05391i −0.189674 0.328526i 0.755467 0.655186i \(-0.227410\pi\)
−0.945142 + 0.326661i \(0.894077\pi\)
\(602\) 0 0
\(603\) −44.9355 2.84047i −1.82991 0.115673i
\(604\) 0 0
\(605\) −15.8532 27.4586i −0.644525 1.11635i
\(606\) 0 0
\(607\) −10.2484 + 17.7507i −0.415969 + 0.720480i −0.995530 0.0944495i \(-0.969891\pi\)
0.579561 + 0.814929i \(0.303224\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −12.0551 −0.487699
\(612\) 0 0
\(613\) −14.3448 −0.579381 −0.289691 0.957120i \(-0.593552\pi\)
−0.289691 + 0.957120i \(0.593552\pi\)
\(614\) 0 0
\(615\) 0.293809 9.30522i 0.0118475 0.375223i
\(616\) 0 0
\(617\) −6.47499 + 11.2150i −0.260673 + 0.451499i −0.966421 0.256964i \(-0.917278\pi\)
0.705748 + 0.708463i \(0.250611\pi\)
\(618\) 0 0
\(619\) 17.6990 + 30.6556i 0.711383 + 1.23215i 0.964338 + 0.264674i \(0.0852642\pi\)
−0.252955 + 0.967478i \(0.581402\pi\)
\(620\) 0 0
\(621\) −1.55733 1.10778i −0.0624936 0.0444537i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −13.6460 + 23.6355i −0.545839 + 0.945422i
\(626\) 0 0
\(627\) −1.11055 + 35.1721i −0.0443509 + 1.40464i
\(628\) 0 0
\(629\) −58.0310 −2.31385
\(630\) 0 0
\(631\) 33.1936 1.32141 0.660707 0.750644i \(-0.270256\pi\)
0.660707 + 0.750644i \(0.270256\pi\)
\(632\) 0 0
\(633\) −17.3339 + 9.29108i −0.688963 + 0.369287i
\(634\) 0 0
\(635\) 25.6912 44.4985i 1.01952 1.76587i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −6.54635 13.1974i −0.258970 0.522080i
\(640\) 0 0
\(641\) 0.119634 + 0.207213i 0.00472528 + 0.00818442i 0.868378 0.495902i \(-0.165163\pi\)
−0.863653 + 0.504087i \(0.831829\pi\)
\(642\) 0 0
\(643\) −4.57211 + 7.91913i −0.180307 + 0.312300i −0.941985 0.335655i \(-0.891042\pi\)
0.761678 + 0.647955i \(0.224376\pi\)
\(644\) 0 0
\(645\) −43.7382 27.1278i −1.72219 1.06816i
\(646\) 0 0
\(647\) 6.31214 0.248156 0.124078 0.992272i \(-0.460403\pi\)
0.124078 + 0.992272i \(0.460403\pi\)
\(648\) 0 0
\(649\) −4.02968 −0.158179
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 2.27888 3.94713i 0.0891793 0.154463i −0.817985 0.575239i \(-0.804909\pi\)
0.907164 + 0.420776i \(0.138242\pi\)
\(654\) 0 0
\(655\) −9.90015 17.1476i −0.386831 0.670011i
\(656\) 0 0
\(657\) 10.0877 + 20.3367i 0.393560 + 0.793411i
\(658\) 0 0
\(659\) −16.4631 28.5149i −0.641311 1.11078i −0.985140 0.171751i \(-0.945058\pi\)
0.343829 0.939032i \(-0.388276\pi\)
\(660\) 0 0
\(661\) −0.270668 + 0.468811i −0.0105278 + 0.0182346i −0.871241 0.490855i \(-0.836684\pi\)
0.860714 + 0.509090i \(0.170018\pi\)
\(662\) 0 0
\(663\) 12.9004 6.91467i 0.501010 0.268543i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 3.74235 0.144905
\(668\) 0 0
\(669\) 1.45625 46.1208i 0.0563017 1.78313i
\(670\) 0 0
\(671\) −14.3422 + 24.8415i −0.553676 + 0.958994i
\(672\) 0 0
\(673\) −11.8205 20.4737i −0.455647 0.789204i 0.543078 0.839682i \(-0.317259\pi\)
−0.998725 + 0.0504780i \(0.983926\pi\)
\(674\) 0 0
\(675\) 47.9697 21.9365i 1.84636 0.844335i
\(676\) 0 0
\(677\) 1.36494 + 2.36415i 0.0524591 + 0.0908618i 0.891062 0.453881i \(-0.149961\pi\)
−0.838603 + 0.544742i \(0.816627\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −0.907531 + 28.7424i −0.0347767 + 1.10141i
\(682\) 0 0
\(683\) −31.9279 −1.22169 −0.610844 0.791751i \(-0.709170\pi\)
−0.610844 + 0.791751i \(0.709170\pi\)
\(684\) 0 0
\(685\) 51.9417 1.98459
\(686\) 0 0
\(687\) 22.1377 11.8659i 0.844605 0.452712i
\(688\) 0 0
\(689\) 0.733335 1.27017i 0.0279378 0.0483897i
\(690\) 0 0
\(691\) 1.19103 + 2.06292i 0.0453089 + 0.0784773i 0.887790 0.460248i \(-0.152239\pi\)
−0.842482 + 0.538725i \(0.818906\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −18.9034 32.7417i −0.717048 1.24196i
\(696\) 0 0
\(697\) 3.68252 6.37831i 0.139485 0.241596i
\(698\) 0 0
\(699\) 23.5219 + 14.5890i 0.889680 + 0.551808i
\(700\) 0 0
\(701\) 50.3767 1.90270 0.951350 0.308111i \(-0.0996968\pi\)
0.951350 + 0.308111i \(0.0996968\pi\)
\(702\) 0 0
\(703\) −50.5199 −1.90539
\(704\) 0 0
\(705\) −43.5930 27.0377i −1.64181 1.01830i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −20.1600 34.9182i −0.757126 1.31138i −0.944310 0.329056i \(-0.893269\pi\)
0.187184 0.982325i \(-0.440064\pi\)
\(710\) 0 0
\(711\) 3.28102 4.93516i 0.123048 0.185083i
\(712\) 0 0
\(713\) 0.422146 + 0.731178i 0.0158095 + 0.0273828i
\(714\) 0 0
\(715\) −13.4926 + 23.3698i −0.504593 + 0.873981i
\(716\) 0 0
\(717\) −29.2797 + 15.6940i −1.09347 + 0.586105i
\(718\) 0 0
\(719\) −34.0893 −1.27132 −0.635658 0.771971i \(-0.719271\pi\)
−0.635658 + 0.771971i \(0.719271\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 1.27673 40.4353i 0.0474820 1.50380i
\(724\) 0 0
\(725\) −51.6446 + 89.4510i −1.91803 + 3.32213i
\(726\) 0 0
\(727\) 10.9453 + 18.9578i 0.405938 + 0.703105i 0.994430 0.105398i \(-0.0336117\pi\)
−0.588492 + 0.808503i \(0.700278\pi\)
\(728\) 0 0
\(729\) −26.5172 5.08288i −0.982120 0.188255i
\(730\) 0 0
\(731\) −20.3581 35.2613i −0.752973 1.30419i
\(732\) 0 0
\(733\) 4.34416 7.52430i 0.160455 0.277916i −0.774577 0.632480i \(-0.782037\pi\)
0.935032 + 0.354563i \(0.115370\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 65.6702 2.41899
\(738\) 0 0
\(739\) 6.69385 0.246237 0.123119 0.992392i \(-0.460710\pi\)
0.123119 + 0.992392i \(0.460710\pi\)
\(740\) 0 0
\(741\) 11.2307 6.01969i 0.412569 0.221139i
\(742\) 0 0
\(743\) 21.5001 37.2392i 0.788761 1.36617i −0.137965 0.990437i \(-0.544056\pi\)
0.926726 0.375737i \(-0.122611\pi\)
\(744\) 0 0
\(745\) −26.9404 46.6621i −0.987019 1.70957i
\(746\) 0 0
\(747\) 0.840458 1.26418i 0.0307508 0.0462539i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 8.36369 14.4863i 0.305196 0.528614i −0.672109 0.740452i \(-0.734612\pi\)
0.977305 + 0.211838i \(0.0679448\pi\)
\(752\) 0 0
\(753\) −44.8376 27.8097i −1.63397 1.01344i
\(754\) 0 0
\(755\) 89.0438 3.24064
\(756\) 0 0
\(757\) −4.68561 −0.170301 −0.0851507 0.996368i \(-0.527137\pi\)
−0.0851507 + 0.996368i \(0.527137\pi\)
\(758\) 0 0
\(759\) 2.36881 + 1.46921i 0.0859823 + 0.0533289i
\(760\) 0 0
\(761\) 25.8242 44.7288i 0.936127 1.62142i 0.163514 0.986541i \(-0.447717\pi\)
0.772613 0.634878i \(-0.218950\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 62.1580 + 3.92915i 2.24733 + 0.142059i
\(766\) 0 0
\(767\) 0.729576 + 1.26366i 0.0263435 + 0.0456282i
\(768\) 0 0
\(769\) 15.3910 26.6580i 0.555014 0.961313i −0.442888 0.896577i \(-0.646046\pi\)
0.997902 0.0647361i \(-0.0206205\pi\)
\(770\) 0 0
\(771\) 10.3942 5.57131i 0.374336 0.200646i
\(772\) 0 0
\(773\) 27.0517 0.972982 0.486491 0.873686i \(-0.338277\pi\)
0.486491 + 0.873686i \(0.338277\pi\)
\(774\) 0 0
\(775\) −23.3025 −0.837050
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 3.20588 5.55275i 0.114863 0.198948i
\(780\) 0 0
\(781\) 10.7433 + 18.6080i 0.384426 + 0.665845i
\(782\) 0 0
\(783\) 48.0818 21.9877i 1.71830 0.785777i
\(784\) 0 0
\(785\) −22.5370 39.0352i −0.804380 1.39323i
\(786\) 0 0
\(787\) 17.5997 30.4837i 0.627363 1.08662i −0.360716 0.932676i \(-0.617468\pi\)
0.988079 0.153949i \(-0.0491992\pi\)
\(788\) 0 0
\(789\) −0.251444 + 7.96348i −0.00895163 + 0.283507i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 10.3867 0.368842
\(794\) 0 0
\(795\) 5.50063 2.94836i 0.195087 0.104568i
\(796\) 0 0
\(797\) −23.8268 + 41.2692i −0.843988 + 1.46183i 0.0425084 + 0.999096i \(0.486465\pi\)
−0.886497 + 0.462735i \(0.846868\pi\)
\(798\) 0 0
\(799\) −20.2906 35.1443i −0.717829 1.24332i
\(800\) 0 0
\(801\) −16.2903 32.8409i −0.575588 1.16038i
\(802\) 0 0
\(803\) −16.5551 28.6743i −0.584217 1.01189i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −12.5140 7.76156i −0.440513 0.273220i
\(808\) 0 0
\(809\) 19.7542 0.694521 0.347261 0.937769i \(-0.387112\pi\)
0.347261 + 0.937769i \(0.387112\pi\)
\(810\) 0 0
\(811\) −49.2424 −1.72913 −0.864567 0.502518i \(-0.832407\pi\)
−0.864567 + 0.502518i \(0.832407\pi\)
\(812\) 0 0
\(813\) 9.69086 + 6.01057i 0.339873 + 0.210800i
\(814\) 0 0
\(815\) −6.63967 + 11.5002i −0.232577 + 0.402836i
\(816\) 0 0
\(817\) −17.7231 30.6974i −0.620054 1.07397i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −5.00013 8.66048i −0.174506 0.302253i 0.765484 0.643455i \(-0.222499\pi\)
−0.939990 + 0.341202i \(0.889166\pi\)
\(822\) 0 0
\(823\) 17.5138 30.3348i 0.610493 1.05741i −0.380664 0.924713i \(-0.624305\pi\)
0.991157 0.132692i \(-0.0423621\pi\)
\(824\) 0 0
\(825\) −67.8072 + 36.3449i −2.36074 + 1.26537i
\(826\) 0 0
\(827\) −22.7079 −0.789631 −0.394816 0.918760i \(-0.629192\pi\)
−0.394816 + 0.918760i \(0.629192\pi\)
\(828\) 0 0
\(829\) −12.4417 −0.432117 −0.216058 0.976380i \(-0.569320\pi\)
−0.216058 + 0.976380i \(0.569320\pi\)
\(830\) 0 0
\(831\) −0.616018 + 19.5099i −0.0213694 + 0.676791i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −18.2944 31.6869i −0.633105 1.09657i
\(836\) 0 0
\(837\) 9.71968 + 6.91392i 0.335961 + 0.238980i
\(838\) 0 0
\(839\) −13.8249 23.9455i −0.477290 0.826690i 0.522372 0.852718i \(-0.325047\pi\)
−0.999661 + 0.0260281i \(0.991714\pi\)
\(840\) 0 0
\(841\) −37.2652 + 64.5453i −1.28501 + 2.22570i
\(842\) 0 0
\(843\) −0.820733 + 25.9935i −0.0282676 + 0.895263i
\(844\) 0 0
\(845\) −40.8307 −1.40462
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −22.3998 + 12.0064i −0.768758 + 0.412058i
\(850\) 0 0
\(851\) −2.00089 + 3.46564i −0.0685896 + 0.118801i
\(852\) 0 0
\(853\) −22.0459 38.1847i −0.754839 1.30742i −0.945454 0.325754i \(-0.894382\pi\)
0.190616 0.981665i \(-0.438952\pi\)
\(854\) 0 0
\(855\) 54.1127 + 3.42059i 1.85062 + 0.116982i
\(856\) 0 0
\(857\) 13.3838 + 23.1814i 0.457182 + 0.791862i 0.998811 0.0487557i \(-0.0155256\pi\)
−0.541629 + 0.840618i \(0.682192\pi\)
\(858\) 0 0
\(859\) 10.0951 17.4852i 0.344439 0.596587i −0.640812 0.767698i \(-0.721402\pi\)
0.985252 + 0.171111i \(0.0547357\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 9.49075 0.323069 0.161534 0.986867i \(-0.448356\pi\)
0.161534 + 0.986867i \(0.448356\pi\)
\(864\) 0 0
\(865\) −24.9317 −0.847703
\(866\) 0 0
\(867\) 16.8489 + 10.4502i 0.572218 + 0.354908i
\(868\) 0 0
\(869\) −4.32182 + 7.48560i −0.146608 + 0.253932i
\(870\) 0 0
\(871\) −11.8897 20.5935i −0.402866 0.697784i
\(872\) 0 0
\(873\) −14.7926 + 22.2504i −0.500654 + 0.753061i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −14.6227 + 25.3273i −0.493774 + 0.855242i −0.999974 0.00717380i \(-0.997716\pi\)
0.506200 + 0.862416i \(0.331050\pi\)
\(878\) 0 0
\(879\) −28.6687 + 15.3665i −0.966970 + 0.518301i
\(880\) 0 0
\(881\) 37.2768 1.25589 0.627944 0.778259i \(-0.283897\pi\)
0.627944 + 0.778259i \(0.283897\pi\)
\(882\) 0 0
\(883\) −56.9436 −1.91630 −0.958152 0.286260i \(-0.907588\pi\)
−0.958152 + 0.286260i \(0.907588\pi\)
\(884\) 0 0
\(885\) −0.195949 + 6.20590i −0.00658674 + 0.208609i
\(886\) 0 0
\(887\) 4.96127 8.59316i 0.166583 0.288530i −0.770633 0.637279i \(-0.780060\pi\)
0.937216 + 0.348749i \(0.113393\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 39.0667 + 4.95879i 1.30878 + 0.166126i
\(892\) 0 0
\(893\) −17.6643 30.5955i −0.591114 1.02384i
\(894\) 0 0
\(895\) −33.2431 + 57.5787i −1.11119 + 1.92465i
\(896\) 0 0
\(897\) 0.0318536 1.00884i 0.00106356 0.0336840i
\(898\) 0 0
\(899\) −23.3569 −0.778997
\(900\) 0 0
\(901\) 4.93724 0.164483
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −2.64664 + 4.58412i −0.0879774 + 0.152381i
\(906\) 0 0
\(907\) 12.2887 + 21.2847i 0.408040 + 0.706747i 0.994670 0.103109i \(-0.0328789\pi\)
−0.586630 + 0.809855i \(0.699546\pi\)
\(908\) 0 0
\(909\) 18.3093 27.5400i 0.607280 0.913443i
\(910\) 0 0
\(911\) 9.73496 + 16.8614i 0.322534 + 0.558645i 0.981010 0.193957i \(-0.0621321\pi\)
−0.658476 + 0.752601i \(0.728799\pi\)
\(912\) 0 0
\(913\) −1.10707 + 1.91749i −0.0366385 + 0.0634598i
\(914\) 0 0
\(915\) 37.5596 + 23.2957i 1.24168 + 0.770131i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −13.2398 −0.436742 −0.218371 0.975866i \(-0.570074\pi\)
−0.218371 + 0.975866i \(0.570074\pi\)
\(920\) 0 0
\(921\) −42.6012 26.4226i −1.40376 0.870653i
\(922\) 0 0
\(923\) 3.89017 6.73798i 0.128047 0.221783i
\(924\) 0 0
\(925\) −55.2247 95.6519i −1.81578 3.14502i
\(926\) 0 0
\(927\) −8.17624 0.516839i −0.268543 0.0169752i
\(928\) 0 0
\(929\) −15.8682 27.4845i −0.520618 0.901737i −0.999713 0.0239734i \(-0.992368\pi\)
0.479095 0.877763i \(-0.340965\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 20.7518 11.1231i 0.679384 0.364153i
\(934\) 0 0
\(935\) −90.8398 −2.97078
\(936\) 0 0
\(937\) −13.5019 −0.441087 −0.220543 0.975377i \(-0.570783\pi\)
−0.220543 + 0.975377i \(0.570783\pi\)
\(938\) 0 0
\(939\) −0.757852 + 24.0020i −0.0247316 + 0.783274i
\(940\) 0 0
\(941\) 19.8286 34.3441i 0.646394 1.11959i −0.337584 0.941295i \(-0.609610\pi\)
0.983978 0.178291i \(-0.0570569\pi\)
\(942\) 0 0
\(943\) −0.253944 0.439845i −0.00826957 0.0143233i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 30.5172 + 52.8573i 0.991675 + 1.71763i 0.607350 + 0.794434i \(0.292232\pi\)
0.384325 + 0.923198i \(0.374434\pi\)
\(948\) 0 0
\(949\) −5.99464 + 10.3830i −0.194594 + 0.337047i
\(950\) 0 0
\(951\) 1.26190 39.9656i 0.0409198 1.29597i
\(952\) 0 0
\(953\) 5.22726 0.169328 0.0846638 0.996410i \(-0.473018\pi\)
0.0846638 + 0.996410i \(0.473018\pi\)
\(954\) 0 0
\(955\) −69.6010 −2.25224
\(956\) 0 0
\(957\) −67.9656 + 36.4299i −2.19702 + 1.17761i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 12.8653 + 22.2833i 0.415009 + 0.718817i
\(962\) 0 0
\(963\) −14.3870 29.0041i −0.463616 0.934643i
\(964\) 0 0
\(965\) 25.3269 + 43.8674i 0.815301 + 1.41214i
\(966\) 0 0
\(967\) 10.2035 17.6729i 0.328121 0.568323i −0.654018 0.756479i \(-0.726918\pi\)
0.982139 + 0.188156i \(0.0602511\pi\)
\(968\) 0 0
\(969\) 36.4520 + 22.6087i 1.17101 + 0.726296i
\(970\) 0 0
\(971\) 1.17880 0.0378296 0.0189148 0.999821i \(-0.493979\pi\)
0.0189148 + 0.999821i \(0.493979\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 23.6739 + 14.6833i 0.758173 + 0.470243i
\(976\) 0 0
\(977\) −4.10487 + 7.10984i −0.131326 + 0.227464i −0.924188 0.381938i \(-0.875257\pi\)
0.792862 + 0.609402i \(0.208590\pi\)
\(978\) 0 0
\(979\) 26.7342 + 46.3049i 0.854427 + 1.47991i
\(980\) 0 0
\(981\) −13.3094 26.8316i −0.424937 0.856667i
\(982\) 0 0
\(983\) 0.753481 + 1.30507i 0.0240323 + 0.0416252i 0.877791 0.479043i \(-0.159016\pi\)
−0.853759 + 0.520668i \(0.825683\pi\)
\(984\) 0 0
\(985\) −12.3875 + 21.4558i −0.394698 + 0.683638i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −2.80777 −0.0892820
\(990\) 0 0
\(991\) 32.4459 1.03068 0.515339 0.856987i \(-0.327666\pi\)
0.515339 + 0.856987i \(0.327666\pi\)
\(992\) 0 0
\(993\) −0.855615 + 27.0982i −0.0271521 + 0.859935i
\(994\) 0 0
\(995\) −45.0608 + 78.0476i −1.42852 + 2.47428i
\(996\) 0 0
\(997\) 6.26198 + 10.8461i 0.198319 + 0.343498i 0.947983 0.318320i \(-0.103119\pi\)
−0.749665 + 0.661818i \(0.769785\pi\)
\(998\) 0 0
\(999\) −5.34552 + 56.2826i −0.169125 + 1.78070i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1764.2.j.i.589.10 yes 24
3.2 odd 2 5292.2.j.i.1765.12 24
7.2 even 3 1764.2.l.j.949.2 24
7.3 odd 6 1764.2.i.j.373.6 24
7.4 even 3 1764.2.i.j.373.7 24
7.5 odd 6 1764.2.l.j.949.11 24
7.6 odd 2 inner 1764.2.j.i.589.3 24
9.2 odd 6 5292.2.j.i.3529.12 24
9.7 even 3 inner 1764.2.j.i.1177.10 yes 24
21.2 odd 6 5292.2.l.j.361.1 24
21.5 even 6 5292.2.l.j.361.12 24
21.11 odd 6 5292.2.i.j.1549.12 24
21.17 even 6 5292.2.i.j.1549.1 24
21.20 even 2 5292.2.j.i.1765.1 24
63.2 odd 6 5292.2.i.j.2125.12 24
63.11 odd 6 5292.2.l.j.3313.1 24
63.16 even 3 1764.2.i.j.1537.7 24
63.20 even 6 5292.2.j.i.3529.1 24
63.25 even 3 1764.2.l.j.961.2 24
63.34 odd 6 inner 1764.2.j.i.1177.3 yes 24
63.38 even 6 5292.2.l.j.3313.12 24
63.47 even 6 5292.2.i.j.2125.1 24
63.52 odd 6 1764.2.l.j.961.11 24
63.61 odd 6 1764.2.i.j.1537.6 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1764.2.i.j.373.6 24 7.3 odd 6
1764.2.i.j.373.7 24 7.4 even 3
1764.2.i.j.1537.6 24 63.61 odd 6
1764.2.i.j.1537.7 24 63.16 even 3
1764.2.j.i.589.3 24 7.6 odd 2 inner
1764.2.j.i.589.10 yes 24 1.1 even 1 trivial
1764.2.j.i.1177.3 yes 24 63.34 odd 6 inner
1764.2.j.i.1177.10 yes 24 9.7 even 3 inner
1764.2.l.j.949.2 24 7.2 even 3
1764.2.l.j.949.11 24 7.5 odd 6
1764.2.l.j.961.2 24 63.25 even 3
1764.2.l.j.961.11 24 63.52 odd 6
5292.2.i.j.1549.1 24 21.17 even 6
5292.2.i.j.1549.12 24 21.11 odd 6
5292.2.i.j.2125.1 24 63.47 even 6
5292.2.i.j.2125.12 24 63.2 odd 6
5292.2.j.i.1765.1 24 21.20 even 2
5292.2.j.i.1765.12 24 3.2 odd 2
5292.2.j.i.3529.1 24 63.20 even 6
5292.2.j.i.3529.12 24 9.2 odd 6
5292.2.l.j.361.1 24 21.2 odd 6
5292.2.l.j.361.12 24 21.5 even 6
5292.2.l.j.3313.1 24 63.11 odd 6
5292.2.l.j.3313.12 24 63.38 even 6