Properties

Label 1764.2.j.i.589.3
Level $1764$
Weight $2$
Character 1764.589
Analytic conductor $14.086$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1764,2,Mod(589,1764)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1764, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1764.589");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1764.j (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.0856109166\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 589.3
Character \(\chi\) \(=\) 1764.589
Dual form 1764.2.j.i.1177.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.47192 - 0.912932i) q^{3} +(1.94623 - 3.37097i) q^{5} +(1.33311 + 2.68753i) q^{9} +O(q^{10})\) \(q+(-1.47192 - 0.912932i) q^{3} +(1.94623 - 3.37097i) q^{5} +(1.33311 + 2.68753i) q^{9} +(-2.18778 - 3.78935i) q^{11} +(0.792201 - 1.37213i) q^{13} +(-5.94217 + 3.18503i) q^{15} +5.33356 q^{17} +4.64323 q^{19} +(-0.183900 + 0.318523i) q^{23} +(-5.07564 - 8.79126i) q^{25} +(0.491301 - 5.17287i) q^{27} +(-5.08750 - 8.81180i) q^{29} +(-1.14776 + 1.98798i) q^{31} +(-0.239175 + 7.57493i) q^{33} +10.8803 q^{37} +(-2.41872 + 1.29645i) q^{39} +(0.690443 - 1.19588i) q^{41} +(3.81699 + 6.61122i) q^{43} +(11.6541 + 0.736684i) q^{45} +(-3.80432 - 6.58928i) q^{47} +(-7.85058 - 4.86918i) q^{51} -0.925693 q^{53} -17.0317 q^{55} +(-6.83447 - 4.23895i) q^{57} +(-0.460475 + 0.797565i) q^{59} +(3.27780 + 5.67731i) q^{61} +(-3.08361 - 5.34097i) q^{65} +(-7.50420 + 12.9976i) q^{67} +(0.561476 - 0.300954i) q^{69} -4.91059 q^{71} -7.56707 q^{73} +(-0.554885 + 17.5738i) q^{75} +(-0.987715 - 1.71077i) q^{79} +(-5.44564 + 7.16554i) q^{81} +(0.253011 + 0.438227i) q^{83} +(10.3803 - 17.9793i) q^{85} +(-0.556181 + 17.6148i) q^{87} +12.2197 q^{89} +(3.50431 - 1.87833i) q^{93} +(9.03679 - 15.6522i) q^{95} +(-4.45315 - 7.71308i) q^{97} +(7.26745 - 10.9314i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 24 q + 8 q^{9} - 4 q^{11} - 28 q^{15} - 8 q^{23} - 12 q^{25} - 32 q^{29} + 24 q^{37} - 40 q^{51} + 32 q^{53} + 52 q^{57} - 36 q^{65} + 12 q^{67} + 48 q^{71} + 12 q^{79} + 16 q^{81} + 12 q^{85} + 48 q^{93} + 32 q^{95} - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1764\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(883\) \(1081\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.47192 0.912932i −0.849815 0.527082i
\(4\) 0 0
\(5\) 1.94623 3.37097i 0.870381 1.50754i 0.00877856 0.999961i \(-0.497206\pi\)
0.861603 0.507583i \(-0.169461\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 1.33311 + 2.68753i 0.444370 + 0.895844i
\(10\) 0 0
\(11\) −2.18778 3.78935i −0.659642 1.14253i −0.980708 0.195476i \(-0.937375\pi\)
0.321067 0.947057i \(-0.395959\pi\)
\(12\) 0 0
\(13\) 0.792201 1.37213i 0.219717 0.380561i −0.735004 0.678062i \(-0.762820\pi\)
0.954721 + 0.297501i \(0.0961533\pi\)
\(14\) 0 0
\(15\) −5.94217 + 3.18503i −1.53426 + 0.822371i
\(16\) 0 0
\(17\) 5.33356 1.29358 0.646789 0.762669i \(-0.276111\pi\)
0.646789 + 0.762669i \(0.276111\pi\)
\(18\) 0 0
\(19\) 4.64323 1.06523 0.532614 0.846358i \(-0.321210\pi\)
0.532614 + 0.846358i \(0.321210\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −0.183900 + 0.318523i −0.0383457 + 0.0664167i −0.884561 0.466424i \(-0.845542\pi\)
0.846216 + 0.532841i \(0.178875\pi\)
\(24\) 0 0
\(25\) −5.07564 8.79126i −1.01513 1.75825i
\(26\) 0 0
\(27\) 0.491301 5.17287i 0.0945509 0.995520i
\(28\) 0 0
\(29\) −5.08750 8.81180i −0.944724 1.63631i −0.756302 0.654222i \(-0.772996\pi\)
−0.188422 0.982088i \(-0.560337\pi\)
\(30\) 0 0
\(31\) −1.14776 + 1.98798i −0.206144 + 0.357052i −0.950497 0.310735i \(-0.899425\pi\)
0.744353 + 0.667787i \(0.232758\pi\)
\(32\) 0 0
\(33\) −0.239175 + 7.57493i −0.0416351 + 1.31863i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 10.8803 1.78872 0.894359 0.447351i \(-0.147632\pi\)
0.894359 + 0.447351i \(0.147632\pi\)
\(38\) 0 0
\(39\) −2.41872 + 1.29645i −0.387305 + 0.207597i
\(40\) 0 0
\(41\) 0.690443 1.19588i 0.107829 0.186766i −0.807061 0.590467i \(-0.798943\pi\)
0.914891 + 0.403702i \(0.132277\pi\)
\(42\) 0 0
\(43\) 3.81699 + 6.61122i 0.582086 + 1.00820i 0.995232 + 0.0975372i \(0.0310965\pi\)
−0.413146 + 0.910665i \(0.635570\pi\)
\(44\) 0 0
\(45\) 11.6541 + 0.736684i 1.73730 + 0.109818i
\(46\) 0 0
\(47\) −3.80432 6.58928i −0.554918 0.961145i −0.997910 0.0646200i \(-0.979416\pi\)
0.442992 0.896525i \(-0.353917\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −7.85058 4.86918i −1.09930 0.681821i
\(52\) 0 0
\(53\) −0.925693 −0.127154 −0.0635769 0.997977i \(-0.520251\pi\)
−0.0635769 + 0.997977i \(0.520251\pi\)
\(54\) 0 0
\(55\) −17.0317 −2.29656
\(56\) 0 0
\(57\) −6.83447 4.23895i −0.905247 0.561463i
\(58\) 0 0
\(59\) −0.460475 + 0.797565i −0.0599487 + 0.103834i −0.894442 0.447184i \(-0.852427\pi\)
0.834493 + 0.551018i \(0.185760\pi\)
\(60\) 0 0
\(61\) 3.27780 + 5.67731i 0.419679 + 0.726905i 0.995907 0.0903836i \(-0.0288093\pi\)
−0.576228 + 0.817289i \(0.695476\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −3.08361 5.34097i −0.382475 0.662466i
\(66\) 0 0
\(67\) −7.50420 + 12.9976i −0.916783 + 1.58792i −0.112514 + 0.993650i \(0.535890\pi\)
−0.804269 + 0.594265i \(0.797443\pi\)
\(68\) 0 0
\(69\) 0.561476 0.300954i 0.0675938 0.0362306i
\(70\) 0 0
\(71\) −4.91059 −0.582780 −0.291390 0.956604i \(-0.594118\pi\)
−0.291390 + 0.956604i \(0.594118\pi\)
\(72\) 0 0
\(73\) −7.56707 −0.885658 −0.442829 0.896606i \(-0.646025\pi\)
−0.442829 + 0.896606i \(0.646025\pi\)
\(74\) 0 0
\(75\) −0.554885 + 17.5738i −0.0640726 + 2.02924i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −0.987715 1.71077i −0.111127 0.192477i 0.805098 0.593142i \(-0.202113\pi\)
−0.916225 + 0.400665i \(0.868779\pi\)
\(80\) 0 0
\(81\) −5.44564 + 7.16554i −0.605071 + 0.796171i
\(82\) 0 0
\(83\) 0.253011 + 0.438227i 0.0277715 + 0.0481017i 0.879577 0.475756i \(-0.157826\pi\)
−0.851806 + 0.523858i \(0.824492\pi\)
\(84\) 0 0
\(85\) 10.3803 17.9793i 1.12591 1.95013i
\(86\) 0 0
\(87\) −0.556181 + 17.6148i −0.0596289 + 1.88851i
\(88\) 0 0
\(89\) 12.2197 1.29529 0.647645 0.761942i \(-0.275754\pi\)
0.647645 + 0.761942i \(0.275754\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 3.50431 1.87833i 0.363380 0.194773i
\(94\) 0 0
\(95\) 9.03679 15.6522i 0.927155 1.60588i
\(96\) 0 0
\(97\) −4.45315 7.71308i −0.452149 0.783145i 0.546370 0.837544i \(-0.316009\pi\)
−0.998519 + 0.0543987i \(0.982676\pi\)
\(98\) 0 0
\(99\) 7.26745 10.9314i 0.730406 1.09864i
\(100\) 0 0
\(101\) 5.51180 + 9.54672i 0.548445 + 0.949935i 0.998381 + 0.0568740i \(0.0181133\pi\)
−0.449936 + 0.893061i \(0.648553\pi\)
\(102\) 0 0
\(103\) 1.36543 2.36499i 0.134540 0.233029i −0.790882 0.611969i \(-0.790378\pi\)
0.925421 + 0.378939i \(0.123711\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −10.7921 −1.04331 −0.521655 0.853156i \(-0.674685\pi\)
−0.521655 + 0.853156i \(0.674685\pi\)
\(108\) 0 0
\(109\) −9.98374 −0.956269 −0.478134 0.878287i \(-0.658687\pi\)
−0.478134 + 0.878287i \(0.658687\pi\)
\(110\) 0 0
\(111\) −16.0150 9.93302i −1.52008 0.942800i
\(112\) 0 0
\(113\) −6.12019 + 10.6005i −0.575739 + 0.997209i 0.420222 + 0.907421i \(0.361952\pi\)
−0.995961 + 0.0897875i \(0.971381\pi\)
\(114\) 0 0
\(115\) 0.715822 + 1.23984i 0.0667508 + 0.115616i
\(116\) 0 0
\(117\) 4.74374 + 0.299862i 0.438559 + 0.0277223i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −4.07280 + 7.05429i −0.370254 + 0.641299i
\(122\) 0 0
\(123\) −2.10804 + 1.12992i −0.190075 + 0.101881i
\(124\) 0 0
\(125\) −20.0511 −1.79343
\(126\) 0 0
\(127\) −13.2005 −1.17135 −0.585677 0.810544i \(-0.699171\pi\)
−0.585677 + 0.810544i \(0.699171\pi\)
\(128\) 0 0
\(129\) 0.417286 13.2159i 0.0367399 1.16359i
\(130\) 0 0
\(131\) 2.54342 4.40532i 0.222219 0.384895i −0.733262 0.679946i \(-0.762003\pi\)
0.955482 + 0.295051i \(0.0953366\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −16.4814 11.7238i −1.41850 1.00902i
\(136\) 0 0
\(137\) −6.67208 11.5564i −0.570034 0.987328i −0.996562 0.0828538i \(-0.973597\pi\)
0.426527 0.904475i \(-0.359737\pi\)
\(138\) 0 0
\(139\) 4.85642 8.41157i 0.411916 0.713460i −0.583183 0.812341i \(-0.698193\pi\)
0.995099 + 0.0988809i \(0.0315263\pi\)
\(140\) 0 0
\(141\) −0.415901 + 13.1720i −0.0350251 + 1.10928i
\(142\) 0 0
\(143\) −6.93265 −0.579738
\(144\) 0 0
\(145\) −39.6058 −3.28908
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −6.92116 + 11.9878i −0.567004 + 0.982079i 0.429856 + 0.902897i \(0.358564\pi\)
−0.996860 + 0.0791820i \(0.974769\pi\)
\(150\) 0 0
\(151\) −11.4380 19.8112i −0.930809 1.61221i −0.781942 0.623352i \(-0.785771\pi\)
−0.148867 0.988857i \(-0.547563\pi\)
\(152\) 0 0
\(153\) 7.11022 + 14.3341i 0.574827 + 1.15884i
\(154\) 0 0
\(155\) 4.46762 + 7.73815i 0.358848 + 0.621543i
\(156\) 0 0
\(157\) 5.78991 10.0284i 0.462085 0.800355i −0.536980 0.843595i \(-0.680435\pi\)
0.999065 + 0.0432404i \(0.0137681\pi\)
\(158\) 0 0
\(159\) 1.36255 + 0.845095i 0.108057 + 0.0670204i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 3.41155 0.267213 0.133607 0.991034i \(-0.457344\pi\)
0.133607 + 0.991034i \(0.457344\pi\)
\(164\) 0 0
\(165\) 25.0694 + 15.5488i 1.95165 + 1.21047i
\(166\) 0 0
\(167\) 4.69996 8.14057i 0.363694 0.629936i −0.624872 0.780727i \(-0.714849\pi\)
0.988566 + 0.150791i \(0.0481821\pi\)
\(168\) 0 0
\(169\) 5.24484 + 9.08432i 0.403449 + 0.698794i
\(170\) 0 0
\(171\) 6.18993 + 12.4788i 0.473355 + 0.954278i
\(172\) 0 0
\(173\) −3.20256 5.54700i −0.243486 0.421730i 0.718219 0.695817i \(-0.244958\pi\)
−0.961705 + 0.274087i \(0.911624\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 1.40591 0.753572i 0.105674 0.0566419i
\(178\) 0 0
\(179\) 17.0808 1.27668 0.638338 0.769756i \(-0.279622\pi\)
0.638338 + 0.769756i \(0.279622\pi\)
\(180\) 0 0
\(181\) −1.35988 −0.101079 −0.0505395 0.998722i \(-0.516094\pi\)
−0.0505395 + 0.998722i \(0.516094\pi\)
\(182\) 0 0
\(183\) 0.358339 11.3490i 0.0264892 0.838940i
\(184\) 0 0
\(185\) 21.1757 36.6773i 1.55687 2.69657i
\(186\) 0 0
\(187\) −11.6687 20.2107i −0.853298 1.47796i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 8.94048 + 15.4854i 0.646911 + 1.12048i 0.983857 + 0.178958i \(0.0572727\pi\)
−0.336946 + 0.941524i \(0.609394\pi\)
\(192\) 0 0
\(193\) 6.50664 11.2698i 0.468358 0.811220i −0.530988 0.847380i \(-0.678179\pi\)
0.999346 + 0.0361591i \(0.0115123\pi\)
\(194\) 0 0
\(195\) −0.337110 + 10.6766i −0.0241410 + 0.764569i
\(196\) 0 0
\(197\) 6.36486 0.453478 0.226739 0.973956i \(-0.427194\pi\)
0.226739 + 0.973956i \(0.427194\pi\)
\(198\) 0 0
\(199\) −23.1529 −1.64126 −0.820631 0.571458i \(-0.806378\pi\)
−0.820631 + 0.571458i \(0.806378\pi\)
\(200\) 0 0
\(201\) 22.9116 12.2807i 1.61606 0.866214i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −2.68753 4.65493i −0.187705 0.325114i
\(206\) 0 0
\(207\) −1.10120 0.0696093i −0.0765387 0.00483818i
\(208\) 0 0
\(209\) −10.1584 17.5948i −0.702669 1.21706i
\(210\) 0 0
\(211\) −5.67737 + 9.83349i −0.390846 + 0.676965i −0.992561 0.121745i \(-0.961151\pi\)
0.601715 + 0.798711i \(0.294484\pi\)
\(212\) 0 0
\(213\) 7.22801 + 4.48304i 0.495255 + 0.307173i
\(214\) 0 0
\(215\) 29.7150 2.02655
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 11.1381 + 6.90822i 0.752645 + 0.466814i
\(220\) 0 0
\(221\) 4.22525 7.31835i 0.284221 0.492285i
\(222\) 0 0
\(223\) 13.3206 + 23.0719i 0.892011 + 1.54501i 0.837461 + 0.546498i \(0.184039\pi\)
0.0545504 + 0.998511i \(0.482627\pi\)
\(224\) 0 0
\(225\) 16.8604 25.3606i 1.12403 1.69071i
\(226\) 0 0
\(227\) −8.30136 14.3784i −0.550981 0.954326i −0.998204 0.0599042i \(-0.980920\pi\)
0.447224 0.894422i \(-0.352413\pi\)
\(228\) 0 0
\(229\) −7.25072 + 12.5586i −0.479141 + 0.829897i −0.999714 0.0239205i \(-0.992385\pi\)
0.520573 + 0.853817i \(0.325718\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 15.9804 1.04691 0.523456 0.852053i \(-0.324643\pi\)
0.523456 + 0.852053i \(0.324643\pi\)
\(234\) 0 0
\(235\) −29.6164 −1.93196
\(236\) 0 0
\(237\) −0.107980 + 3.41984i −0.00701407 + 0.222143i
\(238\) 0 0
\(239\) −9.58994 + 16.6103i −0.620322 + 1.07443i 0.369104 + 0.929388i \(0.379665\pi\)
−0.989426 + 0.145040i \(0.953669\pi\)
\(240\) 0 0
\(241\) 11.6785 + 20.2277i 0.752276 + 1.30298i 0.946717 + 0.322067i \(0.104377\pi\)
−0.194441 + 0.980914i \(0.562289\pi\)
\(242\) 0 0
\(243\) 14.5572 5.57562i 0.933846 0.357676i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 3.67837 6.37112i 0.234049 0.405384i
\(248\) 0 0
\(249\) 0.0276599 0.876018i 0.00175288 0.0555154i
\(250\) 0 0
\(251\) 30.4619 1.92274 0.961371 0.275257i \(-0.0887631\pi\)
0.961371 + 0.275257i \(0.0887631\pi\)
\(252\) 0 0
\(253\) 1.60933 0.101178
\(254\) 0 0
\(255\) −31.6929 + 16.9875i −1.98469 + 1.06380i
\(256\) 0 0
\(257\) −3.40438 + 5.89657i −0.212360 + 0.367818i −0.952453 0.304687i \(-0.901448\pi\)
0.740093 + 0.672505i \(0.234782\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 16.8998 25.4199i 1.04607 1.57345i
\(262\) 0 0
\(263\) 2.30000 + 3.98372i 0.141824 + 0.245647i 0.928184 0.372122i \(-0.121370\pi\)
−0.786359 + 0.617769i \(0.788037\pi\)
\(264\) 0 0
\(265\) −1.80161 + 3.12049i −0.110672 + 0.191690i
\(266\) 0 0
\(267\) −17.9865 11.1558i −1.10076 0.682724i
\(268\) 0 0
\(269\) 8.50179 0.518363 0.259182 0.965829i \(-0.416547\pi\)
0.259182 + 0.965829i \(0.416547\pi\)
\(270\) 0 0
\(271\) −6.58381 −0.399938 −0.199969 0.979802i \(-0.564084\pi\)
−0.199969 + 0.979802i \(0.564084\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −22.2088 + 38.4668i −1.33924 + 2.31963i
\(276\) 0 0
\(277\) 5.63483 + 9.75982i 0.338564 + 0.586411i 0.984163 0.177266i \(-0.0567254\pi\)
−0.645599 + 0.763677i \(0.723392\pi\)
\(278\) 0 0
\(279\) −6.87285 0.434448i −0.411467 0.0260097i
\(280\) 0 0
\(281\) 7.50741 + 13.0032i 0.447854 + 0.775707i 0.998246 0.0592000i \(-0.0188550\pi\)
−0.550392 + 0.834907i \(0.685522\pi\)
\(282\) 0 0
\(283\) 7.33657 12.7073i 0.436114 0.755371i −0.561272 0.827631i \(-0.689688\pi\)
0.997386 + 0.0722602i \(0.0230212\pi\)
\(284\) 0 0
\(285\) −27.5908 + 14.7888i −1.63434 + 0.876014i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 11.4469 0.673344
\(290\) 0 0
\(291\) −0.486833 + 15.4185i −0.0285386 + 0.903848i
\(292\) 0 0
\(293\) 9.38981 16.2636i 0.548559 0.950132i −0.449815 0.893122i \(-0.648510\pi\)
0.998374 0.0570099i \(-0.0181567\pi\)
\(294\) 0 0
\(295\) 1.79238 + 3.10449i 0.104356 + 0.180751i
\(296\) 0 0
\(297\) −20.6767 + 9.45542i −1.19978 + 0.548659i
\(298\) 0 0
\(299\) 0.291371 + 0.504669i 0.0168504 + 0.0291858i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0.602568 19.0839i 0.0346166 1.09634i
\(304\) 0 0
\(305\) 25.5174 1.46112
\(306\) 0 0
\(307\) 28.9425 1.65184 0.825919 0.563789i \(-0.190657\pi\)
0.825919 + 0.563789i \(0.190657\pi\)
\(308\) 0 0
\(309\) −4.16888 + 2.23454i −0.237159 + 0.127118i
\(310\) 0 0
\(311\) −6.79681 + 11.7724i −0.385412 + 0.667553i −0.991826 0.127596i \(-0.959274\pi\)
0.606414 + 0.795149i \(0.292607\pi\)
\(312\) 0 0
\(313\) −6.93222 12.0070i −0.391832 0.678673i 0.600859 0.799355i \(-0.294825\pi\)
−0.992691 + 0.120682i \(0.961492\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −11.5428 19.9927i −0.648309 1.12290i −0.983527 0.180764i \(-0.942143\pi\)
0.335217 0.942141i \(-0.391190\pi\)
\(318\) 0 0
\(319\) −22.2607 + 38.5566i −1.24636 + 2.15876i
\(320\) 0 0
\(321\) 15.8851 + 9.85245i 0.886621 + 0.549910i
\(322\) 0 0
\(323\) 24.7649 1.37796
\(324\) 0 0
\(325\) −16.0837 −0.892163
\(326\) 0 0
\(327\) 14.6953 + 9.11448i 0.812651 + 0.504032i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 7.82647 + 13.5558i 0.430182 + 0.745097i 0.996889 0.0788227i \(-0.0251161\pi\)
−0.566707 + 0.823920i \(0.691783\pi\)
\(332\) 0 0
\(333\) 14.5047 + 29.2413i 0.794852 + 1.60241i
\(334\) 0 0
\(335\) 29.2098 + 50.5929i 1.59590 + 2.76418i
\(336\) 0 0
\(337\) 3.56686 6.17799i 0.194299 0.336537i −0.752371 0.658739i \(-0.771090\pi\)
0.946671 + 0.322203i \(0.104423\pi\)
\(338\) 0 0
\(339\) 18.6860 10.0158i 1.01488 0.543981i
\(340\) 0 0
\(341\) 10.0442 0.543925
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0.0782560 2.47845i 0.00421316 0.133435i
\(346\) 0 0
\(347\) −2.77827 + 4.81211i −0.149146 + 0.258328i −0.930912 0.365244i \(-0.880986\pi\)
0.781766 + 0.623571i \(0.214319\pi\)
\(348\) 0 0
\(349\) 5.33296 + 9.23696i 0.285467 + 0.494443i 0.972722 0.231973i \(-0.0745181\pi\)
−0.687256 + 0.726416i \(0.741185\pi\)
\(350\) 0 0
\(351\) −6.70866 4.77208i −0.358082 0.254715i
\(352\) 0 0
\(353\) −6.42132 11.1221i −0.341772 0.591967i 0.642989 0.765875i \(-0.277694\pi\)
−0.984762 + 0.173908i \(0.944361\pi\)
\(354\) 0 0
\(355\) −9.55715 + 16.5535i −0.507241 + 0.878567i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 25.6835 1.35552 0.677761 0.735282i \(-0.262950\pi\)
0.677761 + 0.735282i \(0.262950\pi\)
\(360\) 0 0
\(361\) 2.55954 0.134713
\(362\) 0 0
\(363\) 12.4349 6.66518i 0.652665 0.349831i
\(364\) 0 0
\(365\) −14.7273 + 25.5084i −0.770861 + 1.33517i
\(366\) 0 0
\(367\) −8.49197 14.7085i −0.443277 0.767778i 0.554653 0.832082i \(-0.312851\pi\)
−0.997930 + 0.0643031i \(0.979518\pi\)
\(368\) 0 0
\(369\) 4.13441 + 0.261345i 0.215229 + 0.0136051i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 4.38503 7.59509i 0.227048 0.393259i −0.729884 0.683571i \(-0.760426\pi\)
0.956932 + 0.290312i \(0.0937592\pi\)
\(374\) 0 0
\(375\) 29.5137 + 18.3053i 1.52408 + 0.945283i
\(376\) 0 0
\(377\) −16.1213 −0.830288
\(378\) 0 0
\(379\) 11.7002 0.601001 0.300500 0.953782i \(-0.402846\pi\)
0.300500 + 0.953782i \(0.402846\pi\)
\(380\) 0 0
\(381\) 19.4301 + 12.0512i 0.995434 + 0.617400i
\(382\) 0 0
\(383\) −4.50360 + 7.80046i −0.230123 + 0.398585i −0.957844 0.287288i \(-0.907246\pi\)
0.727721 + 0.685873i \(0.240580\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −12.6794 + 19.0718i −0.644530 + 0.969472i
\(388\) 0 0
\(389\) 4.89390 + 8.47649i 0.248131 + 0.429775i 0.963007 0.269476i \(-0.0868504\pi\)
−0.714876 + 0.699251i \(0.753517\pi\)
\(390\) 0 0
\(391\) −0.980839 + 1.69886i −0.0496032 + 0.0859152i
\(392\) 0 0
\(393\) −7.76547 + 4.16233i −0.391716 + 0.209962i
\(394\) 0 0
\(395\) −7.68929 −0.386890
\(396\) 0 0
\(397\) −13.9186 −0.698554 −0.349277 0.937020i \(-0.613573\pi\)
−0.349277 + 0.937020i \(0.613573\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 11.7414 20.3367i 0.586336 1.01556i −0.408371 0.912816i \(-0.633903\pi\)
0.994707 0.102748i \(-0.0327636\pi\)
\(402\) 0 0
\(403\) 1.81852 + 3.14976i 0.0905867 + 0.156901i
\(404\) 0 0
\(405\) 13.5564 + 32.3029i 0.673621 + 1.60514i
\(406\) 0 0
\(407\) −23.8038 41.2295i −1.17991 2.04367i
\(408\) 0 0
\(409\) −6.81225 + 11.7992i −0.336844 + 0.583431i −0.983837 0.179064i \(-0.942693\pi\)
0.646993 + 0.762496i \(0.276026\pi\)
\(410\) 0 0
\(411\) −0.729413 + 23.1013i −0.0359793 + 1.13950i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 1.96967 0.0966873
\(416\) 0 0
\(417\) −14.8275 + 7.94759i −0.726104 + 0.389195i
\(418\) 0 0
\(419\) 3.97733 6.88894i 0.194305 0.336547i −0.752367 0.658744i \(-0.771088\pi\)
0.946673 + 0.322197i \(0.104421\pi\)
\(420\) 0 0
\(421\) 1.30584 + 2.26178i 0.0636426 + 0.110232i 0.896091 0.443870i \(-0.146395\pi\)
−0.832448 + 0.554102i \(0.813062\pi\)
\(422\) 0 0
\(423\) 12.6373 19.0085i 0.614447 0.924223i
\(424\) 0 0
\(425\) −27.0712 46.8887i −1.31315 2.27444i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 10.2043 + 6.32904i 0.492670 + 0.305569i
\(430\) 0 0
\(431\) −1.58213 −0.0762086 −0.0381043 0.999274i \(-0.512132\pi\)
−0.0381043 + 0.999274i \(0.512132\pi\)
\(432\) 0 0
\(433\) −5.17110 −0.248507 −0.124254 0.992250i \(-0.539654\pi\)
−0.124254 + 0.992250i \(0.539654\pi\)
\(434\) 0 0
\(435\) 58.2966 + 36.1574i 2.79511 + 1.73361i
\(436\) 0 0
\(437\) −0.853887 + 1.47898i −0.0408470 + 0.0707490i
\(438\) 0 0
\(439\) −12.4806 21.6170i −0.595665 1.03172i −0.993453 0.114244i \(-0.963555\pi\)
0.397788 0.917477i \(-0.369778\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −0.542263 0.939227i −0.0257637 0.0446240i 0.852856 0.522146i \(-0.174868\pi\)
−0.878620 + 0.477522i \(0.841535\pi\)
\(444\) 0 0
\(445\) 23.7825 41.1924i 1.12740 1.95271i
\(446\) 0 0
\(447\) 21.1315 11.3266i 0.999484 0.535728i
\(448\) 0 0
\(449\) 4.23372 0.199802 0.0999008 0.994997i \(-0.468147\pi\)
0.0999008 + 0.994997i \(0.468147\pi\)
\(450\) 0 0
\(451\) −6.04216 −0.284514
\(452\) 0 0
\(453\) −1.25044 + 39.6026i −0.0587506 + 1.86069i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 18.1513 + 31.4390i 0.849083 + 1.47065i 0.882028 + 0.471197i \(0.156178\pi\)
−0.0329453 + 0.999457i \(0.510489\pi\)
\(458\) 0 0
\(459\) 2.62038 27.5898i 0.122309 1.28778i
\(460\) 0 0
\(461\) 1.71236 + 2.96589i 0.0797524 + 0.138135i 0.903143 0.429340i \(-0.141254\pi\)
−0.823391 + 0.567475i \(0.807920\pi\)
\(462\) 0 0
\(463\) 2.38499 4.13092i 0.110840 0.191980i −0.805269 0.592909i \(-0.797979\pi\)
0.916109 + 0.400929i \(0.131313\pi\)
\(464\) 0 0
\(465\) 0.488414 15.4686i 0.0226497 0.717338i
\(466\) 0 0
\(467\) 20.0979 0.930021 0.465010 0.885305i \(-0.346051\pi\)
0.465010 + 0.885305i \(0.346051\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −17.6776 + 9.47525i −0.814539 + 0.436597i
\(472\) 0 0
\(473\) 16.7015 28.9279i 0.767936 1.33010i
\(474\) 0 0
\(475\) −23.5673 40.8198i −1.08134 1.87294i
\(476\) 0 0
\(477\) −1.23405 2.48783i −0.0565033 0.113910i
\(478\) 0 0
\(479\) 8.42528 + 14.5930i 0.384961 + 0.666772i 0.991764 0.128080i \(-0.0408816\pi\)
−0.606803 + 0.794852i \(0.707548\pi\)
\(480\) 0 0
\(481\) 8.61941 14.9293i 0.393011 0.680716i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −34.6675 −1.57417
\(486\) 0 0
\(487\) 23.9831 1.08678 0.543389 0.839481i \(-0.317141\pi\)
0.543389 + 0.839481i \(0.317141\pi\)
\(488\) 0 0
\(489\) −5.02153 3.11451i −0.227082 0.140843i
\(490\) 0 0
\(491\) −1.07281 + 1.85816i −0.0484153 + 0.0838577i −0.889217 0.457485i \(-0.848750\pi\)
0.840802 + 0.541342i \(0.182084\pi\)
\(492\) 0 0
\(493\) −27.1345 46.9983i −1.22207 2.11670i
\(494\) 0 0
\(495\) −22.7052 45.7733i −1.02052 2.05736i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 13.8577 24.0023i 0.620357 1.07449i −0.369062 0.929405i \(-0.620321\pi\)
0.989419 0.145085i \(-0.0463455\pi\)
\(500\) 0 0
\(501\) −14.3498 + 7.69154i −0.641100 + 0.343633i
\(502\) 0 0
\(503\) −22.4265 −0.999949 −0.499974 0.866040i \(-0.666657\pi\)
−0.499974 + 0.866040i \(0.666657\pi\)
\(504\) 0 0
\(505\) 42.9090 1.90943
\(506\) 0 0
\(507\) 0.573382 18.1596i 0.0254648 0.806496i
\(508\) 0 0
\(509\) 14.6844 25.4342i 0.650876 1.12735i −0.332034 0.943267i \(-0.607735\pi\)
0.982911 0.184083i \(-0.0589316\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 2.28122 24.0188i 0.100718 1.06046i
\(514\) 0 0
\(515\) −5.31488 9.20563i −0.234201 0.405649i
\(516\) 0 0
\(517\) −16.6461 + 28.8318i −0.732093 + 1.26802i
\(518\) 0 0
\(519\) −0.350114 + 11.0885i −0.0153683 + 0.486730i
\(520\) 0 0
\(521\) −16.5078 −0.723219 −0.361610 0.932330i \(-0.617773\pi\)
−0.361610 + 0.932330i \(0.617773\pi\)
\(522\) 0 0
\(523\) 44.6952 1.95439 0.977193 0.212352i \(-0.0681122\pi\)
0.977193 + 0.212352i \(0.0681122\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −6.12166 + 10.6030i −0.266664 + 0.461875i
\(528\) 0 0
\(529\) 11.4324 + 19.8014i 0.497059 + 0.860932i
\(530\) 0 0
\(531\) −2.75734 0.174298i −0.119659 0.00756388i
\(532\) 0 0
\(533\) −1.09394 1.89476i −0.0473838 0.0820711i
\(534\) 0 0
\(535\) −21.0039 + 36.3798i −0.908078 + 1.57284i
\(536\) 0 0
\(537\) −25.1415 15.5936i −1.08494 0.672912i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −20.0737 −0.863037 −0.431519 0.902104i \(-0.642022\pi\)
−0.431519 + 0.902104i \(0.642022\pi\)
\(542\) 0 0
\(543\) 2.00164 + 1.24148i 0.0858985 + 0.0532769i
\(544\) 0 0
\(545\) −19.4307 + 33.6549i −0.832319 + 1.44162i
\(546\) 0 0
\(547\) 6.35012 + 10.9987i 0.271512 + 0.470272i 0.969249 0.246082i \(-0.0791432\pi\)
−0.697738 + 0.716353i \(0.745810\pi\)
\(548\) 0 0
\(549\) −10.8883 + 16.3777i −0.464701 + 0.698981i
\(550\) 0 0
\(551\) −23.6224 40.9152i −1.00635 1.74305i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −64.6529 + 34.6542i −2.74436 + 1.47099i
\(556\) 0 0
\(557\) 14.6949 0.622642 0.311321 0.950305i \(-0.399229\pi\)
0.311321 + 0.950305i \(0.399229\pi\)
\(558\) 0 0
\(559\) 12.0953 0.511576
\(560\) 0 0
\(561\) −1.27566 + 40.4013i −0.0538583 + 1.70575i
\(562\) 0 0
\(563\) 13.3930 23.1974i 0.564448 0.977653i −0.432653 0.901561i \(-0.642422\pi\)
0.997101 0.0760922i \(-0.0242443\pi\)
\(564\) 0 0
\(565\) 23.8226 + 41.2620i 1.00222 + 1.73590i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −3.24168 5.61475i −0.135898 0.235383i 0.790042 0.613053i \(-0.210059\pi\)
−0.925940 + 0.377670i \(0.876725\pi\)
\(570\) 0 0
\(571\) −7.81632 + 13.5383i −0.327103 + 0.566559i −0.981936 0.189215i \(-0.939406\pi\)
0.654833 + 0.755774i \(0.272739\pi\)
\(572\) 0 0
\(573\) 0.977402 30.9553i 0.0408315 1.29318i
\(574\) 0 0
\(575\) 3.73363 0.155703
\(576\) 0 0
\(577\) 29.1600 1.21395 0.606974 0.794722i \(-0.292383\pi\)
0.606974 + 0.794722i \(0.292383\pi\)
\(578\) 0 0
\(579\) −19.8659 + 10.6482i −0.825597 + 0.442524i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 2.02522 + 3.50778i 0.0838759 + 0.145277i
\(584\) 0 0
\(585\) 10.2432 15.4074i 0.423506 0.637018i
\(586\) 0 0
\(587\) 2.33110 + 4.03758i 0.0962146 + 0.166649i 0.910115 0.414356i \(-0.135993\pi\)
−0.813900 + 0.581005i \(0.802660\pi\)
\(588\) 0 0
\(589\) −5.32932 + 9.23065i −0.219591 + 0.380342i
\(590\) 0 0
\(591\) −9.36858 5.81069i −0.385372 0.239020i
\(592\) 0 0
\(593\) −31.6644 −1.30030 −0.650150 0.759805i \(-0.725294\pi\)
−0.650150 + 0.759805i \(0.725294\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 34.0792 + 21.1370i 1.39477 + 0.865079i
\(598\) 0 0
\(599\) 5.15268 8.92470i 0.210533 0.364653i −0.741349 0.671120i \(-0.765813\pi\)
0.951881 + 0.306467i \(0.0991468\pi\)
\(600\) 0 0
\(601\) 4.64993 + 8.05391i 0.189674 + 0.328526i 0.945142 0.326661i \(-0.105923\pi\)
−0.755467 + 0.655186i \(0.772590\pi\)
\(602\) 0 0
\(603\) −44.9355 2.84047i −1.82991 0.115673i
\(604\) 0 0
\(605\) 15.8532 + 27.4586i 0.644525 + 1.11635i
\(606\) 0 0
\(607\) 10.2484 17.7507i 0.415969 0.720480i −0.579561 0.814929i \(-0.696776\pi\)
0.995530 + 0.0944495i \(0.0301091\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −12.0551 −0.487699
\(612\) 0 0
\(613\) −14.3448 −0.579381 −0.289691 0.957120i \(-0.593552\pi\)
−0.289691 + 0.957120i \(0.593552\pi\)
\(614\) 0 0
\(615\) −0.293809 + 9.30522i −0.0118475 + 0.375223i
\(616\) 0 0
\(617\) −6.47499 + 11.2150i −0.260673 + 0.451499i −0.966421 0.256964i \(-0.917278\pi\)
0.705748 + 0.708463i \(0.250611\pi\)
\(618\) 0 0
\(619\) −17.6990 30.6556i −0.711383 1.23215i −0.964338 0.264674i \(-0.914736\pi\)
0.252955 0.967478i \(-0.418598\pi\)
\(620\) 0 0
\(621\) 1.55733 + 1.10778i 0.0624936 + 0.0444537i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −13.6460 + 23.6355i −0.545839 + 0.945422i
\(626\) 0 0
\(627\) −1.11055 + 35.1721i −0.0443509 + 1.40464i
\(628\) 0 0
\(629\) 58.0310 2.31385
\(630\) 0 0
\(631\) 33.1936 1.32141 0.660707 0.750644i \(-0.270256\pi\)
0.660707 + 0.750644i \(0.270256\pi\)
\(632\) 0 0
\(633\) 17.3339 9.29108i 0.688963 0.369287i
\(634\) 0 0
\(635\) −25.6912 + 44.4985i −1.01952 + 1.76587i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −6.54635 13.1974i −0.258970 0.522080i
\(640\) 0 0
\(641\) 0.119634 + 0.207213i 0.00472528 + 0.00818442i 0.868378 0.495902i \(-0.165163\pi\)
−0.863653 + 0.504087i \(0.831829\pi\)
\(642\) 0 0
\(643\) 4.57211 7.91913i 0.180307 0.312300i −0.761678 0.647955i \(-0.775624\pi\)
0.941985 + 0.335655i \(0.108958\pi\)
\(644\) 0 0
\(645\) −43.7382 27.1278i −1.72219 1.06816i
\(646\) 0 0
\(647\) −6.31214 −0.248156 −0.124078 0.992272i \(-0.539597\pi\)
−0.124078 + 0.992272i \(0.539597\pi\)
\(648\) 0 0
\(649\) 4.02968 0.158179
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 2.27888 3.94713i 0.0891793 0.154463i −0.817985 0.575239i \(-0.804909\pi\)
0.907164 + 0.420776i \(0.138242\pi\)
\(654\) 0 0
\(655\) −9.90015 17.1476i −0.386831 0.670011i
\(656\) 0 0
\(657\) −10.0877 20.3367i −0.393560 0.793411i
\(658\) 0 0
\(659\) −16.4631 28.5149i −0.641311 1.11078i −0.985140 0.171751i \(-0.945058\pi\)
0.343829 0.939032i \(-0.388276\pi\)
\(660\) 0 0
\(661\) 0.270668 0.468811i 0.0105278 0.0182346i −0.860714 0.509090i \(-0.829982\pi\)
0.871241 + 0.490855i \(0.163316\pi\)
\(662\) 0 0
\(663\) −12.9004 + 6.91467i −0.501010 + 0.268543i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 3.74235 0.144905
\(668\) 0 0
\(669\) 1.45625 46.1208i 0.0563017 1.78313i
\(670\) 0 0
\(671\) 14.3422 24.8415i 0.553676 0.958994i
\(672\) 0 0
\(673\) −11.8205 20.4737i −0.455647 0.789204i 0.543078 0.839682i \(-0.317259\pi\)
−0.998725 + 0.0504780i \(0.983926\pi\)
\(674\) 0 0
\(675\) −47.9697 + 21.9365i −1.84636 + 0.844335i
\(676\) 0 0
\(677\) −1.36494 2.36415i −0.0524591 0.0908618i 0.838603 0.544742i \(-0.183373\pi\)
−0.891062 + 0.453881i \(0.850039\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −0.907531 + 28.7424i −0.0347767 + 1.10141i
\(682\) 0 0
\(683\) −31.9279 −1.22169 −0.610844 0.791751i \(-0.709170\pi\)
−0.610844 + 0.791751i \(0.709170\pi\)
\(684\) 0 0
\(685\) −51.9417 −1.98459
\(686\) 0 0
\(687\) 22.1377 11.8659i 0.844605 0.452712i
\(688\) 0 0
\(689\) −0.733335 + 1.27017i −0.0279378 + 0.0483897i
\(690\) 0 0
\(691\) −1.19103 2.06292i −0.0453089 0.0784773i 0.842482 0.538725i \(-0.181094\pi\)
−0.887790 + 0.460248i \(0.847761\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −18.9034 32.7417i −0.717048 1.24196i
\(696\) 0 0
\(697\) 3.68252 6.37831i 0.139485 0.241596i
\(698\) 0 0
\(699\) −23.5219 14.5890i −0.889680 0.551808i
\(700\) 0 0
\(701\) 50.3767 1.90270 0.951350 0.308111i \(-0.0996968\pi\)
0.951350 + 0.308111i \(0.0996968\pi\)
\(702\) 0 0
\(703\) 50.5199 1.90539
\(704\) 0 0
\(705\) 43.5930 + 27.0377i 1.64181 + 1.01830i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −20.1600 34.9182i −0.757126 1.31138i −0.944310 0.329056i \(-0.893269\pi\)
0.187184 0.982325i \(-0.440064\pi\)
\(710\) 0 0
\(711\) 3.28102 4.93516i 0.123048 0.185083i
\(712\) 0 0
\(713\) −0.422146 0.731178i −0.0158095 0.0273828i
\(714\) 0 0
\(715\) −13.4926 + 23.3698i −0.504593 + 0.873981i
\(716\) 0 0
\(717\) 29.2797 15.6940i 1.09347 0.586105i
\(718\) 0 0
\(719\) 34.0893 1.27132 0.635658 0.771971i \(-0.280729\pi\)
0.635658 + 0.771971i \(0.280729\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 1.27673 40.4353i 0.0474820 1.50380i
\(724\) 0 0
\(725\) −51.6446 + 89.4510i −1.91803 + 3.32213i
\(726\) 0 0
\(727\) −10.9453 18.9578i −0.405938 0.703105i 0.588492 0.808503i \(-0.299722\pi\)
−0.994430 + 0.105398i \(0.966388\pi\)
\(728\) 0 0
\(729\) −26.5172 5.08288i −0.982120 0.188255i
\(730\) 0 0
\(731\) 20.3581 + 35.2613i 0.752973 + 1.30419i
\(732\) 0 0
\(733\) −4.34416 + 7.52430i −0.160455 + 0.277916i −0.935032 0.354563i \(-0.884630\pi\)
0.774577 + 0.632480i \(0.217963\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 65.6702 2.41899
\(738\) 0 0
\(739\) 6.69385 0.246237 0.123119 0.992392i \(-0.460710\pi\)
0.123119 + 0.992392i \(0.460710\pi\)
\(740\) 0 0
\(741\) −11.2307 + 6.01969i −0.412569 + 0.221139i
\(742\) 0 0
\(743\) 21.5001 37.2392i 0.788761 1.36617i −0.137965 0.990437i \(-0.544056\pi\)
0.926726 0.375737i \(-0.122611\pi\)
\(744\) 0 0
\(745\) 26.9404 + 46.6621i 0.987019 + 1.70957i
\(746\) 0 0
\(747\) −0.840458 + 1.26418i −0.0307508 + 0.0462539i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 8.36369 14.4863i 0.305196 0.528614i −0.672109 0.740452i \(-0.734612\pi\)
0.977305 + 0.211838i \(0.0679448\pi\)
\(752\) 0 0
\(753\) −44.8376 27.8097i −1.63397 1.01344i
\(754\) 0 0
\(755\) −89.0438 −3.24064
\(756\) 0 0
\(757\) −4.68561 −0.170301 −0.0851507 0.996368i \(-0.527137\pi\)
−0.0851507 + 0.996368i \(0.527137\pi\)
\(758\) 0 0
\(759\) −2.36881 1.46921i −0.0859823 0.0533289i
\(760\) 0 0
\(761\) −25.8242 + 44.7288i −0.936127 + 1.62142i −0.163514 + 0.986541i \(0.552283\pi\)
−0.772613 + 0.634878i \(0.781050\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 62.1580 + 3.92915i 2.24733 + 0.142059i
\(766\) 0 0
\(767\) 0.729576 + 1.26366i 0.0263435 + 0.0456282i
\(768\) 0 0
\(769\) −15.3910 + 26.6580i −0.555014 + 0.961313i 0.442888 + 0.896577i \(0.353954\pi\)
−0.997902 + 0.0647361i \(0.979379\pi\)
\(770\) 0 0
\(771\) 10.3942 5.57131i 0.374336 0.200646i
\(772\) 0 0
\(773\) −27.0517 −0.972982 −0.486491 0.873686i \(-0.661723\pi\)
−0.486491 + 0.873686i \(0.661723\pi\)
\(774\) 0 0
\(775\) 23.3025 0.837050
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 3.20588 5.55275i 0.114863 0.198948i
\(780\) 0 0
\(781\) 10.7433 + 18.6080i 0.384426 + 0.665845i
\(782\) 0 0
\(783\) −48.0818 + 21.9877i −1.71830 + 0.785777i
\(784\) 0 0
\(785\) −22.5370 39.0352i −0.804380 1.39323i
\(786\) 0 0
\(787\) −17.5997 + 30.4837i −0.627363 + 1.08662i 0.360716 + 0.932676i \(0.382532\pi\)
−0.988079 + 0.153949i \(0.950801\pi\)
\(788\) 0 0
\(789\) 0.251444 7.96348i 0.00895163 0.283507i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 10.3867 0.368842
\(794\) 0 0
\(795\) 5.50063 2.94836i 0.195087 0.104568i
\(796\) 0 0
\(797\) 23.8268 41.2692i 0.843988 1.46183i −0.0425084 0.999096i \(-0.513535\pi\)
0.886497 0.462735i \(-0.153132\pi\)
\(798\) 0 0
\(799\) −20.2906 35.1443i −0.717829 1.24332i
\(800\) 0 0
\(801\) 16.2903 + 32.8409i 0.575588 + 1.16038i
\(802\) 0 0
\(803\) 16.5551 + 28.6743i 0.584217 + 1.01189i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −12.5140 7.76156i −0.440513 0.273220i
\(808\) 0 0
\(809\) 19.7542 0.694521 0.347261 0.937769i \(-0.387112\pi\)
0.347261 + 0.937769i \(0.387112\pi\)
\(810\) 0 0
\(811\) 49.2424 1.72913 0.864567 0.502518i \(-0.167593\pi\)
0.864567 + 0.502518i \(0.167593\pi\)
\(812\) 0 0
\(813\) 9.69086 + 6.01057i 0.339873 + 0.210800i
\(814\) 0 0
\(815\) 6.63967 11.5002i 0.232577 0.402836i
\(816\) 0 0
\(817\) 17.7231 + 30.6974i 0.620054 + 1.07397i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −5.00013 8.66048i −0.174506 0.302253i 0.765484 0.643455i \(-0.222499\pi\)
−0.939990 + 0.341202i \(0.889166\pi\)
\(822\) 0 0
\(823\) 17.5138 30.3348i 0.610493 1.05741i −0.380664 0.924713i \(-0.624305\pi\)
0.991157 0.132692i \(-0.0423621\pi\)
\(824\) 0 0
\(825\) 67.8072 36.3449i 2.36074 1.26537i
\(826\) 0 0
\(827\) −22.7079 −0.789631 −0.394816 0.918760i \(-0.629192\pi\)
−0.394816 + 0.918760i \(0.629192\pi\)
\(828\) 0 0
\(829\) 12.4417 0.432117 0.216058 0.976380i \(-0.430680\pi\)
0.216058 + 0.976380i \(0.430680\pi\)
\(830\) 0 0
\(831\) 0.616018 19.5099i 0.0213694 0.676791i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −18.2944 31.6869i −0.633105 1.09657i
\(836\) 0 0
\(837\) 9.71968 + 6.91392i 0.335961 + 0.238980i
\(838\) 0 0
\(839\) 13.8249 + 23.9455i 0.477290 + 0.826690i 0.999661 0.0260281i \(-0.00828595\pi\)
−0.522372 + 0.852718i \(0.674953\pi\)
\(840\) 0 0
\(841\) −37.2652 + 64.5453i −1.28501 + 2.22570i
\(842\) 0 0
\(843\) 0.820733 25.9935i 0.0282676 0.895263i
\(844\) 0 0
\(845\) 40.8307 1.40462
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −22.3998 + 12.0064i −0.768758 + 0.412058i
\(850\) 0 0
\(851\) −2.00089 + 3.46564i −0.0685896 + 0.118801i
\(852\) 0 0
\(853\) 22.0459 + 38.1847i 0.754839 + 1.30742i 0.945454 + 0.325754i \(0.105618\pi\)
−0.190616 + 0.981665i \(0.561048\pi\)
\(854\) 0 0
\(855\) 54.1127 + 3.42059i 1.85062 + 0.116982i
\(856\) 0 0
\(857\) −13.3838 23.1814i −0.457182 0.791862i 0.541629 0.840618i \(-0.317808\pi\)
−0.998811 + 0.0487557i \(0.984474\pi\)
\(858\) 0 0
\(859\) −10.0951 + 17.4852i −0.344439 + 0.596587i −0.985252 0.171111i \(-0.945264\pi\)
0.640812 + 0.767698i \(0.278598\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 9.49075 0.323069 0.161534 0.986867i \(-0.448356\pi\)
0.161534 + 0.986867i \(0.448356\pi\)
\(864\) 0 0
\(865\) −24.9317 −0.847703
\(866\) 0 0
\(867\) −16.8489 10.4502i −0.572218 0.354908i
\(868\) 0 0
\(869\) −4.32182 + 7.48560i −0.146608 + 0.253932i
\(870\) 0 0
\(871\) 11.8897 + 20.5935i 0.402866 + 0.697784i
\(872\) 0 0
\(873\) 14.7926 22.2504i 0.500654 0.753061i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −14.6227 + 25.3273i −0.493774 + 0.855242i −0.999974 0.00717380i \(-0.997716\pi\)
0.506200 + 0.862416i \(0.331050\pi\)
\(878\) 0 0
\(879\) −28.6687 + 15.3665i −0.966970 + 0.518301i
\(880\) 0 0
\(881\) −37.2768 −1.25589 −0.627944 0.778259i \(-0.716103\pi\)
−0.627944 + 0.778259i \(0.716103\pi\)
\(882\) 0 0
\(883\) −56.9436 −1.91630 −0.958152 0.286260i \(-0.907588\pi\)
−0.958152 + 0.286260i \(0.907588\pi\)
\(884\) 0 0
\(885\) 0.195949 6.20590i 0.00658674 0.208609i
\(886\) 0 0
\(887\) −4.96127 + 8.59316i −0.166583 + 0.288530i −0.937216 0.348749i \(-0.886607\pi\)
0.770633 + 0.637279i \(0.219940\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 39.0667 + 4.95879i 1.30878 + 0.166126i
\(892\) 0 0
\(893\) −17.6643 30.5955i −0.591114 1.02384i
\(894\) 0 0
\(895\) 33.2431 57.5787i 1.11119 1.92465i
\(896\) 0 0
\(897\) 0.0318536 1.00884i 0.00106356 0.0336840i
\(898\) 0 0
\(899\) 23.3569 0.778997
\(900\) 0 0
\(901\) −4.93724 −0.164483
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −2.64664 + 4.58412i −0.0879774 + 0.152381i
\(906\) 0 0
\(907\) 12.2887 + 21.2847i 0.408040 + 0.706747i 0.994670 0.103109i \(-0.0328789\pi\)
−0.586630 + 0.809855i \(0.699546\pi\)
\(908\) 0 0
\(909\) −18.3093 + 27.5400i −0.607280 + 0.913443i
\(910\) 0 0
\(911\) 9.73496 + 16.8614i 0.322534 + 0.558645i 0.981010 0.193957i \(-0.0621321\pi\)
−0.658476 + 0.752601i \(0.728799\pi\)
\(912\) 0 0
\(913\) 1.10707 1.91749i 0.0366385 0.0634598i
\(914\) 0 0
\(915\) −37.5596 23.2957i −1.24168 0.770131i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −13.2398 −0.436742 −0.218371 0.975866i \(-0.570074\pi\)
−0.218371 + 0.975866i \(0.570074\pi\)
\(920\) 0 0
\(921\) −42.6012 26.4226i −1.40376 0.870653i
\(922\) 0 0
\(923\) −3.89017 + 6.73798i −0.128047 + 0.221783i
\(924\) 0 0
\(925\) −55.2247 95.6519i −1.81578 3.14502i
\(926\) 0 0
\(927\) 8.17624 + 0.516839i 0.268543 + 0.0169752i
\(928\) 0 0
\(929\) 15.8682 + 27.4845i 0.520618 + 0.901737i 0.999713 + 0.0239734i \(0.00763170\pi\)
−0.479095 + 0.877763i \(0.659035\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 20.7518 11.1231i 0.679384 0.364153i
\(934\) 0 0
\(935\) −90.8398 −2.97078
\(936\) 0 0
\(937\) 13.5019 0.441087 0.220543 0.975377i \(-0.429217\pi\)
0.220543 + 0.975377i \(0.429217\pi\)
\(938\) 0 0
\(939\) −0.757852 + 24.0020i −0.0247316 + 0.783274i
\(940\) 0 0
\(941\) −19.8286 + 34.3441i −0.646394 + 1.11959i 0.337584 + 0.941295i \(0.390390\pi\)
−0.983978 + 0.178291i \(0.942943\pi\)
\(942\) 0 0
\(943\) 0.253944 + 0.439845i 0.00826957 + 0.0143233i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 30.5172 + 52.8573i 0.991675 + 1.71763i 0.607350 + 0.794434i \(0.292232\pi\)
0.384325 + 0.923198i \(0.374434\pi\)
\(948\) 0 0
\(949\) −5.99464 + 10.3830i −0.194594 + 0.337047i
\(950\) 0 0
\(951\) −1.26190 + 39.9656i −0.0409198 + 1.29597i
\(952\) 0 0
\(953\) 5.22726 0.169328 0.0846638 0.996410i \(-0.473018\pi\)
0.0846638 + 0.996410i \(0.473018\pi\)
\(954\) 0 0
\(955\) 69.6010 2.25224
\(956\) 0 0
\(957\) 67.9656 36.4299i 2.19702 1.17761i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 12.8653 + 22.2833i 0.415009 + 0.718817i
\(962\) 0 0
\(963\) −14.3870 29.0041i −0.463616 0.934643i
\(964\) 0 0
\(965\) −25.3269 43.8674i −0.815301 1.41214i
\(966\) 0 0
\(967\) 10.2035 17.6729i 0.328121 0.568323i −0.654018 0.756479i \(-0.726918\pi\)
0.982139 + 0.188156i \(0.0602511\pi\)
\(968\) 0 0
\(969\) −36.4520 22.6087i −1.17101 0.726296i
\(970\) 0 0
\(971\) −1.17880 −0.0378296 −0.0189148 0.999821i \(-0.506021\pi\)
−0.0189148 + 0.999821i \(0.506021\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 23.6739 + 14.6833i 0.758173 + 0.470243i
\(976\) 0 0
\(977\) −4.10487 + 7.10984i −0.131326 + 0.227464i −0.924188 0.381938i \(-0.875257\pi\)
0.792862 + 0.609402i \(0.208590\pi\)
\(978\) 0 0
\(979\) −26.7342 46.3049i −0.854427 1.47991i
\(980\) 0 0
\(981\) −13.3094 26.8316i −0.424937 0.856667i
\(982\) 0 0
\(983\) −0.753481 1.30507i −0.0240323 0.0416252i 0.853759 0.520668i \(-0.174317\pi\)
−0.877791 + 0.479043i \(0.840984\pi\)
\(984\) 0 0
\(985\) 12.3875 21.4558i 0.394698 0.683638i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −2.80777 −0.0892820
\(990\) 0 0
\(991\) 32.4459 1.03068 0.515339 0.856987i \(-0.327666\pi\)
0.515339 + 0.856987i \(0.327666\pi\)
\(992\) 0 0
\(993\) 0.855615 27.0982i 0.0271521 0.859935i
\(994\) 0 0
\(995\) −45.0608 + 78.0476i −1.42852 + 2.47428i
\(996\) 0 0
\(997\) −6.26198 10.8461i −0.198319 0.343498i 0.749665 0.661818i \(-0.230215\pi\)
−0.947983 + 0.318320i \(0.896881\pi\)
\(998\) 0 0
\(999\) 5.34552 56.2826i 0.169125 1.78070i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1764.2.j.i.589.3 24
3.2 odd 2 5292.2.j.i.1765.1 24
7.2 even 3 1764.2.l.j.949.11 24
7.3 odd 6 1764.2.i.j.373.7 24
7.4 even 3 1764.2.i.j.373.6 24
7.5 odd 6 1764.2.l.j.949.2 24
7.6 odd 2 inner 1764.2.j.i.589.10 yes 24
9.2 odd 6 5292.2.j.i.3529.1 24
9.7 even 3 inner 1764.2.j.i.1177.3 yes 24
21.2 odd 6 5292.2.l.j.361.12 24
21.5 even 6 5292.2.l.j.361.1 24
21.11 odd 6 5292.2.i.j.1549.1 24
21.17 even 6 5292.2.i.j.1549.12 24
21.20 even 2 5292.2.j.i.1765.12 24
63.2 odd 6 5292.2.i.j.2125.1 24
63.11 odd 6 5292.2.l.j.3313.12 24
63.16 even 3 1764.2.i.j.1537.6 24
63.20 even 6 5292.2.j.i.3529.12 24
63.25 even 3 1764.2.l.j.961.11 24
63.34 odd 6 inner 1764.2.j.i.1177.10 yes 24
63.38 even 6 5292.2.l.j.3313.1 24
63.47 even 6 5292.2.i.j.2125.12 24
63.52 odd 6 1764.2.l.j.961.2 24
63.61 odd 6 1764.2.i.j.1537.7 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1764.2.i.j.373.6 24 7.4 even 3
1764.2.i.j.373.7 24 7.3 odd 6
1764.2.i.j.1537.6 24 63.16 even 3
1764.2.i.j.1537.7 24 63.61 odd 6
1764.2.j.i.589.3 24 1.1 even 1 trivial
1764.2.j.i.589.10 yes 24 7.6 odd 2 inner
1764.2.j.i.1177.3 yes 24 9.7 even 3 inner
1764.2.j.i.1177.10 yes 24 63.34 odd 6 inner
1764.2.l.j.949.2 24 7.5 odd 6
1764.2.l.j.949.11 24 7.2 even 3
1764.2.l.j.961.2 24 63.52 odd 6
1764.2.l.j.961.11 24 63.25 even 3
5292.2.i.j.1549.1 24 21.11 odd 6
5292.2.i.j.1549.12 24 21.17 even 6
5292.2.i.j.2125.1 24 63.2 odd 6
5292.2.i.j.2125.12 24 63.47 even 6
5292.2.j.i.1765.1 24 3.2 odd 2
5292.2.j.i.1765.12 24 21.20 even 2
5292.2.j.i.3529.1 24 9.2 odd 6
5292.2.j.i.3529.12 24 63.20 even 6
5292.2.l.j.361.1 24 21.5 even 6
5292.2.l.j.361.12 24 21.2 odd 6
5292.2.l.j.3313.1 24 63.38 even 6
5292.2.l.j.3313.12 24 63.11 odd 6