Properties

Label 5292.2.i.j.1549.12
Level $5292$
Weight $2$
Character 5292.1549
Analytic conductor $42.257$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5292,2,Mod(1549,5292)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5292, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5292.1549");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5292 = 2^{2} \cdot 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5292.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(42.2568327497\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 1764)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1549.12
Character \(\chi\) \(=\) 5292.1549
Dual form 5292.2.i.j.2125.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.94623 + 3.37097i) q^{5} +O(q^{10})\) \(q+(1.94623 + 3.37097i) q^{5} +(2.18778 - 3.78935i) q^{11} +(-0.792201 + 1.37213i) q^{13} +(-2.66678 - 4.61900i) q^{17} +(2.32161 - 4.02115i) q^{19} +(0.183900 + 0.318523i) q^{23} +(-5.07564 + 8.79126i) q^{25} +(5.08750 + 8.81180i) q^{29} -2.29552 q^{31} +(-5.44017 + 9.42265i) q^{37} +(0.690443 - 1.19588i) q^{41} +(3.81699 + 6.61122i) q^{43} +7.60865 q^{47} +(-0.462847 - 0.801674i) q^{53} +17.0317 q^{55} +0.920949 q^{59} +6.55560 q^{61} -6.16722 q^{65} +15.0084 q^{67} +4.91059 q^{71} +(-3.78353 - 6.55327i) q^{73} +1.97543 q^{79} +(0.253011 + 0.438227i) q^{83} +(10.3803 - 17.9793i) q^{85} +(-6.10987 + 10.5826i) q^{89} +18.0736 q^{95} +(4.45315 + 7.71308i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q+O(q^{10}) \) Copy content Toggle raw display \( 24 q + 4 q^{11} + 8 q^{23} - 12 q^{25} + 32 q^{29} - 12 q^{37} + 16 q^{53} - 72 q^{65} - 24 q^{67} - 48 q^{71} - 24 q^{79} + 12 q^{85} + 64 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5292\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\) \(2647\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.94623 + 3.37097i 0.870381 + 1.50754i 0.861603 + 0.507583i \(0.169461\pi\)
0.00877856 + 0.999961i \(0.497206\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.18778 3.78935i 0.659642 1.14253i −0.321067 0.947057i \(-0.604041\pi\)
0.980708 0.195476i \(-0.0626253\pi\)
\(12\) 0 0
\(13\) −0.792201 + 1.37213i −0.219717 + 0.380561i −0.954721 0.297501i \(-0.903847\pi\)
0.735004 + 0.678062i \(0.237180\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −2.66678 4.61900i −0.646789 1.12027i −0.983885 0.178801i \(-0.942778\pi\)
0.337096 0.941470i \(-0.390555\pi\)
\(18\) 0 0
\(19\) 2.32161 4.02115i 0.532614 0.922515i −0.466660 0.884437i \(-0.654543\pi\)
0.999275 0.0380786i \(-0.0121237\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.183900 + 0.318523i 0.0383457 + 0.0664167i 0.884561 0.466424i \(-0.154458\pi\)
−0.846216 + 0.532841i \(0.821125\pi\)
\(24\) 0 0
\(25\) −5.07564 + 8.79126i −1.01513 + 1.75825i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 5.08750 + 8.81180i 0.944724 + 1.63631i 0.756302 + 0.654222i \(0.227004\pi\)
0.188422 + 0.982088i \(0.439663\pi\)
\(30\) 0 0
\(31\) −2.29552 −0.412288 −0.206144 0.978522i \(-0.566092\pi\)
−0.206144 + 0.978522i \(0.566092\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −5.44017 + 9.42265i −0.894359 + 1.54907i −0.0597623 + 0.998213i \(0.519034\pi\)
−0.834596 + 0.550862i \(0.814299\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0.690443 1.19588i 0.107829 0.186766i −0.807061 0.590467i \(-0.798943\pi\)
0.914891 + 0.403702i \(0.132277\pi\)
\(42\) 0 0
\(43\) 3.81699 + 6.61122i 0.582086 + 1.00820i 0.995232 + 0.0975372i \(0.0310965\pi\)
−0.413146 + 0.910665i \(0.635570\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 7.60865 1.10984 0.554918 0.831905i \(-0.312750\pi\)
0.554918 + 0.831905i \(0.312750\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −0.462847 0.801674i −0.0635769 0.110118i 0.832485 0.554048i \(-0.186917\pi\)
−0.896062 + 0.443929i \(0.853584\pi\)
\(54\) 0 0
\(55\) 17.0317 2.29656
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0.920949 0.119897 0.0599487 0.998201i \(-0.480906\pi\)
0.0599487 + 0.998201i \(0.480906\pi\)
\(60\) 0 0
\(61\) 6.55560 0.839358 0.419679 0.907673i \(-0.362143\pi\)
0.419679 + 0.907673i \(0.362143\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −6.16722 −0.764950
\(66\) 0 0
\(67\) 15.0084 1.83357 0.916783 0.399385i \(-0.130776\pi\)
0.916783 + 0.399385i \(0.130776\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 4.91059 0.582780 0.291390 0.956604i \(-0.405882\pi\)
0.291390 + 0.956604i \(0.405882\pi\)
\(72\) 0 0
\(73\) −3.78353 6.55327i −0.442829 0.767003i 0.555069 0.831804i \(-0.312692\pi\)
−0.997898 + 0.0648016i \(0.979359\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 1.97543 0.222253 0.111127 0.993806i \(-0.464554\pi\)
0.111127 + 0.993806i \(0.464554\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0.253011 + 0.438227i 0.0277715 + 0.0481017i 0.879577 0.475756i \(-0.157826\pi\)
−0.851806 + 0.523858i \(0.824492\pi\)
\(84\) 0 0
\(85\) 10.3803 17.9793i 1.12591 1.95013i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −6.10987 + 10.5826i −0.647645 + 1.12175i 0.336039 + 0.941848i \(0.390913\pi\)
−0.983684 + 0.179906i \(0.942421\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 18.0736 1.85431
\(96\) 0 0
\(97\) 4.45315 + 7.71308i 0.452149 + 0.783145i 0.998519 0.0543987i \(-0.0173242\pi\)
−0.546370 + 0.837544i \(0.683991\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 5.51180 9.54672i 0.548445 0.949935i −0.449936 0.893061i \(-0.648553\pi\)
0.998381 0.0568740i \(-0.0181133\pi\)
\(102\) 0 0
\(103\) −1.36543 2.36499i −0.134540 0.233029i 0.790882 0.611969i \(-0.209622\pi\)
−0.925421 + 0.378939i \(0.876289\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −5.39605 + 9.34623i −0.521655 + 0.903534i 0.478027 + 0.878345i \(0.341352\pi\)
−0.999683 + 0.0251887i \(0.991981\pi\)
\(108\) 0 0
\(109\) 4.99187 + 8.64617i 0.478134 + 0.828153i 0.999686 0.0250668i \(-0.00797984\pi\)
−0.521551 + 0.853220i \(0.674647\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 6.12019 10.6005i 0.575739 0.997209i −0.420222 0.907421i \(-0.638048\pi\)
0.995961 0.0897875i \(-0.0286188\pi\)
\(114\) 0 0
\(115\) −0.715822 + 1.23984i −0.0667508 + 0.115616i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −4.07280 7.05429i −0.370254 0.641299i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −20.0511 −1.79343
\(126\) 0 0
\(127\) −13.2005 −1.17135 −0.585677 0.810544i \(-0.699171\pi\)
−0.585677 + 0.810544i \(0.699171\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 2.54342 + 4.40532i 0.222219 + 0.384895i 0.955482 0.295051i \(-0.0953366\pi\)
−0.733262 + 0.679946i \(0.762003\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 6.67208 11.5564i 0.570034 0.987328i −0.426527 0.904475i \(-0.640263\pi\)
0.996562 0.0828538i \(-0.0264034\pi\)
\(138\) 0 0
\(139\) −4.85642 + 8.41157i −0.411916 + 0.713460i −0.995099 0.0988809i \(-0.968474\pi\)
0.583183 + 0.812341i \(0.301807\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 3.46633 + 6.00386i 0.289869 + 0.502068i
\(144\) 0 0
\(145\) −19.8029 + 34.2996i −1.64454 + 2.84843i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 6.92116 + 11.9878i 0.567004 + 0.982079i 0.996860 + 0.0791820i \(0.0252308\pi\)
−0.429856 + 0.902897i \(0.641436\pi\)
\(150\) 0 0
\(151\) −11.4380 + 19.8112i −0.930809 + 1.61221i −0.148867 + 0.988857i \(0.547563\pi\)
−0.781942 + 0.623352i \(0.785771\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −4.46762 7.73815i −0.358848 0.621543i
\(156\) 0 0
\(157\) 11.5798 0.924170 0.462085 0.886836i \(-0.347101\pi\)
0.462085 + 0.886836i \(0.347101\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −1.70577 + 2.95449i −0.133607 + 0.231413i −0.925064 0.379811i \(-0.875989\pi\)
0.791458 + 0.611224i \(0.209323\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 4.69996 8.14057i 0.363694 0.629936i −0.624872 0.780727i \(-0.714849\pi\)
0.988566 + 0.150791i \(0.0481821\pi\)
\(168\) 0 0
\(169\) 5.24484 + 9.08432i 0.403449 + 0.698794i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 6.40512 0.486972 0.243486 0.969904i \(-0.421709\pi\)
0.243486 + 0.969904i \(0.421709\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 8.54038 + 14.7924i 0.638338 + 1.10563i 0.985797 + 0.167938i \(0.0537110\pi\)
−0.347460 + 0.937695i \(0.612956\pi\)
\(180\) 0 0
\(181\) 1.35988 0.101079 0.0505395 0.998722i \(-0.483906\pi\)
0.0505395 + 0.998722i \(0.483906\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −42.3513 −3.11373
\(186\) 0 0
\(187\) −23.3374 −1.70660
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 17.8810 1.29382 0.646911 0.762566i \(-0.276061\pi\)
0.646911 + 0.762566i \(0.276061\pi\)
\(192\) 0 0
\(193\) −13.0133 −0.936717 −0.468358 0.883539i \(-0.655154\pi\)
−0.468358 + 0.883539i \(0.655154\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −6.36486 −0.453478 −0.226739 0.973956i \(-0.572806\pi\)
−0.226739 + 0.973956i \(0.572806\pi\)
\(198\) 0 0
\(199\) −11.5764 20.0510i −0.820631 1.42137i −0.905213 0.424958i \(-0.860289\pi\)
0.0845818 0.996417i \(-0.473045\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 5.37505 0.375410
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −10.1584 17.5948i −0.702669 1.21706i
\(210\) 0 0
\(211\) −5.67737 + 9.83349i −0.390846 + 0.676965i −0.992561 0.121745i \(-0.961151\pi\)
0.601715 + 0.798711i \(0.294484\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −14.8575 + 25.7339i −1.01327 + 1.75504i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 8.45050 0.568442
\(222\) 0 0
\(223\) −13.3206 23.0719i −0.892011 1.54501i −0.837461 0.546498i \(-0.815961\pi\)
−0.0545504 0.998511i \(-0.517373\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −8.30136 + 14.3784i −0.550981 + 0.954326i 0.447224 + 0.894422i \(0.352413\pi\)
−0.998204 + 0.0599042i \(0.980920\pi\)
\(228\) 0 0
\(229\) 7.25072 + 12.5586i 0.479141 + 0.829897i 0.999714 0.0239205i \(-0.00761485\pi\)
−0.520573 + 0.853817i \(0.674282\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 7.99020 13.8394i 0.523456 0.906652i −0.476172 0.879352i \(-0.657976\pi\)
0.999627 0.0272993i \(-0.00869073\pi\)
\(234\) 0 0
\(235\) 14.8082 + 25.6485i 0.965980 + 1.67313i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 9.58994 16.6103i 0.620322 1.07443i −0.369104 0.929388i \(-0.620335\pi\)
0.989426 0.145040i \(-0.0463312\pi\)
\(240\) 0 0
\(241\) −11.6785 + 20.2277i −0.752276 + 1.30298i 0.194441 + 0.980914i \(0.437711\pi\)
−0.946717 + 0.322067i \(0.895623\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 3.67837 + 6.37112i 0.234049 + 0.405384i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 30.4619 1.92274 0.961371 0.275257i \(-0.0887631\pi\)
0.961371 + 0.275257i \(0.0887631\pi\)
\(252\) 0 0
\(253\) 1.60933 0.101178
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −3.40438 5.89657i −0.212360 0.367818i 0.740093 0.672505i \(-0.234782\pi\)
−0.952453 + 0.304687i \(0.901448\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −2.30000 + 3.98372i −0.141824 + 0.245647i −0.928184 0.372122i \(-0.878630\pi\)
0.786359 + 0.617769i \(0.211963\pi\)
\(264\) 0 0
\(265\) 1.80161 3.12049i 0.110672 0.191690i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −4.25090 7.36277i −0.259182 0.448916i 0.706841 0.707372i \(-0.250120\pi\)
−0.966023 + 0.258456i \(0.916786\pi\)
\(270\) 0 0
\(271\) −3.29191 + 5.70175i −0.199969 + 0.346357i −0.948518 0.316723i \(-0.897417\pi\)
0.748549 + 0.663079i \(0.230751\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 22.2088 + 38.4668i 1.33924 + 2.31963i
\(276\) 0 0
\(277\) 5.63483 9.75982i 0.338564 0.586411i −0.645599 0.763677i \(-0.723392\pi\)
0.984163 + 0.177266i \(0.0567254\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −7.50741 13.0032i −0.447854 0.775707i 0.550392 0.834907i \(-0.314478\pi\)
−0.998246 + 0.0592000i \(0.981145\pi\)
\(282\) 0 0
\(283\) 14.6731 0.872227 0.436114 0.899892i \(-0.356355\pi\)
0.436114 + 0.899892i \(0.356355\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −5.72343 + 9.91327i −0.336672 + 0.583133i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 9.38981 16.2636i 0.548559 0.950132i −0.449815 0.893122i \(-0.648510\pi\)
0.998374 0.0570099i \(-0.0181567\pi\)
\(294\) 0 0
\(295\) 1.79238 + 3.10449i 0.104356 + 0.180751i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −0.582741 −0.0337008
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 12.7587 + 22.0987i 0.730562 + 1.26537i
\(306\) 0 0
\(307\) −28.9425 −1.65184 −0.825919 0.563789i \(-0.809343\pi\)
−0.825919 + 0.563789i \(0.809343\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 13.5936 0.770824 0.385412 0.922745i \(-0.374059\pi\)
0.385412 + 0.922745i \(0.374059\pi\)
\(312\) 0 0
\(313\) −13.8644 −0.783665 −0.391832 0.920037i \(-0.628159\pi\)
−0.391832 + 0.920037i \(0.628159\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −23.0856 −1.29662 −0.648309 0.761377i \(-0.724524\pi\)
−0.648309 + 0.761377i \(0.724524\pi\)
\(318\) 0 0
\(319\) 44.5214 2.49272
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −24.7649 −1.37796
\(324\) 0 0
\(325\) −8.04184 13.9289i −0.446081 0.772635i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −15.6529 −0.860364 −0.430182 0.902742i \(-0.641551\pi\)
−0.430182 + 0.902742i \(0.641551\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 29.2098 + 50.5929i 1.59590 + 2.76418i
\(336\) 0 0
\(337\) 3.56686 6.17799i 0.194299 0.336537i −0.752371 0.658739i \(-0.771090\pi\)
0.946671 + 0.322203i \(0.104423\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −5.02211 + 8.69855i −0.271962 + 0.471053i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −5.55655 −0.298291 −0.149146 0.988815i \(-0.547652\pi\)
−0.149146 + 0.988815i \(0.547652\pi\)
\(348\) 0 0
\(349\) −5.33296 9.23696i −0.285467 0.494443i 0.687256 0.726416i \(-0.258815\pi\)
−0.972722 + 0.231973i \(0.925482\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −6.42132 + 11.1221i −0.341772 + 0.591967i −0.984762 0.173908i \(-0.944361\pi\)
0.642989 + 0.765875i \(0.277694\pi\)
\(354\) 0 0
\(355\) 9.55715 + 16.5535i 0.507241 + 0.878567i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 12.8417 22.2426i 0.677761 1.17392i −0.297892 0.954600i \(-0.596284\pi\)
0.975653 0.219318i \(-0.0703831\pi\)
\(360\) 0 0
\(361\) −1.27977 2.21663i −0.0673563 0.116665i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 14.7273 25.5084i 0.770861 1.33517i
\(366\) 0 0
\(367\) 8.49197 14.7085i 0.443277 0.767778i −0.554653 0.832082i \(-0.687149\pi\)
0.997930 + 0.0643031i \(0.0204824\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 4.38503 + 7.59509i 0.227048 + 0.393259i 0.956932 0.290312i \(-0.0937592\pi\)
−0.729884 + 0.683571i \(0.760426\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −16.1213 −0.830288
\(378\) 0 0
\(379\) 11.7002 0.601001 0.300500 0.953782i \(-0.402846\pi\)
0.300500 + 0.953782i \(0.402846\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −4.50360 7.80046i −0.230123 0.398585i 0.727721 0.685873i \(-0.240580\pi\)
−0.957844 + 0.287288i \(0.907246\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −4.89390 + 8.47649i −0.248131 + 0.429775i −0.963007 0.269476i \(-0.913150\pi\)
0.714876 + 0.699251i \(0.246483\pi\)
\(390\) 0 0
\(391\) 0.980839 1.69886i 0.0496032 0.0859152i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 3.84465 + 6.65912i 0.193445 + 0.335057i
\(396\) 0 0
\(397\) −6.95929 + 12.0538i −0.349277 + 0.604965i −0.986121 0.166027i \(-0.946906\pi\)
0.636844 + 0.770992i \(0.280239\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −11.7414 20.3367i −0.586336 1.01556i −0.994707 0.102748i \(-0.967236\pi\)
0.408371 0.912816i \(-0.366097\pi\)
\(402\) 0 0
\(403\) 1.81852 3.14976i 0.0905867 0.156901i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 23.8038 + 41.2295i 1.17991 + 2.04367i
\(408\) 0 0
\(409\) −13.6245 −0.673689 −0.336844 0.941560i \(-0.609360\pi\)
−0.336844 + 0.941560i \(0.609360\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −0.984835 + 1.70578i −0.0483436 + 0.0837336i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 3.97733 6.88894i 0.194305 0.336547i −0.752367 0.658744i \(-0.771088\pi\)
0.946673 + 0.322197i \(0.104421\pi\)
\(420\) 0 0
\(421\) 1.30584 + 2.26178i 0.0636426 + 0.110232i 0.896091 0.443870i \(-0.146395\pi\)
−0.832448 + 0.554102i \(0.813062\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 54.1424 2.62629
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −0.791065 1.37017i −0.0381043 0.0659985i 0.846344 0.532636i \(-0.178799\pi\)
−0.884449 + 0.466638i \(0.845465\pi\)
\(432\) 0 0
\(433\) 5.17110 0.248507 0.124254 0.992250i \(-0.460346\pi\)
0.124254 + 0.992250i \(0.460346\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1.70777 0.0816939
\(438\) 0 0
\(439\) −24.9611 −1.19133 −0.595665 0.803233i \(-0.703111\pi\)
−0.595665 + 0.803233i \(0.703111\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −1.08453 −0.0515274 −0.0257637 0.999668i \(-0.508202\pi\)
−0.0257637 + 0.999668i \(0.508202\pi\)
\(444\) 0 0
\(445\) −47.5649 −2.25479
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −4.23372 −0.199802 −0.0999008 0.994997i \(-0.531853\pi\)
−0.0999008 + 0.994997i \(0.531853\pi\)
\(450\) 0 0
\(451\) −3.02108 5.23267i −0.142257 0.246397i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −36.3026 −1.69817 −0.849083 0.528260i \(-0.822845\pi\)
−0.849083 + 0.528260i \(0.822845\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 1.71236 + 2.96589i 0.0797524 + 0.138135i 0.903143 0.429340i \(-0.141254\pi\)
−0.823391 + 0.567475i \(0.807920\pi\)
\(462\) 0 0
\(463\) 2.38499 4.13092i 0.110840 0.191980i −0.805269 0.592909i \(-0.797979\pi\)
0.916109 + 0.400929i \(0.131313\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −10.0490 + 17.4053i −0.465010 + 0.805422i −0.999202 0.0399417i \(-0.987283\pi\)
0.534192 + 0.845363i \(0.320616\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 33.4030 1.53587
\(474\) 0 0
\(475\) 23.5673 + 40.8198i 1.08134 + 1.87294i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 8.42528 14.5930i 0.384961 0.666772i −0.606803 0.794852i \(-0.707548\pi\)
0.991764 + 0.128080i \(0.0408816\pi\)
\(480\) 0 0
\(481\) −8.61941 14.9293i −0.393011 0.680716i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −17.3337 + 30.0229i −0.787084 + 1.36327i
\(486\) 0 0
\(487\) −11.9916 20.7700i −0.543389 0.941178i −0.998706 0.0508486i \(-0.983807\pi\)
0.455317 0.890329i \(-0.349526\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 1.07281 1.85816i 0.0484153 0.0838577i −0.840802 0.541342i \(-0.817916\pi\)
0.889217 + 0.457485i \(0.151250\pi\)
\(492\) 0 0
\(493\) 27.1345 46.9983i 1.22207 2.11670i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 13.8577 + 24.0023i 0.620357 + 1.07449i 0.989419 + 0.145085i \(0.0463455\pi\)
−0.369062 + 0.929405i \(0.620321\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −22.4265 −0.999949 −0.499974 0.866040i \(-0.666657\pi\)
−0.499974 + 0.866040i \(0.666657\pi\)
\(504\) 0 0
\(505\) 42.9090 1.90943
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 14.6844 + 25.4342i 0.650876 + 1.12735i 0.982911 + 0.184083i \(0.0589316\pi\)
−0.332034 + 0.943267i \(0.607735\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 5.31488 9.20563i 0.234201 0.405649i
\(516\) 0 0
\(517\) 16.6461 28.8318i 0.732093 1.26802i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 8.25389 + 14.2962i 0.361610 + 0.626326i 0.988226 0.153002i \(-0.0488940\pi\)
−0.626616 + 0.779328i \(0.715561\pi\)
\(522\) 0 0
\(523\) 22.3476 38.7072i 0.977193 1.69255i 0.304695 0.952450i \(-0.401446\pi\)
0.672499 0.740098i \(-0.265221\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 6.12166 + 10.6030i 0.266664 + 0.461875i
\(528\) 0 0
\(529\) 11.4324 19.8014i 0.497059 0.860932i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 1.09394 + 1.89476i 0.0473838 + 0.0820711i
\(534\) 0 0
\(535\) −42.0078 −1.81616
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 10.0369 17.3844i 0.431519 0.747412i −0.565486 0.824758i \(-0.691311\pi\)
0.997004 + 0.0773460i \(0.0246446\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −19.4307 + 33.6549i −0.832319 + 1.44162i
\(546\) 0 0
\(547\) 6.35012 + 10.9987i 0.271512 + 0.470272i 0.969249 0.246082i \(-0.0791432\pi\)
−0.697738 + 0.716353i \(0.745810\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 47.2448 2.01270
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 7.34743 + 12.7261i 0.311321 + 0.539223i 0.978649 0.205541i \(-0.0658953\pi\)
−0.667328 + 0.744764i \(0.732562\pi\)
\(558\) 0 0
\(559\) −12.0953 −0.511576
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −26.7860 −1.12890 −0.564448 0.825469i \(-0.690911\pi\)
−0.564448 + 0.825469i \(0.690911\pi\)
\(564\) 0 0
\(565\) 47.6452 2.00445
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −6.48336 −0.271797 −0.135898 0.990723i \(-0.543392\pi\)
−0.135898 + 0.990723i \(0.543392\pi\)
\(570\) 0 0
\(571\) 15.6326 0.654205 0.327103 0.944989i \(-0.393928\pi\)
0.327103 + 0.944989i \(0.393928\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −3.73363 −0.155703
\(576\) 0 0
\(577\) 14.5800 + 25.2533i 0.606974 + 1.05131i 0.991736 + 0.128294i \(0.0409500\pi\)
−0.384763 + 0.923016i \(0.625717\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −4.05043 −0.167752
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 2.33110 + 4.03758i 0.0962146 + 0.166649i 0.910115 0.414356i \(-0.135993\pi\)
−0.813900 + 0.581005i \(0.802660\pi\)
\(588\) 0 0
\(589\) −5.32932 + 9.23065i −0.219591 + 0.380342i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 15.8322 27.4222i 0.650150 1.12609i −0.332936 0.942950i \(-0.608039\pi\)
0.983086 0.183144i \(-0.0586275\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 10.3054 0.421065 0.210533 0.977587i \(-0.432480\pi\)
0.210533 + 0.977587i \(0.432480\pi\)
\(600\) 0 0
\(601\) −4.64993 8.05391i −0.189674 0.328526i 0.755467 0.655186i \(-0.227410\pi\)
−0.945142 + 0.326661i \(0.894077\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 15.8532 27.4586i 0.644525 1.11635i
\(606\) 0 0
\(607\) −10.2484 17.7507i −0.415969 0.720480i 0.579561 0.814929i \(-0.303224\pi\)
−0.995530 + 0.0944495i \(0.969891\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −6.02757 + 10.4401i −0.243850 + 0.422360i
\(612\) 0 0
\(613\) 7.17240 + 12.4230i 0.289691 + 0.501759i 0.973736 0.227681i \(-0.0731143\pi\)
−0.684045 + 0.729440i \(0.739781\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 6.47499 11.2150i 0.260673 0.451499i −0.705748 0.708463i \(-0.749389\pi\)
0.966421 + 0.256964i \(0.0827221\pi\)
\(618\) 0 0
\(619\) 17.6990 30.6556i 0.711383 1.23215i −0.252955 0.967478i \(-0.581402\pi\)
0.964338 0.264674i \(-0.0852642\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −13.6460 23.6355i −0.545839 0.945422i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 58.0310 2.31385
\(630\) 0 0
\(631\) 33.1936 1.32141 0.660707 0.750644i \(-0.270256\pi\)
0.660707 + 0.750644i \(0.270256\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −25.6912 44.4985i −1.01952 1.76587i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −0.119634 + 0.207213i −0.00472528 + 0.00818442i −0.868378 0.495902i \(-0.834837\pi\)
0.863653 + 0.504087i \(0.168171\pi\)
\(642\) 0 0
\(643\) −4.57211 + 7.91913i −0.180307 + 0.312300i −0.941985 0.335655i \(-0.891042\pi\)
0.761678 + 0.647955i \(0.224376\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 3.15607 + 5.46648i 0.124078 + 0.214909i 0.921372 0.388682i \(-0.127069\pi\)
−0.797294 + 0.603591i \(0.793736\pi\)
\(648\) 0 0
\(649\) 2.01484 3.48980i 0.0790893 0.136987i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −2.27888 3.94713i −0.0891793 0.154463i 0.817985 0.575239i \(-0.195091\pi\)
−0.907164 + 0.420776i \(0.861758\pi\)
\(654\) 0 0
\(655\) −9.90015 + 17.1476i −0.386831 + 0.670011i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 16.4631 + 28.5149i 0.641311 + 1.11078i 0.985140 + 0.171751i \(0.0549425\pi\)
−0.343829 + 0.939032i \(0.611724\pi\)
\(660\) 0 0
\(661\) 0.541337 0.0210556 0.0105278 0.999945i \(-0.496649\pi\)
0.0105278 + 0.999945i \(0.496649\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −1.87118 + 3.24097i −0.0724523 + 0.125491i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 14.3422 24.8415i 0.553676 0.958994i
\(672\) 0 0
\(673\) −11.8205 20.4737i −0.455647 0.789204i 0.543078 0.839682i \(-0.317259\pi\)
−0.998725 + 0.0504780i \(0.983926\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 2.72989 0.104918 0.0524591 0.998623i \(-0.483294\pi\)
0.0524591 + 0.998623i \(0.483294\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −15.9640 27.6504i −0.610844 1.05801i −0.991098 0.133131i \(-0.957497\pi\)
0.380254 0.924882i \(-0.375836\pi\)
\(684\) 0 0
\(685\) 51.9417 1.98459
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 1.46667 0.0558756
\(690\) 0 0
\(691\) −2.38206 −0.0906178 −0.0453089 0.998973i \(-0.514427\pi\)
−0.0453089 + 0.998973i \(0.514427\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −37.8069 −1.43410
\(696\) 0 0
\(697\) −7.36504 −0.278971
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −50.3767 −1.90270 −0.951350 0.308111i \(-0.900303\pi\)
−0.951350 + 0.308111i \(0.900303\pi\)
\(702\) 0 0
\(703\) 25.2599 + 43.7515i 0.952697 + 1.65012i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 40.3201 1.51425 0.757126 0.653268i \(-0.226603\pi\)
0.757126 + 0.653268i \(0.226603\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −0.422146 0.731178i −0.0158095 0.0273828i
\(714\) 0 0
\(715\) −13.4926 + 23.3698i −0.504593 + 0.873981i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −17.0446 + 29.5222i −0.635658 + 1.10099i 0.350718 + 0.936481i \(0.385938\pi\)
−0.986375 + 0.164510i \(0.947396\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −103.289 −3.83606
\(726\) 0 0
\(727\) 10.9453 + 18.9578i 0.405938 + 0.703105i 0.994430 0.105398i \(-0.0336117\pi\)
−0.588492 + 0.808503i \(0.700278\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 20.3581 35.2613i 0.752973 1.30419i
\(732\) 0 0
\(733\) 4.34416 + 7.52430i 0.160455 + 0.277916i 0.935032 0.354563i \(-0.115370\pi\)
−0.774577 + 0.632480i \(0.782037\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 32.8351 56.8721i 1.20950 2.09491i
\(738\) 0 0
\(739\) −3.34692 5.79704i −0.123119 0.213248i 0.797877 0.602820i \(-0.205956\pi\)
−0.920996 + 0.389572i \(0.872623\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −21.5001 + 37.2392i −0.788761 + 1.36617i 0.137965 + 0.990437i \(0.455944\pi\)
−0.926726 + 0.375737i \(0.877389\pi\)
\(744\) 0 0
\(745\) −26.9404 + 46.6621i −0.987019 + 1.70957i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 8.36369 + 14.4863i 0.305196 + 0.528614i 0.977305 0.211838i \(-0.0679448\pi\)
−0.672109 + 0.740452i \(0.734612\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −89.0438 −3.24064
\(756\) 0 0
\(757\) −4.68561 −0.170301 −0.0851507 0.996368i \(-0.527137\pi\)
−0.0851507 + 0.996368i \(0.527137\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −25.8242 44.7288i −0.936127 1.62142i −0.772613 0.634878i \(-0.781050\pi\)
−0.163514 0.986541i \(-0.552283\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −0.729576 + 1.26366i −0.0263435 + 0.0456282i
\(768\) 0 0
\(769\) 15.3910 26.6580i 0.555014 0.961313i −0.442888 0.896577i \(-0.646046\pi\)
0.997902 0.0647361i \(-0.0206205\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 13.5259 + 23.4275i 0.486491 + 0.842627i 0.999879 0.0155292i \(-0.00494329\pi\)
−0.513388 + 0.858156i \(0.671610\pi\)
\(774\) 0 0
\(775\) 11.6512 20.1805i 0.418525 0.724907i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −3.20588 5.55275i −0.114863 0.198948i
\(780\) 0 0
\(781\) 10.7433 18.6080i 0.384426 0.665845i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 22.5370 + 39.0352i 0.804380 + 1.39323i
\(786\) 0 0
\(787\) −35.1995 −1.25473 −0.627363 0.778727i \(-0.715866\pi\)
−0.627363 + 0.778727i \(0.715866\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −5.19335 + 8.99514i −0.184421 + 0.319427i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 23.8268 41.2692i 0.843988 1.46183i −0.0425084 0.999096i \(-0.513535\pi\)
0.886497 0.462735i \(-0.153132\pi\)
\(798\) 0 0
\(799\) −20.2906 35.1443i −0.717829 1.24332i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −33.1102 −1.16843
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 9.87711 + 17.1077i 0.347261 + 0.601473i 0.985762 0.168148i \(-0.0537786\pi\)
−0.638501 + 0.769621i \(0.720445\pi\)
\(810\) 0 0
\(811\) −49.2424 −1.72913 −0.864567 0.502518i \(-0.832407\pi\)
−0.864567 + 0.502518i \(0.832407\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −13.2793 −0.465155
\(816\) 0 0
\(817\) 35.4463 1.24011
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −10.0003 −0.349012 −0.174506 0.984656i \(-0.555833\pi\)
−0.174506 + 0.984656i \(0.555833\pi\)
\(822\) 0 0
\(823\) −35.0276 −1.22099 −0.610493 0.792021i \(-0.709029\pi\)
−0.610493 + 0.792021i \(0.709029\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 22.7079 0.789631 0.394816 0.918760i \(-0.370808\pi\)
0.394816 + 0.918760i \(0.370808\pi\)
\(828\) 0 0
\(829\) 6.22083 + 10.7748i 0.216058 + 0.374224i 0.953599 0.301078i \(-0.0973465\pi\)
−0.737541 + 0.675302i \(0.764013\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 36.5888 1.26621
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 13.8249 + 23.9455i 0.477290 + 0.826690i 0.999661 0.0260281i \(-0.00828595\pi\)
−0.522372 + 0.852718i \(0.674953\pi\)
\(840\) 0 0
\(841\) −37.2652 + 64.5453i −1.28501 + 2.22570i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −20.4153 + 35.3604i −0.702309 + 1.21643i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −4.00178 −0.137179
\(852\) 0 0
\(853\) −22.0459 38.1847i −0.754839 1.30742i −0.945454 0.325754i \(-0.894382\pi\)
0.190616 0.981665i \(-0.438952\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −13.3838 + 23.1814i −0.457182 + 0.791862i −0.998811 0.0487557i \(-0.984474\pi\)
0.541629 + 0.840618i \(0.317808\pi\)
\(858\) 0 0
\(859\) 10.0951 + 17.4852i 0.344439 + 0.596587i 0.985252 0.171111i \(-0.0547357\pi\)
−0.640812 + 0.767698i \(0.721402\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 4.74538 8.21923i 0.161534 0.279786i −0.773885 0.633327i \(-0.781689\pi\)
0.935419 + 0.353541i \(0.115022\pi\)
\(864\) 0 0
\(865\) 12.4659 + 21.5915i 0.423852 + 0.734133i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 4.32182 7.48560i 0.146608 0.253932i
\(870\) 0 0
\(871\) −11.8897 + 20.5935i −0.402866 + 0.697784i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −14.6227 25.3273i −0.493774 0.855242i 0.506200 0.862416i \(-0.331050\pi\)
−0.999974 + 0.00717380i \(0.997716\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −37.2768 −1.25589 −0.627944 0.778259i \(-0.716103\pi\)
−0.627944 + 0.778259i \(0.716103\pi\)
\(882\) 0 0
\(883\) −56.9436 −1.91630 −0.958152 0.286260i \(-0.907588\pi\)
−0.958152 + 0.286260i \(0.907588\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −4.96127 8.59316i −0.166583 0.288530i 0.770633 0.637279i \(-0.219940\pi\)
−0.937216 + 0.348749i \(0.886607\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 17.6643 30.5955i 0.591114 1.02384i
\(894\) 0 0
\(895\) −33.2431 + 57.5787i −1.11119 + 1.92465i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −11.6785 20.2277i −0.389499 0.674632i
\(900\) 0 0
\(901\) −2.46862 + 4.27577i −0.0822416 + 0.142447i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 2.64664 + 4.58412i 0.0879774 + 0.152381i
\(906\) 0 0
\(907\) 12.2887 21.2847i 0.408040 0.706747i −0.586630 0.809855i \(-0.699546\pi\)
0.994670 + 0.103109i \(0.0328789\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −9.73496 16.8614i −0.322534 0.558645i 0.658476 0.752601i \(-0.271201\pi\)
−0.981010 + 0.193957i \(0.937868\pi\)
\(912\) 0 0
\(913\) 2.21413 0.0732770
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 6.61992 11.4660i 0.218371 0.378230i −0.735939 0.677048i \(-0.763259\pi\)
0.954310 + 0.298818i \(0.0965923\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −3.89017 + 6.73798i −0.128047 + 0.221783i
\(924\) 0 0
\(925\) −55.2247 95.6519i −1.81578 3.14502i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −31.7363 −1.04124 −0.520618 0.853790i \(-0.674298\pi\)
−0.520618 + 0.853790i \(0.674298\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −45.4199 78.6696i −1.48539 2.57277i
\(936\) 0 0
\(937\) −13.5019 −0.441087 −0.220543 0.975377i \(-0.570783\pi\)
−0.220543 + 0.975377i \(0.570783\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 39.6572 1.29279 0.646394 0.763004i \(-0.276276\pi\)
0.646394 + 0.763004i \(0.276276\pi\)
\(942\) 0 0
\(943\) 0.507889 0.0165391
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 61.0344 1.98335 0.991675 0.128764i \(-0.0411009\pi\)
0.991675 + 0.128764i \(0.0411009\pi\)
\(948\) 0 0
\(949\) 11.9893 0.389188
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −5.22726 −0.169328 −0.0846638 0.996410i \(-0.526982\pi\)
−0.0846638 + 0.996410i \(0.526982\pi\)
\(954\) 0 0
\(955\) 34.8005 + 60.2762i 1.12612 + 1.95049i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −25.7306 −0.830018
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −25.3269 43.8674i −0.815301 1.41214i
\(966\) 0 0
\(967\) 10.2035 17.6729i 0.328121 0.568323i −0.654018 0.756479i \(-0.726918\pi\)
0.982139 + 0.188156i \(0.0602511\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0.589402 1.02087i 0.0189148 0.0327614i −0.856413 0.516291i \(-0.827312\pi\)
0.875328 + 0.483530i \(0.160646\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −8.20973 −0.262653 −0.131326 0.991339i \(-0.541924\pi\)
−0.131326 + 0.991339i \(0.541924\pi\)
\(978\) 0 0
\(979\) 26.7342 + 46.3049i 0.854427 + 1.47991i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −0.753481 + 1.30507i −0.0240323 + 0.0416252i −0.877791 0.479043i \(-0.840984\pi\)
0.853759 + 0.520668i \(0.174317\pi\)
\(984\) 0 0
\(985\) −12.3875 21.4558i −0.394698 0.683638i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −1.40389 + 2.43160i −0.0446410 + 0.0773204i
\(990\) 0 0
\(991\) −16.2229 28.0990i −0.515339 0.892593i −0.999842 0.0178030i \(-0.994333\pi\)
0.484503 0.874790i \(-0.339001\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 45.0608 78.0476i 1.42852 2.47428i
\(996\) 0 0
\(997\) 6.26198 10.8461i 0.198319 0.343498i −0.749665 0.661818i \(-0.769785\pi\)
0.947983 + 0.318320i \(0.103119\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5292.2.i.j.1549.12 24
3.2 odd 2 1764.2.i.j.373.7 24
7.2 even 3 5292.2.j.i.1765.12 24
7.3 odd 6 5292.2.l.j.361.12 24
7.4 even 3 5292.2.l.j.361.1 24
7.5 odd 6 5292.2.j.i.1765.1 24
7.6 odd 2 inner 5292.2.i.j.1549.1 24
9.2 odd 6 1764.2.l.j.961.2 24
9.7 even 3 5292.2.l.j.3313.1 24
21.2 odd 6 1764.2.j.i.589.10 yes 24
21.5 even 6 1764.2.j.i.589.3 24
21.11 odd 6 1764.2.l.j.949.2 24
21.17 even 6 1764.2.l.j.949.11 24
21.20 even 2 1764.2.i.j.373.6 24
63.2 odd 6 1764.2.j.i.1177.10 yes 24
63.11 odd 6 1764.2.i.j.1537.7 24
63.16 even 3 5292.2.j.i.3529.12 24
63.20 even 6 1764.2.l.j.961.11 24
63.25 even 3 inner 5292.2.i.j.2125.12 24
63.34 odd 6 5292.2.l.j.3313.12 24
63.38 even 6 1764.2.i.j.1537.6 24
63.47 even 6 1764.2.j.i.1177.3 yes 24
63.52 odd 6 inner 5292.2.i.j.2125.1 24
63.61 odd 6 5292.2.j.i.3529.1 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1764.2.i.j.373.6 24 21.20 even 2
1764.2.i.j.373.7 24 3.2 odd 2
1764.2.i.j.1537.6 24 63.38 even 6
1764.2.i.j.1537.7 24 63.11 odd 6
1764.2.j.i.589.3 24 21.5 even 6
1764.2.j.i.589.10 yes 24 21.2 odd 6
1764.2.j.i.1177.3 yes 24 63.47 even 6
1764.2.j.i.1177.10 yes 24 63.2 odd 6
1764.2.l.j.949.2 24 21.11 odd 6
1764.2.l.j.949.11 24 21.17 even 6
1764.2.l.j.961.2 24 9.2 odd 6
1764.2.l.j.961.11 24 63.20 even 6
5292.2.i.j.1549.1 24 7.6 odd 2 inner
5292.2.i.j.1549.12 24 1.1 even 1 trivial
5292.2.i.j.2125.1 24 63.52 odd 6 inner
5292.2.i.j.2125.12 24 63.25 even 3 inner
5292.2.j.i.1765.1 24 7.5 odd 6
5292.2.j.i.1765.12 24 7.2 even 3
5292.2.j.i.3529.1 24 63.61 odd 6
5292.2.j.i.3529.12 24 63.16 even 3
5292.2.l.j.361.1 24 7.4 even 3
5292.2.l.j.361.12 24 7.3 odd 6
5292.2.l.j.3313.1 24 9.7 even 3
5292.2.l.j.3313.12 24 63.34 odd 6