Properties

Label 51.2.i.a.14.2
Level $51$
Weight $2$
Character 51.14
Analytic conductor $0.407$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [51,2,Mod(5,51)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(51, base_ring=CyclotomicField(16))
 
chi = DirichletCharacter(H, H._module([8, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("51.5");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 51 = 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 51.i (of order \(16\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.407237050309\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(4\) over \(\Q(\zeta_{16})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 14.2
Character \(\chi\) \(=\) 51.14
Dual form 51.2.i.a.11.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.503008 - 1.21437i) q^{2} +(0.802099 + 1.53513i) q^{3} +(0.192538 - 0.192538i) q^{4} +(-0.0781694 - 0.116989i) q^{5} +(1.46076 - 1.74623i) q^{6} +(-1.47102 - 0.982905i) q^{7} +(-2.75940 - 1.14298i) q^{8} +(-1.71327 + 2.46266i) q^{9} +(-0.102748 + 0.153773i) q^{10} +(0.710485 + 3.57185i) q^{11} +(0.450006 + 0.141137i) q^{12} +(-0.0825311 - 0.0825311i) q^{13} +(-0.453674 + 2.28077i) q^{14} +(0.116894 - 0.213837i) q^{15} +3.38128i q^{16} +(-1.03609 - 3.99080i) q^{17} +(3.85237 + 0.841809i) q^{18} +(-6.20278 + 2.56928i) q^{19} +(-0.0375753 - 0.00747420i) q^{20} +(0.328986 - 3.04660i) q^{21} +(3.98016 - 2.65946i) q^{22} +(6.15884 - 1.22507i) q^{23} +(-0.458684 - 5.15283i) q^{24} +(1.90584 - 4.60111i) q^{25} +(-0.0587094 + 0.141737i) q^{26} +(-5.15473 - 0.654807i) q^{27} +(-0.472474 + 0.0939809i) q^{28} +(3.27292 - 2.18690i) q^{29} +(-0.318476 - 0.0343905i) q^{30} +(8.78185 + 1.74682i) q^{31} +(-1.41268 + 0.585150i) q^{32} +(-4.91339 + 3.95567i) q^{33} +(-4.32515 + 3.26560i) q^{34} +0.248926i q^{35} +(0.144285 + 0.804026i) q^{36} +(0.0726522 - 0.365247i) q^{37} +(6.24010 + 6.24010i) q^{38} +(0.0604982 - 0.192895i) q^{39} +(0.0819847 + 0.412165i) q^{40} +(-2.44315 + 3.65643i) q^{41} +(-3.86518 + 1.13296i) q^{42} +(1.94823 + 0.806985i) q^{43} +(0.824512 + 0.550921i) q^{44} +(0.422029 + 0.00792913i) q^{45} +(-4.58563 - 6.86288i) q^{46} +(-2.11141 + 2.11141i) q^{47} +(-5.19072 + 2.71212i) q^{48} +(-1.48098 - 3.57541i) q^{49} -6.54610 q^{50} +(5.29537 - 4.79156i) q^{51} -0.0317807 q^{52} +(-2.45113 - 5.91755i) q^{53} +(1.79769 + 6.58912i) q^{54} +(0.362328 - 0.362328i) q^{55} +(2.93569 + 4.39357i) q^{56} +(-8.91943 - 7.46129i) q^{57} +(-4.30201 - 2.87451i) q^{58} +(8.83540 + 3.65974i) q^{59} +(-0.0186653 - 0.0636782i) q^{60} +(-2.20784 + 3.30427i) q^{61} +(-2.29606 - 11.5431i) q^{62} +(4.94082 - 1.93864i) q^{63} +(6.20303 + 6.20303i) q^{64} +(-0.00320381 + 0.0161066i) q^{65} +(7.27511 + 3.97693i) q^{66} +5.81844i q^{67} +(-0.967868 - 0.568894i) q^{68} +(6.82064 + 8.47201i) q^{69} +(0.302288 - 0.125212i) q^{70} +(-12.7462 - 2.53537i) q^{71} +(7.54238 - 4.83722i) q^{72} +(-3.71467 + 2.48206i) q^{73} +(-0.480089 + 0.0954957i) q^{74} +(8.59199 - 0.764823i) q^{75} +(-0.699588 + 1.68895i) q^{76} +(2.46565 - 5.95260i) q^{77} +(-0.264676 + 0.0235604i) q^{78} +(2.39893 - 0.477177i) q^{79} +(0.395572 - 0.264312i) q^{80} +(-3.12939 - 8.43842i) q^{81} +(5.66918 + 1.12767i) q^{82} +(-5.11813 + 2.12000i) q^{83} +(-0.523244 - 0.649928i) q^{84} +(-0.385889 + 0.433170i) q^{85} -2.77180i q^{86} +(5.98239 + 3.27027i) q^{87} +(2.12204 - 10.6682i) q^{88} +(-2.89760 - 2.89760i) q^{89} +(-0.202655 - 0.516488i) q^{90} +(0.0402848 + 0.202525i) q^{91} +(0.949937 - 1.42168i) q^{92} +(4.36231 + 14.8824i) q^{93} +(3.62608 + 1.50197i) q^{94} +(0.785444 + 0.524817i) q^{95} +(-2.03139 - 1.69930i) q^{96} +(-2.54849 - 3.81409i) q^{97} +(-3.59692 + 3.59692i) q^{98} +(-10.0135 - 4.36987i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 8 q^{3} - 16 q^{4} - 8 q^{6} - 16 q^{7} - 8 q^{9} - 16 q^{10} + 16 q^{12} - 16 q^{13} + 16 q^{15} + 16 q^{18} - 16 q^{19} + 16 q^{21} - 16 q^{22} + 16 q^{24} + 16 q^{25} - 8 q^{27} + 32 q^{28} - 8 q^{30}+ \cdots - 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/51\mathbb{Z}\right)^\times\).

\(n\) \(35\) \(37\)
\(\chi(n)\) \(-1\) \(e\left(\frac{9}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.503008 1.21437i −0.355681 0.858689i −0.995897 0.0904942i \(-0.971155\pi\)
0.640216 0.768195i \(-0.278845\pi\)
\(3\) 0.802099 + 1.53513i 0.463092 + 0.886310i
\(4\) 0.192538 0.192538i 0.0962690 0.0962690i
\(5\) −0.0781694 0.116989i −0.0349584 0.0523190i 0.813579 0.581455i \(-0.197516\pi\)
−0.848537 + 0.529136i \(0.822516\pi\)
\(6\) 1.46076 1.74623i 0.596352 0.712895i
\(7\) −1.47102 0.982905i −0.555994 0.371503i 0.245601 0.969371i \(-0.421015\pi\)
−0.801595 + 0.597868i \(0.796015\pi\)
\(8\) −2.75940 1.14298i −0.975595 0.404105i
\(9\) −1.71327 + 2.46266i −0.571091 + 0.820887i
\(10\) −0.102748 + 0.153773i −0.0324917 + 0.0486272i
\(11\) 0.710485 + 3.57185i 0.214219 + 1.07695i 0.926855 + 0.375419i \(0.122501\pi\)
−0.712636 + 0.701534i \(0.752499\pi\)
\(12\) 0.450006 + 0.141137i 0.129906 + 0.0407427i
\(13\) −0.0825311 0.0825311i −0.0228900 0.0228900i 0.695569 0.718459i \(-0.255152\pi\)
−0.718459 + 0.695569i \(0.755152\pi\)
\(14\) −0.453674 + 2.28077i −0.121249 + 0.609562i
\(15\) 0.116894 0.213837i 0.0301819 0.0552125i
\(16\) 3.38128i 0.845320i
\(17\) −1.03609 3.99080i −0.251289 0.967912i
\(18\) 3.85237 + 0.841809i 0.908012 + 0.198416i
\(19\) −6.20278 + 2.56928i −1.42302 + 0.589432i −0.955616 0.294614i \(-0.904809\pi\)
−0.467399 + 0.884046i \(0.654809\pi\)
\(20\) −0.0375753 0.00747420i −0.00840210 0.00167128i
\(21\) 0.328986 3.04660i 0.0717906 0.664823i
\(22\) 3.98016 2.65946i 0.848574 0.566999i
\(23\) 6.15884 1.22507i 1.28421 0.255444i 0.494633 0.869102i \(-0.335302\pi\)
0.789573 + 0.613657i \(0.210302\pi\)
\(24\) −0.458684 5.15283i −0.0936284 1.05182i
\(25\) 1.90584 4.60111i 0.381168 0.920222i
\(26\) −0.0587094 + 0.141737i −0.0115139 + 0.0277969i
\(27\) −5.15473 0.654807i −0.992028 0.126018i
\(28\) −0.472474 + 0.0939809i −0.0892891 + 0.0177607i
\(29\) 3.27292 2.18690i 0.607766 0.406097i −0.213253 0.976997i \(-0.568406\pi\)
0.821019 + 0.570900i \(0.193406\pi\)
\(30\) −0.318476 0.0343905i −0.0581455 0.00627881i
\(31\) 8.78185 + 1.74682i 1.57727 + 0.313738i 0.904618 0.426224i \(-0.140156\pi\)
0.672649 + 0.739962i \(0.265156\pi\)
\(32\) −1.41268 + 0.585150i −0.249728 + 0.103441i
\(33\) −4.91339 + 3.95567i −0.855311 + 0.688593i
\(34\) −4.32515 + 3.26560i −0.741757 + 0.560046i
\(35\) 0.248926i 0.0420762i
\(36\) 0.144285 + 0.804026i 0.0240475 + 0.134004i
\(37\) 0.0726522 0.365247i 0.0119439 0.0600462i −0.974354 0.225022i \(-0.927755\pi\)
0.986298 + 0.164976i \(0.0527546\pi\)
\(38\) 6.24010 + 6.24010i 1.01228 + 1.01228i
\(39\) 0.0604982 0.192895i 0.00968747 0.0308878i
\(40\) 0.0819847 + 0.412165i 0.0129629 + 0.0651690i
\(41\) −2.44315 + 3.65643i −0.381556 + 0.571039i −0.971688 0.236268i \(-0.924076\pi\)
0.590132 + 0.807307i \(0.299076\pi\)
\(42\) −3.86518 + 1.13296i −0.596410 + 0.174819i
\(43\) 1.94823 + 0.806985i 0.297103 + 0.123064i 0.526256 0.850326i \(-0.323596\pi\)
−0.229153 + 0.973390i \(0.573596\pi\)
\(44\) 0.824512 + 0.550921i 0.124300 + 0.0830545i
\(45\) 0.422029 + 0.00792913i 0.0629124 + 0.00118201i
\(46\) −4.58563 6.86288i −0.676114 1.01188i
\(47\) −2.11141 + 2.11141i −0.307980 + 0.307980i −0.844126 0.536145i \(-0.819880\pi\)
0.536145 + 0.844126i \(0.319880\pi\)
\(48\) −5.19072 + 2.71212i −0.749215 + 0.391461i
\(49\) −1.48098 3.57541i −0.211569 0.510773i
\(50\) −6.54610 −0.925758
\(51\) 5.29537 4.79156i 0.741500 0.670952i
\(52\) −0.0317807 −0.00440720
\(53\) −2.45113 5.91755i −0.336688 0.812837i −0.998029 0.0627519i \(-0.980012\pi\)
0.661341 0.750085i \(-0.269988\pi\)
\(54\) 1.79769 + 6.58912i 0.244635 + 0.896665i
\(55\) 0.362328 0.362328i 0.0488563 0.0488563i
\(56\) 2.93569 + 4.39357i 0.392298 + 0.587116i
\(57\) −8.91943 7.46129i −1.18141 0.988272i
\(58\) −4.30201 2.87451i −0.564881 0.377442i
\(59\) 8.83540 + 3.65974i 1.15027 + 0.476458i 0.874624 0.484801i \(-0.161108\pi\)
0.275647 + 0.961259i \(0.411108\pi\)
\(60\) −0.0186653 0.0636782i −0.00240967 0.00822083i
\(61\) −2.20784 + 3.30427i −0.282685 + 0.423068i −0.945454 0.325756i \(-0.894381\pi\)
0.662769 + 0.748824i \(0.269381\pi\)
\(62\) −2.29606 11.5431i −0.291600 1.46597i
\(63\) 4.94082 1.93864i 0.622485 0.244246i
\(64\) 6.20303 + 6.20303i 0.775378 + 0.775378i
\(65\) −0.00320381 + 0.0161066i −0.000397383 + 0.00199778i
\(66\) 7.27511 + 3.97693i 0.895505 + 0.489527i
\(67\) 5.81844i 0.710836i 0.934707 + 0.355418i \(0.115661\pi\)
−0.934707 + 0.355418i \(0.884339\pi\)
\(68\) −0.967868 0.568894i −0.117371 0.0689886i
\(69\) 6.82064 + 8.47201i 0.821109 + 1.01991i
\(70\) 0.302288 0.125212i 0.0361303 0.0149657i
\(71\) −12.7462 2.53537i −1.51269 0.300893i −0.632143 0.774851i \(-0.717825\pi\)
−0.880547 + 0.473959i \(0.842825\pi\)
\(72\) 7.54238 4.83722i 0.888878 0.570072i
\(73\) −3.71467 + 2.48206i −0.434769 + 0.290504i −0.753631 0.657298i \(-0.771699\pi\)
0.318862 + 0.947801i \(0.396699\pi\)
\(74\) −0.480089 + 0.0954957i −0.0558093 + 0.0111012i
\(75\) 8.59199 0.764823i 0.992118 0.0883142i
\(76\) −0.699588 + 1.68895i −0.0802482 + 0.193736i
\(77\) 2.46565 5.95260i 0.280987 0.678362i
\(78\) −0.264676 + 0.0235604i −0.0299687 + 0.00266769i
\(79\) 2.39893 0.477177i 0.269901 0.0536866i −0.0582845 0.998300i \(-0.518563\pi\)
0.328185 + 0.944613i \(0.393563\pi\)
\(80\) 0.395572 0.264312i 0.0442262 0.0295510i
\(81\) −3.12939 8.43842i −0.347710 0.937602i
\(82\) 5.66918 + 1.12767i 0.626057 + 0.124530i
\(83\) −5.11813 + 2.12000i −0.561788 + 0.232700i −0.645461 0.763793i \(-0.723335\pi\)
0.0836731 + 0.996493i \(0.473335\pi\)
\(84\) −0.523244 0.649928i −0.0570906 0.0709130i
\(85\) −0.385889 + 0.433170i −0.0418555 + 0.0469838i
\(86\) 2.77180i 0.298890i
\(87\) 5.98239 + 3.27027i 0.641379 + 0.350609i
\(88\) 2.12204 10.6682i 0.226210 1.13724i
\(89\) −2.89760 2.89760i −0.307145 0.307145i 0.536656 0.843801i \(-0.319687\pi\)
−0.843801 + 0.536656i \(0.819687\pi\)
\(90\) −0.202655 0.516488i −0.0213617 0.0544426i
\(91\) 0.0402848 + 0.202525i 0.00422299 + 0.0212304i
\(92\) 0.949937 1.42168i 0.0990378 0.148221i
\(93\) 4.36231 + 14.8824i 0.452351 + 1.54324i
\(94\) 3.62608 + 1.50197i 0.374002 + 0.154917i
\(95\) 0.785444 + 0.524817i 0.0805849 + 0.0538451i
\(96\) −2.03139 1.69930i −0.207328 0.173434i
\(97\) −2.54849 3.81409i −0.258760 0.387262i 0.679229 0.733926i \(-0.262314\pi\)
−0.937989 + 0.346664i \(0.887314\pi\)
\(98\) −3.59692 + 3.59692i −0.363344 + 0.363344i
\(99\) −10.0135 4.36987i −1.00639 0.439189i
\(100\) −0.518941 1.25283i −0.0518941 0.125283i
\(101\) 5.06729 0.504214 0.252107 0.967699i \(-0.418877\pi\)
0.252107 + 0.967699i \(0.418877\pi\)
\(102\) −8.48234 4.02034i −0.839877 0.398073i
\(103\) −15.9760 −1.57416 −0.787080 0.616851i \(-0.788408\pi\)
−0.787080 + 0.616851i \(0.788408\pi\)
\(104\) 0.133405 + 0.322068i 0.0130814 + 0.0315813i
\(105\) −0.382135 + 0.199663i −0.0372925 + 0.0194851i
\(106\) −5.95315 + 5.95315i −0.578221 + 0.578221i
\(107\) 0.756986 + 1.13291i 0.0731806 + 0.109522i 0.866255 0.499603i \(-0.166521\pi\)
−0.793074 + 0.609125i \(0.791521\pi\)
\(108\) −1.11856 + 0.866406i −0.107633 + 0.0833699i
\(109\) 9.54382 + 6.37698i 0.914132 + 0.610804i 0.921165 0.389171i \(-0.127239\pi\)
−0.00703284 + 0.999975i \(0.502239\pi\)
\(110\) −0.622254 0.257746i −0.0593296 0.0245751i
\(111\) 0.618977 0.181434i 0.0587507 0.0172209i
\(112\) 3.32347 4.97393i 0.314039 0.469992i
\(113\) 2.64375 + 13.2910i 0.248703 + 1.25031i 0.880076 + 0.474834i \(0.157492\pi\)
−0.631373 + 0.775479i \(0.717508\pi\)
\(114\) −4.57421 + 14.5846i −0.428414 + 1.36597i
\(115\) −0.624752 0.624752i −0.0582584 0.0582584i
\(116\) 0.209101 1.05122i 0.0194146 0.0976035i
\(117\) 0.344645 0.0618477i 0.0318624 0.00571782i
\(118\) 12.5703i 1.15719i
\(119\) −2.39847 + 6.88893i −0.219867 + 0.631507i
\(120\) −0.566968 + 0.456454i −0.0517569 + 0.0416684i
\(121\) −2.09064 + 0.865970i −0.190058 + 0.0787246i
\(122\) 5.12316 + 1.01906i 0.463829 + 0.0922614i
\(123\) −7.57276 0.817741i −0.682813 0.0737332i
\(124\) 2.02717 1.35451i 0.182045 0.121639i
\(125\) −1.37724 + 0.273951i −0.123184 + 0.0245029i
\(126\) −4.83950 5.02483i −0.431137 0.447647i
\(127\) 3.78439 9.13631i 0.335810 0.810717i −0.662299 0.749240i \(-0.730419\pi\)
0.998109 0.0614768i \(-0.0195810\pi\)
\(128\) 3.24229 7.82759i 0.286581 0.691867i
\(129\) 0.323847 + 3.63808i 0.0285131 + 0.320315i
\(130\) 0.0211709 0.00421116i 0.00185681 0.000369343i
\(131\) −10.8334 + 7.23868i −0.946523 + 0.632446i −0.930056 0.367418i \(-0.880242\pi\)
−0.0164667 + 0.999864i \(0.505242\pi\)
\(132\) −0.184398 + 1.70763i −0.0160497 + 0.148630i
\(133\) 11.6498 + 2.31728i 1.01016 + 0.200934i
\(134\) 7.06574 2.92672i 0.610387 0.252830i
\(135\) 0.326337 + 0.654231i 0.0280866 + 0.0563073i
\(136\) −1.70242 + 12.1965i −0.145982 + 1.04584i
\(137\) 3.20492i 0.273815i 0.990584 + 0.136907i \(0.0437163\pi\)
−0.990584 + 0.136907i \(0.956284\pi\)
\(138\) 6.85731 12.5443i 0.583733 1.06784i
\(139\) 0.993879 4.99657i 0.0842997 0.423803i −0.915471 0.402384i \(-0.868182\pi\)
0.999771 0.0214191i \(-0.00681842\pi\)
\(140\) 0.0479277 + 0.0479277i 0.00405063 + 0.00405063i
\(141\) −4.93485 1.54773i −0.415589 0.130343i
\(142\) 3.33255 + 16.7539i 0.279661 + 1.40595i
\(143\) 0.236152 0.353426i 0.0197480 0.0295550i
\(144\) −8.32694 5.79306i −0.693912 0.482755i
\(145\) −0.511685 0.211947i −0.0424931 0.0176012i
\(146\) 4.88265 + 3.26248i 0.404091 + 0.270005i
\(147\) 4.30084 5.14134i 0.354727 0.424051i
\(148\) −0.0563356 0.0843122i −0.00463076 0.00693042i
\(149\) 15.7137 15.7137i 1.28731 1.28731i 0.350902 0.936412i \(-0.385875\pi\)
0.936412 0.350902i \(-0.114125\pi\)
\(150\) −5.25062 10.0491i −0.428711 0.820509i
\(151\) −1.57857 3.81101i −0.128462 0.310135i 0.846542 0.532322i \(-0.178681\pi\)
−0.975004 + 0.222187i \(0.928681\pi\)
\(152\) 20.0526 1.62648
\(153\) 11.6031 + 4.28580i 0.938055 + 0.346486i
\(154\) −8.46890 −0.682443
\(155\) −0.482114 1.16393i −0.0387243 0.0934887i
\(156\) −0.0254913 0.0487877i −0.00204094 0.00390614i
\(157\) −9.87094 + 9.87094i −0.787787 + 0.787787i −0.981131 0.193344i \(-0.938067\pi\)
0.193344 + 0.981131i \(0.438067\pi\)
\(158\) −1.78615 2.67316i −0.142098 0.212665i
\(159\) 7.11818 8.50927i 0.564508 0.674829i
\(160\) 0.178884 + 0.119526i 0.0141420 + 0.00944940i
\(161\) −10.2639 4.25145i −0.808909 0.335061i
\(162\) −8.67325 + 8.04483i −0.681435 + 0.632061i
\(163\) 6.19697 9.27442i 0.485384 0.726429i −0.505250 0.862973i \(-0.668600\pi\)
0.990634 + 0.136544i \(0.0435996\pi\)
\(164\) 0.233603 + 1.17440i 0.0182413 + 0.0917053i
\(165\) 0.846845 + 0.265599i 0.0659268 + 0.0206769i
\(166\) 5.14893 + 5.14893i 0.399634 + 0.399634i
\(167\) 0.409682 2.05961i 0.0317021 0.159377i −0.961692 0.274134i \(-0.911609\pi\)
0.993394 + 0.114757i \(0.0366088\pi\)
\(168\) −4.39001 + 8.03076i −0.338697 + 0.619587i
\(169\) 12.9864i 0.998952i
\(170\) 0.720133 + 0.250723i 0.0552317 + 0.0192296i
\(171\) 4.29981 19.6772i 0.328815 1.50475i
\(172\) 0.530484 0.219734i 0.0404490 0.0167545i
\(173\) 12.0778 + 2.40243i 0.918260 + 0.182653i 0.631524 0.775356i \(-0.282430\pi\)
0.286736 + 0.958010i \(0.407430\pi\)
\(174\) 0.962121 8.90980i 0.0729382 0.675450i
\(175\) −7.32598 + 4.89506i −0.553792 + 0.370032i
\(176\) −12.0774 + 2.40235i −0.910369 + 0.181084i
\(177\) 1.46867 + 16.4990i 0.110392 + 1.24014i
\(178\) −2.06124 + 4.97628i −0.154497 + 0.372988i
\(179\) −7.07462 + 17.0796i −0.528782 + 1.27659i 0.403540 + 0.914962i \(0.367780\pi\)
−0.932322 + 0.361630i \(0.882220\pi\)
\(180\) 0.0827833 0.0797299i 0.00617030 0.00594272i
\(181\) −2.08780 + 0.415290i −0.155185 + 0.0308683i −0.272071 0.962277i \(-0.587709\pi\)
0.116886 + 0.993145i \(0.462709\pi\)
\(182\) 0.225677 0.150792i 0.0167283 0.0111775i
\(183\) −6.84340 0.738981i −0.505879 0.0546271i
\(184\) −18.3949 3.65898i −1.35609 0.269743i
\(185\) −0.0484090 + 0.0200517i −0.00355910 + 0.00147423i
\(186\) 15.8785 12.7834i 1.16427 0.937328i
\(187\) 13.5184 6.53616i 0.988565 0.477972i
\(188\) 0.813051i 0.0592979i
\(189\) 6.93910 + 6.02984i 0.504745 + 0.438606i
\(190\) 0.242237 1.21781i 0.0175737 0.0883490i
\(191\) −12.2604 12.2604i −0.887130 0.887130i 0.107116 0.994247i \(-0.465838\pi\)
−0.994247 + 0.107116i \(0.965838\pi\)
\(192\) −4.54703 + 14.4979i −0.328154 + 1.04630i
\(193\) 3.16756 + 15.9244i 0.228006 + 1.14626i 0.909904 + 0.414818i \(0.136155\pi\)
−0.681898 + 0.731447i \(0.738845\pi\)
\(194\) −3.34980 + 5.01333i −0.240501 + 0.359936i
\(195\) −0.0272956 + 0.00800084i −0.00195468 + 0.000572952i
\(196\) −0.973548 0.403257i −0.0695391 0.0288040i
\(197\) 6.52782 + 4.36175i 0.465088 + 0.310762i 0.765944 0.642908i \(-0.222272\pi\)
−0.300855 + 0.953670i \(0.597272\pi\)
\(198\) −0.269763 + 14.3582i −0.0191712 + 1.02039i
\(199\) 7.11102 + 10.6424i 0.504087 + 0.754419i 0.993026 0.117899i \(-0.0376159\pi\)
−0.488939 + 0.872318i \(0.662616\pi\)
\(200\) −10.5180 + 10.5180i −0.743732 + 0.743732i
\(201\) −8.93209 + 4.66697i −0.630021 + 0.329183i
\(202\) −2.54889 6.15356i −0.179339 0.432963i
\(203\) −6.96405 −0.488780
\(204\) 0.0970031 1.94212i 0.00679158 0.135975i
\(205\) 0.618741 0.0432147
\(206\) 8.03605 + 19.4007i 0.559898 + 1.35171i
\(207\) −7.53484 + 17.2660i −0.523708 + 1.20007i
\(208\) 0.279061 0.279061i 0.0193494 0.0193494i
\(209\) −13.5840 20.3300i −0.939628 1.40625i
\(210\) 0.434682 + 0.363620i 0.0299959 + 0.0250922i
\(211\) −4.25722 2.84458i −0.293079 0.195829i 0.400334 0.916369i \(-0.368894\pi\)
−0.693413 + 0.720540i \(0.743894\pi\)
\(212\) −1.61129 0.667417i −0.110664 0.0458384i
\(213\) −6.33155 21.6007i −0.433831 1.48005i
\(214\) 0.995000 1.48912i 0.0680168 0.101794i
\(215\) −0.0578841 0.291003i −0.00394766 0.0198462i
\(216\) 13.4755 + 7.69863i 0.916893 + 0.523825i
\(217\) −11.2013 11.2013i −0.760395 0.760395i
\(218\) 2.94339 14.7974i 0.199351 1.00221i
\(219\) −6.78984 3.71166i −0.458815 0.250810i
\(220\) 0.139524i 0.00940669i
\(221\) −0.243856 + 0.414875i −0.0164035 + 0.0279075i
\(222\) −0.531678 0.660405i −0.0356839 0.0443235i
\(223\) 0.174491 0.0722764i 0.0116848 0.00483999i −0.376833 0.926281i \(-0.622987\pi\)
0.388518 + 0.921441i \(0.372987\pi\)
\(224\) 2.65322 + 0.527759i 0.177276 + 0.0352624i
\(225\) 8.06574 + 12.5764i 0.537716 + 0.838426i
\(226\) 14.8104 9.89597i 0.985171 0.658270i
\(227\) −2.08928 + 0.415583i −0.138670 + 0.0275832i −0.263937 0.964540i \(-0.585021\pi\)
0.125267 + 0.992123i \(0.460021\pi\)
\(228\) −3.15391 + 0.280748i −0.208873 + 0.0185930i
\(229\) 6.61427 15.9683i 0.437084 1.05521i −0.539868 0.841750i \(-0.681526\pi\)
0.976951 0.213463i \(-0.0684743\pi\)
\(230\) −0.444424 + 1.07293i −0.0293045 + 0.0707472i
\(231\) 11.1157 0.989476i 0.731362 0.0651028i
\(232\) −11.5309 + 2.29363i −0.757039 + 0.150584i
\(233\) 8.14185 5.44021i 0.533390 0.356400i −0.259521 0.965738i \(-0.583565\pi\)
0.792911 + 0.609337i \(0.208565\pi\)
\(234\) −0.248465 0.387416i −0.0162427 0.0253262i
\(235\) 0.412058 + 0.0819634i 0.0268797 + 0.00534670i
\(236\) 2.40579 0.996510i 0.156603 0.0648673i
\(237\) 2.65671 + 3.29993i 0.172572 + 0.214354i
\(238\) 9.57216 0.552563i 0.620471 0.0358173i
\(239\) 22.4367i 1.45131i −0.688059 0.725654i \(-0.741537\pi\)
0.688059 0.725654i \(-0.258463\pi\)
\(240\) 0.723043 + 0.395251i 0.0466722 + 0.0255133i
\(241\) 0.0791082 0.397704i 0.00509581 0.0256184i −0.978154 0.207883i \(-0.933343\pi\)
0.983250 + 0.182265i \(0.0583427\pi\)
\(242\) 2.10322 + 2.10322i 0.135200 + 0.135200i
\(243\) 10.4440 11.5725i 0.669985 0.742375i
\(244\) 0.211104 + 1.06129i 0.0135145 + 0.0679421i
\(245\) −0.302515 + 0.452746i −0.0193270 + 0.0289249i
\(246\) 2.81612 + 9.60746i 0.179549 + 0.612549i
\(247\) 0.723968 + 0.299877i 0.0460650 + 0.0190807i
\(248\) −22.2360 14.8577i −1.41199 0.943462i
\(249\) −7.35974 6.15657i −0.466404 0.390157i
\(250\) 1.02544 + 1.53468i 0.0648547 + 0.0970619i
\(251\) 0.749951 0.749951i 0.0473365 0.0473365i −0.683042 0.730379i \(-0.739344\pi\)
0.730379 + 0.683042i \(0.239344\pi\)
\(252\) 0.578034 1.32456i 0.0364127 0.0834392i
\(253\) 8.75152 + 21.1280i 0.550203 + 1.32831i
\(254\) −12.9984 −0.815594
\(255\) −0.974494 0.244946i −0.0610252 0.0153391i
\(256\) 6.40833 0.400521
\(257\) 7.70425 + 18.5997i 0.480578 + 1.16022i 0.959335 + 0.282270i \(0.0910874\pi\)
−0.478757 + 0.877947i \(0.658913\pi\)
\(258\) 4.25508 2.22326i 0.264910 0.138414i
\(259\) −0.465876 + 0.465876i −0.0289481 + 0.0289481i
\(260\) 0.00248428 + 0.00371799i 0.000154069 + 0.000230580i
\(261\) −0.221828 + 11.8068i −0.0137308 + 0.730826i
\(262\) 14.2397 + 9.51469i 0.879734 + 0.587820i
\(263\) −5.10116 2.11297i −0.314551 0.130291i 0.219822 0.975540i \(-0.429452\pi\)
−0.534373 + 0.845249i \(0.679452\pi\)
\(264\) 18.0792 5.29936i 1.11270 0.326153i
\(265\) −0.500683 + 0.749325i −0.0307567 + 0.0460307i
\(266\) −3.04589 15.3127i −0.186756 0.938884i
\(267\) 2.12404 6.77237i 0.129989 0.414462i
\(268\) 1.12027 + 1.12027i 0.0684314 + 0.0684314i
\(269\) −1.78305 + 8.96401i −0.108715 + 0.546545i 0.887588 + 0.460637i \(0.152379\pi\)
−0.996303 + 0.0859079i \(0.972621\pi\)
\(270\) 0.630328 0.725377i 0.0383605 0.0441451i
\(271\) 2.64822i 0.160868i −0.996760 0.0804339i \(-0.974369\pi\)
0.996760 0.0804339i \(-0.0256306\pi\)
\(272\) 13.4940 3.50331i 0.818195 0.212419i
\(273\) −0.278591 + 0.224288i −0.0168611 + 0.0135745i
\(274\) 3.89196 1.61210i 0.235122 0.0973906i
\(275\) 17.7885 + 3.53836i 1.07269 + 0.213371i
\(276\) 2.94442 + 0.317951i 0.177233 + 0.0191384i
\(277\) −17.2028 + 11.4945i −1.03362 + 0.690640i −0.952023 0.306026i \(-0.901001\pi\)
−0.0815922 + 0.996666i \(0.526001\pi\)
\(278\) −6.56761 + 1.30638i −0.393899 + 0.0783514i
\(279\) −19.3475 + 18.6339i −1.15831 + 1.11558i
\(280\) 0.284517 0.686886i 0.0170032 0.0410493i
\(281\) −3.93729 + 9.50546i −0.234879 + 0.567048i −0.996739 0.0806938i \(-0.974286\pi\)
0.761860 + 0.647742i \(0.224286\pi\)
\(282\) 0.602748 + 6.77125i 0.0358931 + 0.403222i
\(283\) 12.5960 2.50549i 0.748753 0.148936i 0.194058 0.980990i \(-0.437835\pi\)
0.554695 + 0.832054i \(0.312835\pi\)
\(284\) −2.94227 + 1.96596i −0.174592 + 0.116659i
\(285\) −0.175660 + 1.62672i −0.0104052 + 0.0963584i
\(286\) −0.547976 0.108999i −0.0324025 0.00644525i
\(287\) 7.18785 2.97730i 0.424285 0.175745i
\(288\) 0.979277 4.48146i 0.0577044 0.264073i
\(289\) −14.8530 + 8.26967i −0.873708 + 0.486451i
\(290\) 0.727985i 0.0427488i
\(291\) 3.81099 6.97155i 0.223404 0.408680i
\(292\) −0.237324 + 1.19311i −0.0138883 + 0.0698213i
\(293\) 0.797696 + 0.797696i 0.0466019 + 0.0466019i 0.730024 0.683422i \(-0.239509\pi\)
−0.683422 + 0.730024i \(0.739509\pi\)
\(294\) −8.40685 2.63667i −0.490297 0.153774i
\(295\) −0.262509 1.31972i −0.0152839 0.0768372i
\(296\) −0.617947 + 0.924822i −0.0359174 + 0.0537542i
\(297\) −1.32348 18.8771i −0.0767964 1.09536i
\(298\) −26.9863 11.1781i −1.56327 0.647530i
\(299\) −0.609402 0.407189i −0.0352426 0.0235484i
\(300\) 1.50703 1.80154i 0.0870082 0.104012i
\(301\) −2.07270 3.10202i −0.119469 0.178797i
\(302\) −3.83394 + 3.83394i −0.220618 + 0.220618i
\(303\) 4.06447 + 7.77896i 0.233497 + 0.446890i
\(304\) −8.68744 20.9733i −0.498259 1.20290i
\(305\) 0.559148 0.0320167
\(306\) −0.631910 16.2462i −0.0361239 0.928736i
\(307\) −19.5814 −1.11757 −0.558785 0.829312i \(-0.688732\pi\)
−0.558785 + 0.829312i \(0.688732\pi\)
\(308\) −0.671371 1.62083i −0.0382549 0.0923555i
\(309\) −12.8143 24.5253i −0.728981 1.39519i
\(310\) −1.17093 + 1.17093i −0.0665042 + 0.0665042i
\(311\) 16.3199 + 24.4244i 0.925415 + 1.38498i 0.922923 + 0.384985i \(0.125793\pi\)
0.00249223 + 0.999997i \(0.499207\pi\)
\(312\) −0.387413 + 0.463125i −0.0219330 + 0.0262193i
\(313\) −14.8171 9.90044i −0.837509 0.559606i 0.0612125 0.998125i \(-0.480503\pi\)
−0.898722 + 0.438519i \(0.855503\pi\)
\(314\) 16.9521 + 7.02180i 0.956664 + 0.396263i
\(315\) −0.613020 0.426478i −0.0345398 0.0240293i
\(316\) 0.370010 0.553759i 0.0208147 0.0311514i
\(317\) −2.75488 13.8497i −0.154729 0.777877i −0.977735 0.209844i \(-0.932704\pi\)
0.823006 0.568033i \(-0.192296\pi\)
\(318\) −13.9139 4.36387i −0.780253 0.244713i
\(319\) 10.1366 + 10.1366i 0.567542 + 0.567542i
\(320\) 0.240798 1.21057i 0.0134610 0.0676730i
\(321\) −1.13199 + 2.07078i −0.0631815 + 0.115580i
\(322\) 14.6027i 0.813775i
\(323\) 16.6801 + 22.0921i 0.928107 + 1.22924i
\(324\) −2.22724 1.02219i −0.123736 0.0567883i
\(325\) −0.537026 + 0.222443i −0.0297888 + 0.0123389i
\(326\) −14.3797 2.86030i −0.796418 0.158417i
\(327\) −2.13442 + 19.7660i −0.118034 + 1.09306i
\(328\) 10.9209 7.29708i 0.603003 0.402914i
\(329\) 5.18123 1.03061i 0.285651 0.0568194i
\(330\) −0.103435 1.16198i −0.00569389 0.0639649i
\(331\) −2.76796 + 6.68245i −0.152141 + 0.367301i −0.981513 0.191396i \(-0.938698\pi\)
0.829372 + 0.558697i \(0.188698\pi\)
\(332\) −0.577254 + 1.39362i −0.0316810 + 0.0764846i
\(333\) 0.775006 + 0.804686i 0.0424701 + 0.0440965i
\(334\) −2.70720 + 0.538496i −0.148131 + 0.0294652i
\(335\) 0.680692 0.454824i 0.0371902 0.0248497i
\(336\) 10.3014 + 1.11239i 0.561988 + 0.0606860i
\(337\) 13.1112 + 2.60797i 0.714210 + 0.142065i 0.538804 0.842431i \(-0.318876\pi\)
0.175406 + 0.984496i \(0.443876\pi\)
\(338\) −15.7703 + 6.53226i −0.857789 + 0.355308i
\(339\) −18.2829 + 14.7192i −0.992993 + 0.799438i
\(340\) 0.00910339 + 0.157700i 0.000493701 + 0.00855247i
\(341\) 32.6085i 1.76585i
\(342\) −26.0582 + 4.67625i −1.40907 + 0.252862i
\(343\) −3.75178 + 18.8615i −0.202577 + 1.01842i
\(344\) −4.45359 4.45359i −0.240121 0.240121i
\(345\) 0.457965 1.46019i 0.0246560 0.0786140i
\(346\) −3.15781 15.8754i −0.169765 0.853466i
\(347\) 18.5966 27.8318i 0.998320 1.49409i 0.134106 0.990967i \(-0.457184\pi\)
0.864214 0.503124i \(-0.167816\pi\)
\(348\) 1.78149 0.522186i 0.0954977 0.0279921i
\(349\) 25.7122 + 10.6503i 1.37634 + 0.570099i 0.943500 0.331372i \(-0.107511\pi\)
0.432840 + 0.901471i \(0.357511\pi\)
\(350\) 9.62945 + 6.43419i 0.514715 + 0.343922i
\(351\) 0.371384 + 0.479468i 0.0198230 + 0.0255921i
\(352\) −3.09375 4.63013i −0.164898 0.246787i
\(353\) 5.10785 5.10785i 0.271864 0.271864i −0.557986 0.829850i \(-0.688426\pi\)
0.829850 + 0.557986i \(0.188426\pi\)
\(354\) 19.2971 10.0826i 1.02563 0.535886i
\(355\) 0.699750 + 1.68935i 0.0371389 + 0.0896611i
\(356\) −1.11580 −0.0591371
\(357\) −12.4992 + 1.84364i −0.661530 + 0.0975756i
\(358\) 24.2996 1.28427
\(359\) −10.5450 25.4579i −0.556544 1.34362i −0.912486 0.409108i \(-0.865840\pi\)
0.355942 0.934508i \(-0.384160\pi\)
\(360\) −1.15548 0.504251i −0.0608993 0.0265763i
\(361\) 18.4383 18.4383i 0.970437 0.970437i
\(362\) 1.55450 + 2.32647i 0.0817026 + 0.122277i
\(363\) −3.00628 2.51481i −0.157789 0.131994i
\(364\) 0.0467501 + 0.0312374i 0.00245037 + 0.00163729i
\(365\) 0.580747 + 0.240553i 0.0303977 + 0.0125911i
\(366\) 2.54489 + 8.68213i 0.133024 + 0.453822i
\(367\) −6.24111 + 9.34048i −0.325783 + 0.487569i −0.957820 0.287370i \(-0.907219\pi\)
0.632037 + 0.774939i \(0.282219\pi\)
\(368\) 4.14230 + 20.8247i 0.215932 + 1.08556i
\(369\) −4.81876 12.2811i −0.250855 0.639329i
\(370\) 0.0487002 + 0.0487002i 0.00253180 + 0.00253180i
\(371\) −2.21072 + 11.1141i −0.114775 + 0.577013i
\(372\) 3.70534 + 2.02552i 0.192113 + 0.105018i
\(373\) 5.50325i 0.284948i −0.989799 0.142474i \(-0.954494\pi\)
0.989799 0.142474i \(-0.0455057\pi\)
\(374\) −14.7372 13.1286i −0.762042 0.678864i
\(375\) −1.52524 1.89452i −0.0787630 0.0978326i
\(376\) 8.23951 3.41292i 0.424920 0.176008i
\(377\) −0.450605 0.0896309i −0.0232073 0.00461623i
\(378\) 3.83203 11.4597i 0.197098 0.589423i
\(379\) −4.37931 + 2.92616i −0.224950 + 0.150307i −0.662939 0.748674i \(-0.730691\pi\)
0.437989 + 0.898981i \(0.355691\pi\)
\(380\) 0.252275 0.0501806i 0.0129414 0.00257421i
\(381\) 17.0609 1.51869i 0.874057 0.0778049i
\(382\) −8.72156 + 21.0557i −0.446234 + 1.07730i
\(383\) 8.09691 19.5477i 0.413733 0.998840i −0.570394 0.821372i \(-0.693209\pi\)
0.984127 0.177468i \(-0.0567907\pi\)
\(384\) 14.6170 1.30115i 0.745922 0.0663989i
\(385\) −0.889126 + 0.176858i −0.0453140 + 0.00901352i
\(386\) 17.7448 11.8567i 0.903188 0.603491i
\(387\) −5.32519 + 3.41525i −0.270694 + 0.173607i
\(388\) −1.22504 0.243675i −0.0621919 0.0123707i
\(389\) 11.5459 4.78245i 0.585398 0.242480i −0.0702713 0.997528i \(-0.522387\pi\)
0.655669 + 0.755048i \(0.272387\pi\)
\(390\) 0.0234459 + 0.0291224i 0.00118723 + 0.00147467i
\(391\) −11.2701 23.3094i −0.569954 1.17881i
\(392\) 11.5587i 0.583804i
\(393\) −19.8018 10.8247i −0.998871 0.546032i
\(394\) 2.01323 10.1212i 0.101425 0.509898i
\(395\) −0.243347 0.243347i −0.0122441 0.0122441i
\(396\) −2.76934 + 1.08661i −0.139165 + 0.0546044i
\(397\) −7.58893 38.1521i −0.380877 1.91480i −0.403334 0.915053i \(-0.632149\pi\)
0.0224569 0.999748i \(-0.492851\pi\)
\(398\) 9.34689 13.9886i 0.468517 0.701186i
\(399\) 5.78693 + 19.7427i 0.289709 + 0.988369i
\(400\) 15.5576 + 6.44418i 0.777881 + 0.322209i
\(401\) −22.6390 15.1269i −1.13054 0.755401i −0.157837 0.987465i \(-0.550452\pi\)
−0.972701 + 0.232064i \(0.925452\pi\)
\(402\) 10.1603 + 8.49933i 0.506752 + 0.423908i
\(403\) −0.580609 0.868943i −0.0289222 0.0432851i
\(404\) 0.975645 0.975645i 0.0485401 0.0485401i
\(405\) −0.742578 + 1.02573i −0.0368990 + 0.0509689i
\(406\) 3.50297 + 8.45693i 0.173850 + 0.419710i
\(407\) 1.35623 0.0672256
\(408\) −20.0887 + 7.16932i −0.994539 + 0.354934i
\(409\) 28.2231 1.39554 0.697770 0.716322i \(-0.254176\pi\)
0.697770 + 0.716322i \(0.254176\pi\)
\(410\) −0.311232 0.751380i −0.0153706 0.0371080i
\(411\) −4.91998 + 2.57066i −0.242685 + 0.126801i
\(412\) −3.07598 + 3.07598i −0.151543 + 0.151543i
\(413\) −9.39988 14.0679i −0.462538 0.692237i
\(414\) 24.7574 + 0.465145i 1.21676 + 0.0228606i
\(415\) 0.648098 + 0.433045i 0.0318139 + 0.0212573i
\(416\) 0.164883 + 0.0682967i 0.00808405 + 0.00334852i
\(417\) 8.46759 2.48201i 0.414660 0.121544i
\(418\) −17.8552 + 26.7222i −0.873326 + 1.30703i
\(419\) 1.82223 + 9.16095i 0.0890216 + 0.447542i 0.999428 + 0.0338260i \(0.0107692\pi\)
−0.910406 + 0.413716i \(0.864231\pi\)
\(420\) −0.0351327 + 0.112018i −0.00171430 + 0.00546593i
\(421\) −9.40617 9.40617i −0.458429 0.458429i 0.439711 0.898139i \(-0.355081\pi\)
−0.898139 + 0.439711i \(0.855081\pi\)
\(422\) −1.31296 + 6.60069i −0.0639138 + 0.321316i
\(423\) −1.58226 8.81709i −0.0769320 0.428702i
\(424\) 19.1305i 0.929057i
\(425\) −20.3367 2.83867i −0.986477 0.137696i
\(426\) −23.0464 + 18.5542i −1.11660 + 0.898952i
\(427\) 6.49556 2.69055i 0.314342 0.130205i
\(428\) 0.363877 + 0.0723795i 0.0175886 + 0.00349860i
\(429\) 0.731973 + 0.0790418i 0.0353400 + 0.00381617i
\(430\) −0.324269 + 0.216670i −0.0156376 + 0.0104487i
\(431\) 14.3298 2.85038i 0.690243 0.137298i 0.162508 0.986707i \(-0.448042\pi\)
0.527734 + 0.849409i \(0.323042\pi\)
\(432\) 2.21409 17.4296i 0.106525 0.838581i
\(433\) −6.82738 + 16.4827i −0.328103 + 0.792110i 0.670631 + 0.741792i \(0.266024\pi\)
−0.998733 + 0.0503185i \(0.983976\pi\)
\(434\) −7.96819 + 19.2369i −0.382485 + 0.923401i
\(435\) −0.0850552 0.955507i −0.00407809 0.0458131i
\(436\) 3.06536 0.609738i 0.146804 0.0292011i
\(437\) −35.0544 + 23.4226i −1.67688 + 1.12045i
\(438\) −1.09198 + 10.1124i −0.0521768 + 0.483187i
\(439\) −25.8533 5.14255i −1.23391 0.245440i −0.465299 0.885154i \(-0.654053\pi\)
−0.768614 + 0.639713i \(0.779053\pi\)
\(440\) −1.41394 + 0.585674i −0.0674070 + 0.0279209i
\(441\) 11.3424 + 2.47850i 0.540112 + 0.118024i
\(442\) 0.626473 + 0.0874454i 0.0297983 + 0.00415935i
\(443\) 9.67036i 0.459453i 0.973255 + 0.229726i \(0.0737831\pi\)
−0.973255 + 0.229726i \(0.926217\pi\)
\(444\) 0.0842438 0.154109i 0.00399803 0.00731371i
\(445\) −0.112483 + 0.565491i −0.00533221 + 0.0268068i
\(446\) −0.175541 0.175541i −0.00831208 0.00831208i
\(447\) 36.7265 + 11.5187i 1.73710 + 0.544814i
\(448\) −3.02780 15.2218i −0.143050 0.719161i
\(449\) −0.587080 + 0.878627i −0.0277060 + 0.0414650i −0.845064 0.534665i \(-0.820438\pi\)
0.817358 + 0.576130i \(0.195438\pi\)
\(450\) 11.2153 16.1208i 0.528692 0.759942i
\(451\) −14.7960 6.12872i −0.696718 0.288590i
\(452\) 3.06805 + 2.05000i 0.144309 + 0.0964240i
\(453\) 4.58424 5.48012i 0.215386 0.257479i
\(454\) 1.55560 + 2.32811i 0.0730077 + 0.109264i
\(455\) 0.0205441 0.0205441i 0.000963124 0.000963124i
\(456\) 16.0842 + 30.7834i 0.753210 + 1.44157i
\(457\) 8.19942 + 19.7952i 0.383553 + 0.925978i 0.991273 + 0.131827i \(0.0420843\pi\)
−0.607720 + 0.794151i \(0.707916\pi\)
\(458\) −22.7184 −1.06156
\(459\) 2.72756 + 21.2500i 0.127312 + 0.991863i
\(460\) −0.240577 −0.0112169
\(461\) −9.42954 22.7649i −0.439177 1.06027i −0.976233 0.216721i \(-0.930464\pi\)
0.537056 0.843547i \(-0.319536\pi\)
\(462\) −6.79290 13.0009i −0.316034 0.604856i
\(463\) 13.6466 13.6466i 0.634213 0.634213i −0.314909 0.949122i \(-0.601974\pi\)
0.949122 + 0.314909i \(0.101974\pi\)
\(464\) 7.39451 + 11.0667i 0.343281 + 0.513757i
\(465\) 1.40008 1.67369i 0.0649271 0.0776156i
\(466\) −10.7018 7.15074i −0.495753 0.331252i
\(467\) −11.4980 4.76264i −0.532066 0.220389i 0.100442 0.994943i \(-0.467974\pi\)
−0.632508 + 0.774554i \(0.717974\pi\)
\(468\) 0.0544491 0.0782652i 0.00251691 0.00361781i
\(469\) 5.71897 8.55905i 0.264078 0.395220i
\(470\) −0.107735 0.541619i −0.00496943 0.0249830i
\(471\) −23.0707 7.23574i −1.06304 0.333405i
\(472\) −20.1974 20.1974i −0.929660 0.929660i
\(473\) −1.49824 + 7.53215i −0.0688890 + 0.346329i
\(474\) 2.67099 4.88612i 0.122683 0.224427i
\(475\) 33.4363i 1.53416i
\(476\) 0.864585 + 1.78818i 0.0396282 + 0.0819610i
\(477\) 18.7724 + 4.10208i 0.859527 + 0.187821i
\(478\) −27.2464 + 11.2858i −1.24622 + 0.516202i
\(479\) −22.2629 4.42837i −1.01722 0.202337i −0.341801 0.939772i \(-0.611037\pi\)
−0.675418 + 0.737435i \(0.736037\pi\)
\(480\) −0.0400064 + 0.370483i −0.00182604 + 0.0169102i
\(481\) −0.0361403 + 0.0241482i −0.00164786 + 0.00110106i
\(482\) −0.522751 + 0.103982i −0.0238107 + 0.00473624i
\(483\) −1.70613 19.1665i −0.0776314 0.872108i
\(484\) −0.235795 + 0.569259i −0.0107179 + 0.0258754i
\(485\) −0.246991 + 0.596290i −0.0112153 + 0.0270761i
\(486\) −19.3067 6.86185i −0.875770 0.311260i
\(487\) 22.5436 4.48421i 1.02155 0.203199i 0.344228 0.938886i \(-0.388141\pi\)
0.677322 + 0.735687i \(0.263141\pi\)
\(488\) 9.86902 6.59427i 0.446750 0.298509i
\(489\) 19.2081 + 2.07417i 0.868619 + 0.0937974i
\(490\) 0.701969 + 0.139630i 0.0317117 + 0.00630785i
\(491\) 18.8224 7.79649i 0.849443 0.351851i 0.0848732 0.996392i \(-0.472951\pi\)
0.764570 + 0.644541i \(0.222951\pi\)
\(492\) −1.61549 + 1.30060i −0.0728319 + 0.0586355i
\(493\) −12.1185 10.7958i −0.545791 0.486217i
\(494\) 1.03001i 0.0463421i
\(495\) 0.271524 + 1.51306i 0.0122041 + 0.0680069i
\(496\) −5.90648 + 29.6939i −0.265209 + 1.33329i
\(497\) 16.2578 + 16.2578i 0.729264 + 0.729264i
\(498\) −3.77434 + 12.0342i −0.169132 + 0.539267i
\(499\) −0.210533 1.05842i −0.00942477 0.0473815i 0.975787 0.218724i \(-0.0701895\pi\)
−0.985211 + 0.171343i \(0.945189\pi\)
\(500\) −0.212426 + 0.317918i −0.00949997 + 0.0142177i
\(501\) 3.49038 1.02309i 0.155939 0.0457085i
\(502\) −1.28795 0.533486i −0.0574840 0.0238106i
\(503\) 7.80319 + 5.21393i 0.347927 + 0.232478i 0.717238 0.696829i \(-0.245406\pi\)
−0.369311 + 0.929306i \(0.620406\pi\)
\(504\) −15.8495 0.297783i −0.705994 0.0132643i
\(505\) −0.396107 0.592815i −0.0176265 0.0263799i
\(506\) 21.2552 21.2552i 0.944907 0.944907i
\(507\) 19.9358 10.4164i 0.885381 0.462607i
\(508\) −1.03045 2.48772i −0.0457188 0.110375i
\(509\) −7.99190 −0.354235 −0.177117 0.984190i \(-0.556677\pi\)
−0.177117 + 0.984190i \(0.556677\pi\)
\(510\) 0.192724 + 1.30661i 0.00853397 + 0.0578575i
\(511\) 7.90399 0.349652
\(512\) −9.70803 23.4372i −0.429038 1.03579i
\(513\) 33.6560 9.18230i 1.48595 0.405408i
\(514\) 18.7116 18.7116i 0.825334 0.825334i
\(515\) 1.24883 + 1.86901i 0.0550301 + 0.0823584i
\(516\) 0.762822 + 0.638116i 0.0335814 + 0.0280915i
\(517\) −9.04174 6.04150i −0.397655 0.265705i
\(518\) 0.800085 + 0.331406i 0.0351537 + 0.0145611i
\(519\) 5.99957 + 20.4681i 0.263352 + 0.898449i
\(520\) 0.0272501 0.0407827i 0.00119500 0.00178844i
\(521\) −0.307543 1.54613i −0.0134737 0.0677370i 0.973463 0.228842i \(-0.0734941\pi\)
−0.986937 + 0.161105i \(0.948494\pi\)
\(522\) 14.4495 5.66956i 0.632435 0.248150i
\(523\) 24.2095 + 24.2095i 1.05861 + 1.05861i 0.998172 + 0.0604341i \(0.0192485\pi\)
0.0604341 + 0.998172i \(0.480751\pi\)
\(524\) −0.692129 + 3.47957i −0.0302358 + 0.152006i
\(525\) −13.3907 7.32004i −0.584420 0.319473i
\(526\) 7.25753i 0.316443i
\(527\) −2.12758 36.8565i −0.0926789 1.60549i
\(528\) −13.3752 16.6135i −0.582081 0.723011i
\(529\) 15.1812 6.28827i 0.660054 0.273403i
\(530\) 1.16181 + 0.231097i 0.0504656 + 0.0100382i
\(531\) −24.1502 + 15.4884i −1.04803 + 0.672141i
\(532\) 2.68919 1.79686i 0.116591 0.0779037i
\(533\) 0.503405 0.100134i 0.0218049 0.00433727i
\(534\) −9.29257 + 0.827186i −0.402129 + 0.0357958i
\(535\) 0.0733645 0.177118i 0.00317183 0.00765746i
\(536\) 6.65037 16.0554i 0.287252 0.693488i
\(537\) −31.8941 + 2.83908i −1.37633 + 0.122515i
\(538\) 11.7825 2.34369i 0.507980 0.101043i
\(539\) 11.7186 7.83012i 0.504756 0.337267i
\(540\) 0.188797 + 0.0631321i 0.00812451 + 0.00271677i
\(541\) −2.97344 0.591454i −0.127838 0.0254286i 0.130756 0.991415i \(-0.458259\pi\)
−0.258595 + 0.965986i \(0.583259\pi\)
\(542\) −3.21592 + 1.33208i −0.138135 + 0.0572176i
\(543\) −2.31215 2.87196i −0.0992239 0.123247i
\(544\) 3.79888 + 5.03145i 0.162876 + 0.215722i
\(545\) 1.61500i 0.0691792i
\(546\) 0.412502 + 0.225494i 0.0176535 + 0.00965024i
\(547\) 0.339058 1.70456i 0.0144971 0.0728817i −0.972860 0.231396i \(-0.925671\pi\)
0.987357 + 0.158515i \(0.0506705\pi\)
\(548\) 0.617069 + 0.617069i 0.0263599 + 0.0263599i
\(549\) −4.35465 11.0983i −0.185852 0.473663i
\(550\) −4.65090 23.3817i −0.198315 0.996998i
\(551\) −14.6825 + 21.9739i −0.625495 + 0.936119i
\(552\) −9.13753 31.1735i −0.388919 1.32683i
\(553\) −3.99789 1.65598i −0.170008 0.0704195i
\(554\) 22.6118 + 15.1087i 0.960681 + 0.641907i
\(555\) −0.0696108 0.0582308i −0.00295481 0.00247176i
\(556\) −0.770669 1.15339i −0.0326837 0.0489146i
\(557\) −29.9311 + 29.9311i −1.26822 + 1.26822i −0.321217 + 0.947006i \(0.604092\pi\)
−0.947006 + 0.321217i \(0.895908\pi\)
\(558\) 32.3604 + 14.1220i 1.36993 + 0.597833i
\(559\) −0.0941886 0.227391i −0.00398375 0.00961763i
\(560\) −0.841688 −0.0355678
\(561\) 20.8770 + 15.5099i 0.881428 + 0.654830i
\(562\) 13.5236 0.570460
\(563\) 10.8784 + 26.2627i 0.458468 + 1.10684i 0.969018 + 0.246991i \(0.0794420\pi\)
−0.510550 + 0.859848i \(0.670558\pi\)
\(564\) −1.24814 + 0.652148i −0.0525563 + 0.0274604i
\(565\) 1.34824 1.34824i 0.0567208 0.0567208i
\(566\) −9.37847 14.0359i −0.394207 0.589972i
\(567\) −3.69077 + 15.4890i −0.154998 + 0.650476i
\(568\) 32.2739 + 21.5647i 1.35418 + 0.904835i
\(569\) 19.2820 + 7.98685i 0.808342 + 0.334826i 0.748292 0.663369i \(-0.230874\pi\)
0.0600499 + 0.998195i \(0.480874\pi\)
\(570\) 2.06379 0.604936i 0.0864428 0.0253380i
\(571\) −3.48855 + 5.22099i −0.145991 + 0.218492i −0.897257 0.441508i \(-0.854444\pi\)
0.751266 + 0.660000i \(0.229444\pi\)
\(572\) −0.0225797 0.113516i −0.000944106 0.00474634i
\(573\) 8.98729 28.6554i 0.375449 1.19710i
\(574\) −7.23109 7.23109i −0.301820 0.301820i
\(575\) 6.10109 30.6723i 0.254433 1.27912i
\(576\) −25.9034 + 4.64846i −1.07931 + 0.193686i
\(577\) 36.1978i 1.50693i −0.657485 0.753467i \(-0.728380\pi\)
0.657485 0.753467i \(-0.271620\pi\)
\(578\) 17.5136 + 13.8774i 0.728471 + 0.577222i
\(579\) −21.9054 + 17.6356i −0.910358 + 0.732911i
\(580\) −0.139326 + 0.0577109i −0.00578522 + 0.00239632i
\(581\) 9.61264 + 1.91207i 0.398799 + 0.0793261i
\(582\) −10.3830 1.12120i −0.430389 0.0464754i
\(583\) 19.3951 12.9594i 0.803262 0.536723i
\(584\) 13.0872 2.60321i 0.541553 0.107722i
\(585\) −0.0341761 0.0354849i −0.00141301 0.00146712i
\(586\) 0.567450 1.36995i 0.0234412 0.0565919i
\(587\) −2.98442 + 7.20502i −0.123180 + 0.297383i −0.973426 0.229003i \(-0.926453\pi\)
0.850246 + 0.526386i \(0.176453\pi\)
\(588\) −0.161829 1.81798i −0.00667371 0.0749722i
\(589\) −58.9600 + 11.7279i −2.42940 + 0.483238i
\(590\) −1.47059 + 0.982614i −0.0605431 + 0.0404536i
\(591\) −1.45991 + 13.5196i −0.0600528 + 0.556124i
\(592\) 1.23500 + 0.245657i 0.0507583 + 0.0100964i
\(593\) −28.0114 + 11.6027i −1.15029 + 0.476465i −0.874630 0.484790i \(-0.838896\pi\)
−0.275659 + 0.961256i \(0.588896\pi\)
\(594\) −22.2581 + 11.1026i −0.913261 + 0.455543i
\(595\) 0.993414 0.257910i 0.0407260 0.0105733i
\(596\) 6.05095i 0.247857i
\(597\) −10.6338 + 19.4526i −0.435211 + 0.796143i
\(598\) −0.187944 + 0.944859i −0.00768561 + 0.0386381i
\(599\) 17.7610 + 17.7610i 0.725695 + 0.725695i 0.969759 0.244064i \(-0.0784808\pi\)
−0.244064 + 0.969759i \(0.578481\pi\)
\(600\) −24.5829 7.71003i −1.00359 0.314761i
\(601\) 5.94298 + 29.8774i 0.242419 + 1.21872i 0.889726 + 0.456494i \(0.150895\pi\)
−0.647307 + 0.762229i \(0.724105\pi\)
\(602\) −2.72441 + 4.07737i −0.111039 + 0.166181i
\(603\) −14.3288 9.96858i −0.583516 0.405952i
\(604\) −1.03770 0.429829i −0.0422233 0.0174895i
\(605\) 0.264733 + 0.176889i 0.0107629 + 0.00719155i
\(606\) 7.40207 8.84865i 0.300689 0.359452i
\(607\) 12.1073 + 18.1199i 0.491421 + 0.735464i 0.991442 0.130550i \(-0.0416742\pi\)
−0.500020 + 0.866014i \(0.666674\pi\)
\(608\) 7.25911 7.25911i 0.294396 0.294396i
\(609\) −5.58586 10.6907i −0.226350 0.433211i
\(610\) −0.281256 0.679012i −0.0113877 0.0274924i
\(611\) 0.348513 0.0140993
\(612\) 3.05922 1.40886i 0.123661 0.0569497i
\(613\) 17.5623 0.709337 0.354668 0.934992i \(-0.384594\pi\)
0.354668 + 0.934992i \(0.384594\pi\)
\(614\) 9.84962 + 23.7791i 0.397498 + 0.959646i
\(615\) 0.496292 + 0.949850i 0.0200124 + 0.0383017i
\(616\) −13.6074 + 13.6074i −0.548258 + 0.548258i
\(617\) 13.1285 + 19.6482i 0.528534 + 0.791007i 0.995648 0.0931902i \(-0.0297065\pi\)
−0.467115 + 0.884197i \(0.654706\pi\)
\(618\) −23.3370 + 27.8977i −0.938753 + 1.12221i
\(619\) −33.2074 22.1885i −1.33472 0.891831i −0.335973 0.941872i \(-0.609065\pi\)
−0.998747 + 0.0500404i \(0.984065\pi\)
\(620\) −0.316925 0.131275i −0.0127280 0.00527211i
\(621\) −32.5493 + 2.28205i −1.30616 + 0.0915754i
\(622\) 21.4512 32.1040i 0.860116 1.28725i
\(623\) 1.41437 + 7.11050i 0.0566654 + 0.284876i
\(624\) 0.652230 + 0.204561i 0.0261101 + 0.00818901i
\(625\) −17.4680 17.4680i −0.698719 0.698719i
\(626\) −4.56969 + 22.9734i −0.182642 + 0.918201i
\(627\) 20.3135 37.1600i 0.811242 1.48403i
\(628\) 3.80106i 0.151679i
\(629\) −1.53290 + 0.0884885i −0.0611209 + 0.00352827i
\(630\) −0.209548 + 0.958955i −0.00834859 + 0.0382057i
\(631\) −24.7481 + 10.2510i −0.985205 + 0.408085i −0.816351 0.577556i \(-0.804007\pi\)
−0.168854 + 0.985641i \(0.554007\pi\)
\(632\) −7.16501 1.42521i −0.285009 0.0566917i
\(633\) 0.952104 8.81704i 0.0378428 0.350446i
\(634\) −15.4329 + 10.3120i −0.612920 + 0.409540i
\(635\) −1.36467 + 0.271450i −0.0541552 + 0.0107721i
\(636\) −0.267838 3.00888i −0.0106205 0.119310i
\(637\) −0.172855 + 0.417310i −0.00684878 + 0.0165344i
\(638\) 7.21080 17.4084i 0.285478 0.689206i
\(639\) 28.0814 27.0457i 1.11088 1.06991i
\(640\) −1.16919 + 0.232566i −0.0462162 + 0.00919297i
\(641\) 35.4034 23.6558i 1.39835 0.934349i 0.398500 0.917168i \(-0.369531\pi\)
0.999852 0.0171805i \(-0.00546901\pi\)
\(642\) 3.08409 + 0.333034i 0.121719 + 0.0131438i
\(643\) −25.2906 5.03062i −0.997365 0.198388i −0.330692 0.943739i \(-0.607282\pi\)
−0.666673 + 0.745351i \(0.732282\pi\)
\(644\) −2.79475 + 1.15763i −0.110129 + 0.0456168i
\(645\) 0.400300 0.322273i 0.0157618 0.0126895i
\(646\) 18.4377 31.3683i 0.725422 1.23417i
\(647\) 38.1903i 1.50142i −0.660634 0.750709i \(-0.729712\pi\)
0.660634 0.750709i \(-0.270288\pi\)
\(648\) −1.00972 + 26.8618i −0.0396656 + 1.05523i
\(649\) −6.79463 + 34.1589i −0.266712 + 1.34085i
\(650\) 0.540257 + 0.540257i 0.0211906 + 0.0211906i
\(651\) 8.21096 26.1801i 0.321813 1.02608i
\(652\) −0.592526 2.97883i −0.0232051 0.116660i
\(653\) −19.0588 + 28.5236i −0.745830 + 1.11621i 0.243412 + 0.969923i \(0.421733\pi\)
−0.989242 + 0.146290i \(0.953267\pi\)
\(654\) 25.0769 7.35049i 0.980584 0.287427i
\(655\) 1.69369 + 0.701548i 0.0661778 + 0.0274118i
\(656\) −12.3634 8.26097i −0.482710 0.322537i
\(657\) 0.251769 13.4004i 0.00982243 0.522800i
\(658\) −3.85774 5.77352i −0.150391 0.225075i
\(659\) −24.7106 + 24.7106i −0.962589 + 0.962589i −0.999325 0.0367361i \(-0.988304\pi\)
0.0367361 + 0.999325i \(0.488304\pi\)
\(660\) 0.214188 0.111912i 0.00833724 0.00435616i
\(661\) 4.65040 + 11.2271i 0.180880 + 0.436682i 0.988148 0.153502i \(-0.0490552\pi\)
−0.807269 + 0.590184i \(0.799055\pi\)
\(662\) 9.50727 0.369510
\(663\) −0.832486 0.0415803i −0.0323311 0.00161484i
\(664\) 16.5461 0.642113
\(665\) −0.639559 1.54403i −0.0248011 0.0598750i
\(666\) 0.587351 1.34591i 0.0227594 0.0521528i
\(667\) 17.4783 17.4783i 0.676762 0.676762i
\(668\) −0.317674 0.475432i −0.0122912 0.0183950i
\(669\) 0.250913 + 0.209894i 0.00970085 + 0.00811496i
\(670\) −0.894718 0.597832i −0.0345660 0.0230962i
\(671\) −13.3710 5.53844i −0.516181 0.213809i
\(672\) 1.31797 + 4.49637i 0.0508417 + 0.173451i
\(673\) −22.5244 + 33.7102i −0.868252 + 1.29943i 0.0847298 + 0.996404i \(0.472997\pi\)
−0.952982 + 0.303027i \(0.902003\pi\)
\(674\) −3.42798 17.2336i −0.132041 0.663814i
\(675\) −12.8369 + 22.4695i −0.494094 + 0.864852i
\(676\) −2.50037 2.50037i −0.0961681 0.0961681i
\(677\) −1.33713 + 6.72222i −0.0513902 + 0.258356i −0.997936 0.0642128i \(-0.979546\pi\)
0.946546 + 0.322569i \(0.104546\pi\)
\(678\) 27.0710 + 14.7984i 1.03966 + 0.568327i
\(679\) 8.11552i 0.311445i
\(680\) 1.55993 0.754225i 0.0598204 0.0289232i
\(681\) −2.31378 2.87398i −0.0886644 0.110131i
\(682\) 39.5988 16.4024i 1.51632 0.628079i
\(683\) −9.68496 1.92646i −0.370585 0.0737139i 0.00628472 0.999980i \(-0.497999\pi\)
−0.376870 + 0.926266i \(0.622999\pi\)
\(684\) −2.96073 4.61649i −0.113206 0.176516i
\(685\) 0.374940 0.250527i 0.0143257 0.00957213i
\(686\) 24.7920 4.93143i 0.946562 0.188283i
\(687\) 29.8187 2.65434i 1.13766 0.101269i
\(688\) −2.72864 + 6.58752i −0.104028 + 0.251147i
\(689\) −0.286087 + 0.690676i −0.0108991 + 0.0263127i
\(690\) −2.00357 + 0.178349i −0.0762746 + 0.00678965i
\(691\) 13.6051 2.70622i 0.517563 0.102950i 0.0706044 0.997504i \(-0.477507\pi\)
0.446958 + 0.894555i \(0.352507\pi\)
\(692\) 2.78800 1.86288i 0.105984 0.0708161i
\(693\) 10.4349 + 16.2705i 0.396389 + 0.618065i
\(694\) −43.1524 8.58354i −1.63804 0.325827i
\(695\) −0.662233 + 0.274306i −0.0251199 + 0.0104050i
\(696\) −12.7699 15.8617i −0.484044 0.601237i
\(697\) 17.1234 + 5.96174i 0.648596 + 0.225817i
\(698\) 36.5813i 1.38462i
\(699\) 14.8820 + 8.13525i 0.562890 + 0.307703i
\(700\) −0.468044 + 2.35301i −0.0176904 + 0.0889356i
\(701\) −7.15325 7.15325i −0.270175 0.270175i 0.558996 0.829170i \(-0.311187\pi\)
−0.829170 + 0.558996i \(0.811187\pi\)
\(702\) 0.395442 0.692173i 0.0149250 0.0261244i
\(703\) 0.487775 + 2.45221i 0.0183968 + 0.0924869i
\(704\) −17.7491 + 26.5634i −0.668945 + 1.00115i
\(705\) 0.204687 + 0.698307i 0.00770894 + 0.0262998i
\(706\) −8.77211 3.63353i −0.330143 0.136750i
\(707\) −7.45408 4.98066i −0.280340 0.187317i
\(708\) 3.45946 + 2.89391i 0.130014 + 0.108760i
\(709\) 25.0275 + 37.4563i 0.939929 + 1.40670i 0.913404 + 0.407054i \(0.133444\pi\)
0.0265247 + 0.999648i \(0.491556\pi\)
\(710\) 1.69951 1.69951i 0.0637814 0.0637814i
\(711\) −2.93490 + 6.72528i −0.110067 + 0.252218i
\(712\) 4.68374 + 11.3075i 0.175531 + 0.423768i
\(713\) 56.2259 2.10568
\(714\) 8.52608 + 14.2513i 0.319081 + 0.533343i
\(715\) −0.0598067 −0.00223664
\(716\) 1.92635 + 4.65061i 0.0719909 + 0.173801i
\(717\) 34.4433 17.9965i 1.28631 0.672090i
\(718\) −25.6111 + 25.6111i −0.955796 + 0.955796i
\(719\) −15.9794 23.9148i −0.595929 0.891871i 0.403807 0.914844i \(-0.367687\pi\)
−0.999736 + 0.0229732i \(0.992687\pi\)
\(720\) −0.0268106 + 1.42700i −0.000999172 + 0.0531811i
\(721\) 23.5010 + 15.7029i 0.875222 + 0.584805i
\(722\) −31.6655 13.1163i −1.17847 0.488138i
\(723\) 0.673981 0.197556i 0.0250656 0.00734719i
\(724\) −0.322022 + 0.481940i −0.0119679 + 0.0179112i
\(725\) −3.82448 19.2269i −0.142038 0.714071i
\(726\) −1.54173 + 4.91571i −0.0572190 + 0.182439i
\(727\) −1.86673 1.86673i −0.0692331 0.0692331i 0.671642 0.740876i \(-0.265589\pi\)
−0.740876 + 0.671642i \(0.765589\pi\)
\(728\) 0.120321 0.604893i 0.00445938 0.0224188i
\(729\) 26.1425 + 6.75071i 0.968239 + 0.250026i
\(730\) 0.826242i 0.0305806i
\(731\) 1.20197 8.61113i 0.0444565 0.318494i
\(732\) −1.45990 + 1.17533i −0.0539593 + 0.0434415i
\(733\) 28.9600 11.9956i 1.06966 0.443068i 0.222790 0.974866i \(-0.428484\pi\)
0.846871 + 0.531798i \(0.178484\pi\)
\(734\) 14.4821 + 2.88067i 0.534545 + 0.106328i
\(735\) −0.937673 0.101254i −0.0345866 0.00373482i
\(736\) −7.98360 + 5.33447i −0.294279 + 0.196631i
\(737\) −20.7826 + 4.13391i −0.765537 + 0.152275i
\(738\) −12.4899 + 12.0293i −0.459761 + 0.442803i
\(739\) 1.82751 4.41201i 0.0672262 0.162298i −0.886696 0.462354i \(-0.847005\pi\)
0.953922 + 0.300055i \(0.0970051\pi\)
\(740\) −0.00545986 + 0.0131813i −0.000200708 + 0.000484553i
\(741\) 0.120342 + 1.35192i 0.00442088 + 0.0496640i
\(742\) 14.6086 2.90583i 0.536298 0.106676i
\(743\) −17.5085 + 11.6988i −0.642325 + 0.429188i −0.833615 0.552346i \(-0.813733\pi\)
0.191290 + 0.981534i \(0.438733\pi\)
\(744\) 4.97297 46.0526i 0.182318 1.68837i
\(745\) −3.06665 0.609995i −0.112353 0.0223485i
\(746\) −6.68298 + 2.76818i −0.244681 + 0.101350i
\(747\) 3.54792 16.2364i 0.129812 0.594058i
\(748\) 1.34435 3.86127i 0.0491543 0.141182i
\(749\) 2.41058i 0.0880806i
\(750\) −1.53344 + 2.80516i −0.0559933 + 0.102430i
\(751\) 4.52121 22.7296i 0.164981 0.829416i −0.806305 0.591500i \(-0.798536\pi\)
0.971286 0.237916i \(-0.0764642\pi\)
\(752\) −7.13925 7.13925i −0.260342 0.260342i
\(753\) 1.75281 + 0.549740i 0.0638759 + 0.0200336i
\(754\) 0.117813 + 0.592286i 0.00429050 + 0.0215698i
\(755\) −0.322449 + 0.482579i −0.0117351 + 0.0175629i
\(756\) 2.49701 0.175067i 0.0908155 0.00636711i
\(757\) −23.7983 9.85760i −0.864965 0.358280i −0.0943180 0.995542i \(-0.530067\pi\)
−0.770647 + 0.637262i \(0.780067\pi\)
\(758\) 5.75627 + 3.84622i 0.209077 + 0.139701i
\(759\) −25.4148 + 30.3815i −0.922498 + 1.10278i
\(760\) −1.56750 2.34593i −0.0568591 0.0850957i
\(761\) 15.9336 15.9336i 0.577594 0.577594i −0.356646 0.934240i \(-0.616080\pi\)
0.934240 + 0.356646i \(0.116080\pi\)
\(762\) −10.4260 19.9543i −0.377695 0.722870i
\(763\) −7.77120 18.7613i −0.281336 0.679206i
\(764\) −4.72118 −0.170806
\(765\) −0.405617 1.69245i −0.0146651 0.0611907i
\(766\) −27.8109 −1.00485
\(767\) −0.427153 1.03124i −0.0154236 0.0372359i
\(768\) 5.14012 + 9.83764i 0.185478 + 0.354985i
\(769\) 10.2112 10.2112i 0.368226 0.368226i −0.498604 0.866830i \(-0.666154\pi\)
0.866830 + 0.498604i \(0.166154\pi\)
\(770\) 0.662009 + 0.990766i 0.0238571 + 0.0357047i
\(771\) −22.3735 + 26.7459i −0.805761 + 0.963229i
\(772\) 3.67593 + 2.45618i 0.132300 + 0.0883998i
\(773\) −2.24744 0.930920i −0.0808348 0.0334829i 0.341900 0.939736i \(-0.388930\pi\)
−0.422734 + 0.906254i \(0.638930\pi\)
\(774\) 6.82599 + 4.74884i 0.245355 + 0.170694i
\(775\) 24.7741 37.0771i 0.889912 1.33185i
\(776\) 2.67288 + 13.4375i 0.0959507 + 0.482377i
\(777\) −1.08886 0.341503i −0.0390626 0.0122514i
\(778\) −11.6153 11.6153i −0.416429 0.416429i
\(779\) 5.75994 28.9572i 0.206371 1.03750i
\(780\) −0.00371497 + 0.00679590i −0.000133017 + 0.000243332i
\(781\) 47.3287i 1.69355i
\(782\) −22.6373 + 25.4109i −0.809508 + 0.908693i
\(783\) −18.3030 + 9.12973i −0.654097 + 0.326270i
\(784\) 12.0895 5.00762i 0.431766 0.178844i
\(785\) 1.92639 + 0.383184i 0.0687559 + 0.0136764i
\(786\) −3.18464 + 29.4916i −0.113592 + 1.05193i
\(787\) −26.3671 + 17.6179i −0.939884 + 0.628010i −0.928264 0.371922i \(-0.878699\pi\)
−0.0116199 + 0.999932i \(0.503699\pi\)
\(788\) 2.09666 0.417051i 0.0746903 0.0148568i
\(789\) −0.847945 9.52578i −0.0301876 0.339127i
\(790\) −0.173108 + 0.417919i −0.00615889 + 0.0148689i
\(791\) 9.17479 22.1499i 0.326218 0.787560i
\(792\) 22.6366 + 23.5035i 0.804356 + 0.835159i
\(793\) 0.454920 0.0904893i 0.0161547 0.00321337i
\(794\) −42.5135 + 28.4066i −1.50875 + 1.00811i
\(795\) −1.55191 0.167583i −0.0550407 0.00594354i
\(796\) 3.41820 + 0.679923i 0.121155 + 0.0240992i
\(797\) −41.8726 + 17.3442i −1.48320 + 0.614363i −0.969825 0.243800i \(-0.921606\pi\)
−0.513377 + 0.858163i \(0.671606\pi\)
\(798\) 21.0640 16.9582i 0.745658 0.600314i
\(799\) 10.6138 + 6.23860i 0.375490 + 0.220706i
\(800\) 7.61508i 0.269234i
\(801\) 12.1002 2.17142i 0.427539 0.0767235i
\(802\) −6.98204 + 35.1011i −0.246544 + 1.23946i
\(803\) −11.5048 11.5048i −0.405995 0.405995i
\(804\) −0.821198 + 2.61833i −0.0289614 + 0.0923415i
\(805\) 0.304951 + 1.53309i 0.0107481 + 0.0540345i
\(806\) −0.763166 + 1.14216i −0.0268814 + 0.0402308i
\(807\) −15.1911 + 4.45280i −0.534753 + 0.156746i
\(808\) −13.9827 5.79181i −0.491908 0.203755i
\(809\) 20.9122 + 13.9731i 0.735233 + 0.491267i 0.865936 0.500155i \(-0.166724\pi\)
−0.130703 + 0.991422i \(0.541724\pi\)
\(810\) 1.61914 + 0.385814i 0.0568907 + 0.0135561i
\(811\) 12.9298 + 19.3507i 0.454025 + 0.679496i 0.985902 0.167325i \(-0.0535130\pi\)
−0.531877 + 0.846822i \(0.678513\pi\)
\(812\) −1.34084 + 1.34084i −0.0470544 + 0.0470544i
\(813\) 4.06537 2.12413i 0.142579 0.0744966i
\(814\) −0.682192 1.64696i −0.0239108 0.0577259i
\(815\) −1.56942 −0.0549743
\(816\) 16.2016 + 17.9051i 0.567169 + 0.626805i
\(817\) −14.1578 −0.495320
\(818\) −14.1964 34.2732i −0.496367 1.19834i
\(819\) −0.567770 0.247773i −0.0198395 0.00865790i
\(820\) 0.119131 0.119131i 0.00416024 0.00416024i
\(821\) 24.0120 + 35.9365i 0.838025 + 1.25419i 0.964990 + 0.262286i \(0.0844765\pi\)
−0.126965 + 0.991907i \(0.540524\pi\)
\(822\) 5.59653 + 4.68161i 0.195201 + 0.163290i
\(823\) −14.0236 9.37028i −0.488833 0.326627i 0.286608 0.958048i \(-0.407472\pi\)
−0.775441 + 0.631420i \(0.782472\pi\)
\(824\) 44.0841 + 18.2602i 1.53574 + 0.636125i
\(825\) 8.83631 + 30.1459i 0.307641 + 1.04955i
\(826\) −12.3554 + 18.4912i −0.429900 + 0.643391i
\(827\) 4.32515 + 21.7440i 0.150400 + 0.756114i 0.980193 + 0.198042i \(0.0634584\pi\)
−0.829793 + 0.558071i \(0.811542\pi\)
\(828\) 1.87362 + 4.77510i 0.0651127 + 0.165946i
\(829\) 19.3451 + 19.3451i 0.671883 + 0.671883i 0.958150 0.286267i \(-0.0924145\pi\)
−0.286267 + 0.958150i \(0.592415\pi\)
\(830\) 0.199878 1.00486i 0.00693787 0.0348790i
\(831\) −31.4440 17.1888i −1.09078 0.596274i
\(832\) 1.02389i 0.0354968i
\(833\) −12.7343 + 9.61477i −0.441218 + 0.333132i
\(834\) −7.27334 9.03431i −0.251855 0.312833i
\(835\) −0.272976 + 0.113070i −0.00944672 + 0.00391296i
\(836\) −6.52973 1.29884i −0.225836 0.0449215i
\(837\) −44.1242 14.7548i −1.52516 0.510000i
\(838\) 10.2082 6.82089i 0.352636 0.235624i
\(839\) −24.3543 + 4.84436i −0.840802 + 0.167246i −0.596661 0.802494i \(-0.703506\pi\)
−0.244142 + 0.969740i \(0.578506\pi\)
\(840\) 1.28267 0.114178i 0.0442564 0.00393952i
\(841\) −5.16832 + 12.4774i −0.178218 + 0.430256i
\(842\) −6.69119 + 16.1539i −0.230593 + 0.556702i
\(843\) −17.7502 + 1.58005i −0.611351 + 0.0544199i
\(844\) −1.36737 + 0.271986i −0.0470667 + 0.00936215i
\(845\) −1.51926 + 1.01514i −0.0522641 + 0.0349218i
\(846\) −9.91131 + 6.35651i −0.340758 + 0.218541i
\(847\) 3.92654 + 0.781037i 0.134917 + 0.0268367i
\(848\) 20.0089 8.28795i 0.687107 0.284609i
\(849\) 13.9495 + 17.3269i 0.478745 + 0.594656i
\(850\) 6.78235 + 26.1242i 0.232633 + 0.896052i
\(851\) 2.33850i 0.0801628i
\(852\) −5.37801 2.93989i −0.184248 0.100719i
\(853\) 5.82018 29.2600i 0.199279 1.00184i −0.743578 0.668649i \(-0.766873\pi\)
0.942858 0.333196i \(-0.108127\pi\)
\(854\) −6.53464 6.53464i −0.223611 0.223611i
\(855\) −2.63813 + 1.03513i −0.0902220 + 0.0354006i
\(856\) −0.793933 3.99137i −0.0271361 0.136422i
\(857\) 18.9054 28.2940i 0.645798 0.966505i −0.353717 0.935353i \(-0.615082\pi\)
0.999515 0.0311521i \(-0.00991763\pi\)
\(858\) −0.272203 0.928644i −0.00929284 0.0317034i
\(859\) 18.2111 + 7.54327i 0.621354 + 0.257373i 0.671074 0.741390i \(-0.265833\pi\)
−0.0497206 + 0.998763i \(0.515833\pi\)
\(860\) −0.0671740 0.0448842i −0.00229061 0.00153054i
\(861\) 10.3359 + 8.64622i 0.352247 + 0.294662i
\(862\) −10.6694 15.9679i −0.363402 0.543869i
\(863\) 4.36492 4.36492i 0.148584 0.148584i −0.628901 0.777485i \(-0.716495\pi\)
0.777485 + 0.628901i \(0.216495\pi\)
\(864\) 7.66513 2.09126i 0.260773 0.0711460i
\(865\) −0.663059 1.60077i −0.0225447 0.0544277i
\(866\) 23.4504 0.796876
\(867\) −24.6087 16.1683i −0.835754 0.549104i
\(868\) −4.31336 −0.146405
\(869\) 3.40880 + 8.22958i 0.115636 + 0.279169i
\(870\) −1.11755 + 0.583916i −0.0378887 + 0.0197966i
\(871\) 0.480203 0.480203i 0.0162710 0.0162710i
\(872\) −19.0465 28.5050i −0.644994 0.965302i
\(873\) 13.7591 + 0.258507i 0.465674 + 0.00874913i
\(874\) 46.0763 + 30.7872i 1.55855 + 1.04139i
\(875\) 2.29522 + 0.950712i 0.0775927 + 0.0321399i
\(876\) −2.02194 + 0.592666i −0.0683149 + 0.0200243i
\(877\) 5.29644 7.92668i 0.178848 0.267665i −0.731204 0.682159i \(-0.761041\pi\)
0.910052 + 0.414494i \(0.136041\pi\)
\(878\) 6.75949 + 33.9822i 0.228122 + 1.14685i
\(879\) −0.584739 + 1.86440i −0.0197228 + 0.0628847i
\(880\) 1.22513 + 1.22513i 0.0412992 + 0.0412992i
\(881\) 8.39169 42.1879i 0.282723 1.42135i −0.534570 0.845124i \(-0.679527\pi\)
0.817294 0.576222i \(-0.195473\pi\)
\(882\) −2.69548 15.0205i −0.0907617 0.505767i
\(883\) 41.3162i 1.39040i −0.718816 0.695200i \(-0.755316\pi\)
0.718816 0.695200i \(-0.244684\pi\)
\(884\) 0.0329277 + 0.126831i 0.00110748 + 0.00426578i
\(885\) 1.81539 1.46153i 0.0610237 0.0491289i
\(886\) 11.7434 4.86427i 0.394527 0.163418i
\(887\) −14.5578 2.89572i −0.488801 0.0972287i −0.0554646 0.998461i \(-0.517664\pi\)
−0.433337 + 0.901232i \(0.642664\pi\)
\(888\) −1.91538 0.206831i −0.0642760 0.00694081i
\(889\) −14.5470 + 9.72002i −0.487892 + 0.325999i
\(890\) 0.743294 0.147850i 0.0249153 0.00495596i
\(891\) 27.9174 17.1731i 0.935267 0.575319i
\(892\) 0.0196801 0.0475120i 0.000658939 0.00159082i
\(893\) 7.67180 18.5214i 0.256727 0.619794i
\(894\) −4.48582 50.3935i −0.150028 1.68541i
\(895\) 2.55114 0.507454i 0.0852754 0.0169623i
\(896\) −12.4632 + 8.32768i −0.416368 + 0.278208i
\(897\) 0.136289 1.26212i 0.00455057 0.0421410i
\(898\) 1.36228 + 0.270975i 0.0454600 + 0.00904256i
\(899\) 32.5624 13.4878i 1.08602 0.449843i
\(900\) 3.97439 + 0.868473i 0.132480 + 0.0289491i
\(901\) −21.0762 + 15.9131i −0.702149 + 0.530142i
\(902\) 21.0507i 0.700910i
\(903\) 3.09950 5.67001i 0.103145 0.188686i
\(904\) 7.89621 39.6970i 0.262624 1.32030i
\(905\) 0.211787 + 0.211787i 0.00704002 + 0.00704002i
\(906\) −8.96080 2.81041i −0.297703 0.0933696i
\(907\) 3.33756 + 16.7791i 0.110822 + 0.557140i 0.995804 + 0.0915140i \(0.0291706\pi\)
−0.884982 + 0.465626i \(0.845829\pi\)
\(908\) −0.322250 + 0.482281i −0.0106942 + 0.0160050i
\(909\) −8.68165 + 12.4790i −0.287952 + 0.413902i
\(910\) −0.0352820 0.0146143i −0.00116959 0.000484459i
\(911\) 45.9977 + 30.7347i 1.52397 + 1.01829i 0.984319 + 0.176398i \(0.0564446\pi\)
0.539653 + 0.841887i \(0.318555\pi\)
\(912\) 25.2287 30.1591i 0.835406 0.998667i
\(913\) −11.2087 16.7750i −0.370953 0.555171i
\(914\) 19.9143 19.9143i 0.658705 0.658705i
\(915\) 0.448492 + 0.858366i 0.0148267 + 0.0283767i
\(916\) −1.80100 4.34800i −0.0595067 0.143662i
\(917\) 23.0511 0.761216
\(918\) 24.4333 14.0012i 0.806419 0.462107i
\(919\) −57.0283 −1.88119 −0.940595 0.339530i \(-0.889732\pi\)
−0.940595 + 0.339530i \(0.889732\pi\)
\(920\) 1.00986 + 2.43802i 0.0332941 + 0.0803791i
\(921\) −15.7062 30.0601i −0.517538 0.990514i
\(922\) −22.9019 + 22.9019i −0.754233 + 0.754233i
\(923\) 0.842708 + 1.26120i 0.0277381 + 0.0415130i
\(924\) 1.94969 2.33071i 0.0641401 0.0766748i
\(925\) −1.54208 1.03038i −0.0507032 0.0338788i
\(926\) −23.4364 9.70769i −0.770169 0.319014i
\(927\) 27.3712 39.3434i 0.898989 1.29221i
\(928\) −3.34392 + 5.00453i −0.109770 + 0.164282i
\(929\) −6.98713 35.1267i −0.229240 1.15247i −0.908278 0.418366i \(-0.862603\pi\)
0.679038 0.734103i \(-0.262397\pi\)
\(930\) −2.73673 0.858331i −0.0897410 0.0281458i
\(931\) 18.3724 + 18.3724i 0.602132 + 0.602132i
\(932\) 0.520168 2.61506i 0.0170387 0.0856592i
\(933\) −24.4046 + 44.6440i −0.798971 + 1.46158i
\(934\) 16.3585i 0.535267i
\(935\) −1.82138 1.07058i −0.0595656 0.0350116i
\(936\) −1.02170 0.223259i −0.0333954 0.00729746i
\(937\) −18.6808 + 7.73785i −0.610276 + 0.252785i −0.666347 0.745642i \(-0.732143\pi\)
0.0560704 + 0.998427i \(0.482143\pi\)
\(938\) −13.2705 2.63967i −0.433298 0.0861884i
\(939\) 3.31375 30.6873i 0.108140 1.00144i
\(940\) 0.0951179 0.0635557i 0.00310240 0.00207296i
\(941\) 7.61499 1.51472i 0.248242 0.0493783i −0.0694010 0.997589i \(-0.522109\pi\)
0.317643 + 0.948211i \(0.397109\pi\)
\(942\) 2.81788 + 31.6560i 0.0918116 + 1.03141i
\(943\) −10.5676 + 25.5124i −0.344128 + 0.830798i
\(944\) −12.3746 + 29.8749i −0.402759 + 0.972347i
\(945\) 0.162998 1.28315i 0.00530234 0.0417407i
\(946\) 9.90043 1.96932i 0.321891 0.0640281i
\(947\) −2.99573 + 2.00168i −0.0973480 + 0.0650459i −0.603291 0.797521i \(-0.706144\pi\)
0.505943 + 0.862567i \(0.331144\pi\)
\(948\) 1.14688 + 0.123845i 0.0372489 + 0.00402231i
\(949\) 0.511424 + 0.101728i 0.0166015 + 0.00330225i
\(950\) 40.6040 16.8187i 1.31737 0.545672i
\(951\) 19.0515 15.3379i 0.617786 0.497367i
\(952\) 14.4922 16.2679i 0.469696 0.527246i
\(953\) 22.5397i 0.730132i 0.930982 + 0.365066i \(0.118954\pi\)
−0.930982 + 0.365066i \(0.881046\pi\)
\(954\) −4.46121 24.8600i −0.144437 0.804871i
\(955\) −0.475940 + 2.39271i −0.0154011 + 0.0774264i
\(956\) −4.31991 4.31991i −0.139716 0.139716i
\(957\) −7.43050 + 23.6917i −0.240194 + 0.765843i
\(958\) 5.82076 + 29.2629i 0.188060 + 0.945442i
\(959\) 3.15013 4.71450i 0.101723 0.152239i
\(960\) 2.05153 0.601342i 0.0662129 0.0194082i
\(961\) 45.4292 + 18.8174i 1.46546 + 0.607013i
\(962\) 0.0475037 + 0.0317410i 0.00153158 + 0.00102337i
\(963\) −4.08689 0.0767851i −0.131698 0.00247436i
\(964\) −0.0613417 0.0918044i −0.00197568 0.00295682i
\(965\) 1.61537 1.61537i 0.0520007 0.0520007i
\(966\) −22.4171 + 11.7128i −0.721257 + 0.376853i
\(967\) 8.59605 + 20.7527i 0.276430 + 0.667362i 0.999732 0.0231709i \(-0.00737619\pi\)
−0.723301 + 0.690533i \(0.757376\pi\)
\(968\) 6.75869 0.217233
\(969\) −20.5352 + 43.3263i −0.659686 + 1.39184i
\(970\) 0.848355 0.0272390
\(971\) 13.1165 + 31.6660i 0.420928 + 1.01621i 0.982075 + 0.188493i \(0.0603603\pi\)
−0.561147 + 0.827716i \(0.689640\pi\)
\(972\) −0.217270 4.23901i −0.00696893 0.135966i
\(973\) −6.37317 + 6.37317i −0.204314 + 0.204314i
\(974\) −16.7851 25.1207i −0.537830 0.804920i
\(975\) −0.772229 0.645985i −0.0247311 0.0206881i
\(976\) −11.1726 7.46532i −0.357628 0.238959i
\(977\) 26.0166 + 10.7764i 0.832345 + 0.344769i 0.757831 0.652451i \(-0.226259\pi\)
0.0745143 + 0.997220i \(0.476259\pi\)
\(978\) −7.14301 24.3690i −0.228408 0.779235i
\(979\) 8.29109 12.4085i 0.264985 0.396577i
\(980\) 0.0289251 + 0.145416i 0.000923980 + 0.00464516i
\(981\) −32.0555 + 12.5777i −1.02345 + 0.401574i
\(982\) −18.9356 18.9356i −0.604261 0.604261i
\(983\) −8.14020 + 40.9235i −0.259632 + 1.30526i 0.602314 + 0.798259i \(0.294245\pi\)
−0.861946 + 0.506999i \(0.830755\pi\)
\(984\) 19.9616 + 10.9120i 0.636353 + 0.347862i
\(985\) 1.10464i 0.0351967i
\(986\) −7.01434 + 20.1467i −0.223382 + 0.641602i
\(987\) 5.73799 + 7.12723i 0.182642 + 0.226862i
\(988\) 0.197129 0.0816535i 0.00627151 0.00259774i
\(989\) 12.9875 + 2.58337i 0.412977 + 0.0821463i
\(990\) 1.70083 1.09081i 0.0540560 0.0346682i
\(991\) 8.43842 5.63837i 0.268055 0.179109i −0.414277 0.910151i \(-0.635966\pi\)
0.682333 + 0.731042i \(0.260966\pi\)
\(992\) −13.4281 + 2.67101i −0.426341 + 0.0848046i
\(993\) −12.4786 + 1.11080i −0.395998 + 0.0352500i
\(994\) 11.5652 27.9208i 0.366826 0.885595i
\(995\) 0.689176 1.66382i 0.0218483 0.0527466i
\(996\) −2.60240 + 0.231655i −0.0824603 + 0.00734027i
\(997\) −39.1586 + 7.78912i −1.24016 + 0.246684i −0.771234 0.636552i \(-0.780360\pi\)
−0.468930 + 0.883235i \(0.655360\pi\)
\(998\) −1.17942 + 0.788061i −0.0373338 + 0.0249456i
\(999\) −0.613668 + 1.83518i −0.0194156 + 0.0580624i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 51.2.i.a.14.2 yes 32
3.2 odd 2 inner 51.2.i.a.14.3 yes 32
4.3 odd 2 816.2.cj.c.65.1 32
12.11 even 2 816.2.cj.c.65.4 32
17.2 even 8 867.2.i.b.158.3 32
17.3 odd 16 867.2.i.i.653.2 32
17.4 even 4 867.2.i.d.224.3 32
17.5 odd 16 867.2.i.f.503.3 32
17.6 odd 16 867.2.i.h.827.3 32
17.7 odd 16 867.2.i.d.329.2 32
17.8 even 8 867.2.i.g.131.2 32
17.9 even 8 867.2.i.f.131.2 32
17.10 odd 16 867.2.i.c.329.2 32
17.11 odd 16 inner 51.2.i.a.11.3 yes 32
17.12 odd 16 867.2.i.g.503.3 32
17.13 even 4 867.2.i.c.224.3 32
17.14 odd 16 867.2.i.b.653.2 32
17.15 even 8 867.2.i.i.158.3 32
17.16 even 2 867.2.i.h.65.2 32
51.2 odd 8 867.2.i.b.158.2 32
51.5 even 16 867.2.i.f.503.2 32
51.8 odd 8 867.2.i.g.131.3 32
51.11 even 16 inner 51.2.i.a.11.2 32
51.14 even 16 867.2.i.b.653.3 32
51.20 even 16 867.2.i.i.653.3 32
51.23 even 16 867.2.i.h.827.2 32
51.26 odd 8 867.2.i.f.131.3 32
51.29 even 16 867.2.i.g.503.2 32
51.32 odd 8 867.2.i.i.158.2 32
51.38 odd 4 867.2.i.d.224.2 32
51.41 even 16 867.2.i.d.329.3 32
51.44 even 16 867.2.i.c.329.3 32
51.47 odd 4 867.2.i.c.224.2 32
51.50 odd 2 867.2.i.h.65.3 32
68.11 even 16 816.2.cj.c.113.4 32
204.11 odd 16 816.2.cj.c.113.1 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.2.i.a.11.2 32 51.11 even 16 inner
51.2.i.a.11.3 yes 32 17.11 odd 16 inner
51.2.i.a.14.2 yes 32 1.1 even 1 trivial
51.2.i.a.14.3 yes 32 3.2 odd 2 inner
816.2.cj.c.65.1 32 4.3 odd 2
816.2.cj.c.65.4 32 12.11 even 2
816.2.cj.c.113.1 32 204.11 odd 16
816.2.cj.c.113.4 32 68.11 even 16
867.2.i.b.158.2 32 51.2 odd 8
867.2.i.b.158.3 32 17.2 even 8
867.2.i.b.653.2 32 17.14 odd 16
867.2.i.b.653.3 32 51.14 even 16
867.2.i.c.224.2 32 51.47 odd 4
867.2.i.c.224.3 32 17.13 even 4
867.2.i.c.329.2 32 17.10 odd 16
867.2.i.c.329.3 32 51.44 even 16
867.2.i.d.224.2 32 51.38 odd 4
867.2.i.d.224.3 32 17.4 even 4
867.2.i.d.329.2 32 17.7 odd 16
867.2.i.d.329.3 32 51.41 even 16
867.2.i.f.131.2 32 17.9 even 8
867.2.i.f.131.3 32 51.26 odd 8
867.2.i.f.503.2 32 51.5 even 16
867.2.i.f.503.3 32 17.5 odd 16
867.2.i.g.131.2 32 17.8 even 8
867.2.i.g.131.3 32 51.8 odd 8
867.2.i.g.503.2 32 51.29 even 16
867.2.i.g.503.3 32 17.12 odd 16
867.2.i.h.65.2 32 17.16 even 2
867.2.i.h.65.3 32 51.50 odd 2
867.2.i.h.827.2 32 51.23 even 16
867.2.i.h.827.3 32 17.6 odd 16
867.2.i.i.158.2 32 51.32 odd 8
867.2.i.i.158.3 32 17.15 even 8
867.2.i.i.653.2 32 17.3 odd 16
867.2.i.i.653.3 32 51.20 even 16