Properties

Label 867.2.i.h.827.2
Level $867$
Weight $2$
Character 867.827
Analytic conductor $6.923$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [867,2,Mod(65,867)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(867, base_ring=CyclotomicField(16))
 
chi = DirichletCharacter(H, H._module([8, 9]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("867.65");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 867 = 3 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 867.i (of order \(16\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.92302985525\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(4\) over \(\Q(\zeta_{16})\)
Twist minimal: no (minimal twist has level 51)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 827.2
Character \(\chi\) \(=\) 867.827
Dual form 867.2.i.h.65.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.503008 + 1.21437i) q^{2} +(-0.802099 + 1.53513i) q^{3} +(0.192538 + 0.192538i) q^{4} +(0.0781694 - 0.116989i) q^{5} +(-1.46076 - 1.74623i) q^{6} +(1.47102 - 0.982905i) q^{7} +(-2.75940 + 1.14298i) q^{8} +(-1.71327 - 2.46266i) q^{9} +(0.102748 + 0.153773i) q^{10} +(-0.710485 + 3.57185i) q^{11} +(-0.450006 + 0.141137i) q^{12} +(-0.0825311 + 0.0825311i) q^{13} +(0.453674 + 2.28077i) q^{14} +(0.116894 + 0.213837i) q^{15} -3.38128i q^{16} +(3.85237 - 0.841809i) q^{18} +(-6.20278 - 2.56928i) q^{19} +(0.0375753 - 0.00747420i) q^{20} +(0.328986 + 3.04660i) q^{21} +(-3.98016 - 2.65946i) q^{22} +(-6.15884 - 1.22507i) q^{23} +(0.458684 - 5.15283i) q^{24} +(1.90584 + 4.60111i) q^{25} +(-0.0587094 - 0.141737i) q^{26} +(5.15473 - 0.654807i) q^{27} +(0.472474 + 0.0939809i) q^{28} +(-3.27292 - 2.18690i) q^{29} +(-0.318476 + 0.0343905i) q^{30} +(-8.78185 + 1.74682i) q^{31} +(-1.41268 - 0.585150i) q^{32} +(-4.91339 - 3.95567i) q^{33} -0.248926i q^{35} +(0.144285 - 0.804026i) q^{36} +(-0.0726522 - 0.365247i) q^{37} +(6.24010 - 6.24010i) q^{38} +(-0.0604982 - 0.192895i) q^{39} +(-0.0819847 + 0.412165i) q^{40} +(2.44315 + 3.65643i) q^{41} +(-3.86518 - 1.13296i) q^{42} +(1.94823 - 0.806985i) q^{43} +(-0.824512 + 0.550921i) q^{44} +(-0.422029 + 0.00792913i) q^{45} +(4.58563 - 6.86288i) q^{46} +(-2.11141 - 2.11141i) q^{47} +(5.19072 + 2.71212i) q^{48} +(-1.48098 + 3.57541i) q^{49} -6.54610 q^{50} -0.0317807 q^{52} +(-2.45113 + 5.91755i) q^{53} +(-1.79769 + 6.58912i) q^{54} +(0.362328 + 0.362328i) q^{55} +(-2.93569 + 4.39357i) q^{56} +(8.91943 - 7.46129i) q^{57} +(4.30201 - 2.87451i) q^{58} +(8.83540 - 3.65974i) q^{59} +(-0.0186653 + 0.0636782i) q^{60} +(2.20784 + 3.30427i) q^{61} +(2.29606 - 11.5431i) q^{62} +(-4.94082 - 1.93864i) q^{63} +(6.20303 - 6.20303i) q^{64} +(0.00320381 + 0.0161066i) q^{65} +(7.27511 - 3.97693i) q^{66} -5.81844i q^{67} +(6.82064 - 8.47201i) q^{69} +(0.302288 + 0.125212i) q^{70} +(12.7462 - 2.53537i) q^{71} +(7.54238 + 4.83722i) q^{72} +(3.71467 + 2.48206i) q^{73} +(0.480089 + 0.0954957i) q^{74} +(-8.59199 - 0.764823i) q^{75} +(-0.699588 - 1.68895i) q^{76} +(2.46565 + 5.95260i) q^{77} +(0.264676 + 0.0235604i) q^{78} +(-2.39893 - 0.477177i) q^{79} +(-0.395572 - 0.264312i) q^{80} +(-3.12939 + 8.43842i) q^{81} +(-5.66918 + 1.12767i) q^{82} +(-5.11813 - 2.12000i) q^{83} +(-0.523244 + 0.649928i) q^{84} +2.77180i q^{86} +(5.98239 - 3.27027i) q^{87} +(-2.12204 - 10.6682i) q^{88} +(-2.89760 + 2.89760i) q^{89} +(0.202655 - 0.516488i) q^{90} +(-0.0402848 + 0.202525i) q^{91} +(-0.949937 - 1.42168i) q^{92} +(4.36231 - 14.8824i) q^{93} +(3.62608 - 1.50197i) q^{94} +(-0.785444 + 0.524817i) q^{95} +(2.03139 - 1.69930i) q^{96} +(2.54849 - 3.81409i) q^{97} +(-3.59692 - 3.59692i) q^{98} +(10.0135 - 4.36987i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 8 q^{3} - 16 q^{4} + 8 q^{6} + 16 q^{7} - 8 q^{9} + 16 q^{10} - 16 q^{12} - 16 q^{13} + 16 q^{15} + 16 q^{18} - 16 q^{19} + 16 q^{21} + 16 q^{22} - 16 q^{24} + 16 q^{25} + 8 q^{27} - 32 q^{28} - 8 q^{30}+ \cdots + 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/867\mathbb{Z}\right)^\times\).

\(n\) \(290\) \(292\)
\(\chi(n)\) \(-1\) \(e\left(\frac{7}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.503008 + 1.21437i −0.355681 + 0.858689i 0.640216 + 0.768195i \(0.278845\pi\)
−0.995897 + 0.0904942i \(0.971155\pi\)
\(3\) −0.802099 + 1.53513i −0.463092 + 0.886310i
\(4\) 0.192538 + 0.192538i 0.0962690 + 0.0962690i
\(5\) 0.0781694 0.116989i 0.0349584 0.0523190i −0.813579 0.581455i \(-0.802484\pi\)
0.848537 + 0.529136i \(0.177484\pi\)
\(6\) −1.46076 1.74623i −0.596352 0.712895i
\(7\) 1.47102 0.982905i 0.555994 0.371503i −0.245601 0.969371i \(-0.578985\pi\)
0.801595 + 0.597868i \(0.203985\pi\)
\(8\) −2.75940 + 1.14298i −0.975595 + 0.404105i
\(9\) −1.71327 2.46266i −0.571091 0.820887i
\(10\) 0.102748 + 0.153773i 0.0324917 + 0.0486272i
\(11\) −0.710485 + 3.57185i −0.214219 + 1.07695i 0.712636 + 0.701534i \(0.247501\pi\)
−0.926855 + 0.375419i \(0.877499\pi\)
\(12\) −0.450006 + 0.141137i −0.129906 + 0.0407427i
\(13\) −0.0825311 + 0.0825311i −0.0228900 + 0.0228900i −0.718459 0.695569i \(-0.755152\pi\)
0.695569 + 0.718459i \(0.255152\pi\)
\(14\) 0.453674 + 2.28077i 0.121249 + 0.609562i
\(15\) 0.116894 + 0.213837i 0.0301819 + 0.0552125i
\(16\) 3.38128i 0.845320i
\(17\) 0 0
\(18\) 3.85237 0.841809i 0.908012 0.198416i
\(19\) −6.20278 2.56928i −1.42302 0.589432i −0.467399 0.884046i \(-0.654809\pi\)
−0.955616 + 0.294614i \(0.904809\pi\)
\(20\) 0.0375753 0.00747420i 0.00840210 0.00167128i
\(21\) 0.328986 + 3.04660i 0.0717906 + 0.664823i
\(22\) −3.98016 2.65946i −0.848574 0.566999i
\(23\) −6.15884 1.22507i −1.28421 0.255444i −0.494633 0.869102i \(-0.664698\pi\)
−0.789573 + 0.613657i \(0.789698\pi\)
\(24\) 0.458684 5.15283i 0.0936284 1.05182i
\(25\) 1.90584 + 4.60111i 0.381168 + 0.920222i
\(26\) −0.0587094 0.141737i −0.0115139 0.0277969i
\(27\) 5.15473 0.654807i 0.992028 0.126018i
\(28\) 0.472474 + 0.0939809i 0.0892891 + 0.0177607i
\(29\) −3.27292 2.18690i −0.607766 0.406097i 0.213253 0.976997i \(-0.431594\pi\)
−0.821019 + 0.570900i \(0.806594\pi\)
\(30\) −0.318476 + 0.0343905i −0.0581455 + 0.00627881i
\(31\) −8.78185 + 1.74682i −1.57727 + 0.313738i −0.904618 0.426224i \(-0.859844\pi\)
−0.672649 + 0.739962i \(0.734844\pi\)
\(32\) −1.41268 0.585150i −0.249728 0.103441i
\(33\) −4.91339 3.95567i −0.855311 0.688593i
\(34\) 0 0
\(35\) 0.248926i 0.0420762i
\(36\) 0.144285 0.804026i 0.0240475 0.134004i
\(37\) −0.0726522 0.365247i −0.0119439 0.0600462i 0.974354 0.225022i \(-0.0722454\pi\)
−0.986298 + 0.164976i \(0.947245\pi\)
\(38\) 6.24010 6.24010i 1.01228 1.01228i
\(39\) −0.0604982 0.192895i −0.00968747 0.0308878i
\(40\) −0.0819847 + 0.412165i −0.0129629 + 0.0651690i
\(41\) 2.44315 + 3.65643i 0.381556 + 0.571039i 0.971688 0.236268i \(-0.0759243\pi\)
−0.590132 + 0.807307i \(0.700924\pi\)
\(42\) −3.86518 1.13296i −0.596410 0.174819i
\(43\) 1.94823 0.806985i 0.297103 0.123064i −0.229153 0.973390i \(-0.573596\pi\)
0.526256 + 0.850326i \(0.323596\pi\)
\(44\) −0.824512 + 0.550921i −0.124300 + 0.0830545i
\(45\) −0.422029 + 0.00792913i −0.0629124 + 0.00118201i
\(46\) 4.58563 6.86288i 0.676114 1.01188i
\(47\) −2.11141 2.11141i −0.307980 0.307980i 0.536145 0.844126i \(-0.319880\pi\)
−0.844126 + 0.536145i \(0.819880\pi\)
\(48\) 5.19072 + 2.71212i 0.749215 + 0.391461i
\(49\) −1.48098 + 3.57541i −0.211569 + 0.510773i
\(50\) −6.54610 −0.925758
\(51\) 0 0
\(52\) −0.0317807 −0.00440720
\(53\) −2.45113 + 5.91755i −0.336688 + 0.812837i 0.661341 + 0.750085i \(0.269988\pi\)
−0.998029 + 0.0627519i \(0.980012\pi\)
\(54\) −1.79769 + 6.58912i −0.244635 + 0.896665i
\(55\) 0.362328 + 0.362328i 0.0488563 + 0.0488563i
\(56\) −2.93569 + 4.39357i −0.392298 + 0.587116i
\(57\) 8.91943 7.46129i 1.18141 0.988272i
\(58\) 4.30201 2.87451i 0.564881 0.377442i
\(59\) 8.83540 3.65974i 1.15027 0.476458i 0.275647 0.961259i \(-0.411108\pi\)
0.874624 + 0.484801i \(0.161108\pi\)
\(60\) −0.0186653 + 0.0636782i −0.00240967 + 0.00822083i
\(61\) 2.20784 + 3.30427i 0.282685 + 0.423068i 0.945454 0.325756i \(-0.105619\pi\)
−0.662769 + 0.748824i \(0.730619\pi\)
\(62\) 2.29606 11.5431i 0.291600 1.46597i
\(63\) −4.94082 1.93864i −0.622485 0.244246i
\(64\) 6.20303 6.20303i 0.775378 0.775378i
\(65\) 0.00320381 + 0.0161066i 0.000397383 + 0.00199778i
\(66\) 7.27511 3.97693i 0.895505 0.489527i
\(67\) 5.81844i 0.710836i −0.934707 0.355418i \(-0.884339\pi\)
0.934707 0.355418i \(-0.115661\pi\)
\(68\) 0 0
\(69\) 6.82064 8.47201i 0.821109 1.01991i
\(70\) 0.302288 + 0.125212i 0.0361303 + 0.0149657i
\(71\) 12.7462 2.53537i 1.51269 0.300893i 0.632143 0.774851i \(-0.282175\pi\)
0.880547 + 0.473959i \(0.157175\pi\)
\(72\) 7.54238 + 4.83722i 0.888878 + 0.570072i
\(73\) 3.71467 + 2.48206i 0.434769 + 0.290504i 0.753631 0.657298i \(-0.228301\pi\)
−0.318862 + 0.947801i \(0.603301\pi\)
\(74\) 0.480089 + 0.0954957i 0.0558093 + 0.0111012i
\(75\) −8.59199 0.764823i −0.992118 0.0883142i
\(76\) −0.699588 1.68895i −0.0802482 0.193736i
\(77\) 2.46565 + 5.95260i 0.280987 + 0.678362i
\(78\) 0.264676 + 0.0235604i 0.0299687 + 0.00266769i
\(79\) −2.39893 0.477177i −0.269901 0.0536866i 0.0582845 0.998300i \(-0.481437\pi\)
−0.328185 + 0.944613i \(0.606437\pi\)
\(80\) −0.395572 0.264312i −0.0442262 0.0295510i
\(81\) −3.12939 + 8.43842i −0.347710 + 0.937602i
\(82\) −5.66918 + 1.12767i −0.626057 + 0.124530i
\(83\) −5.11813 2.12000i −0.561788 0.232700i 0.0836731 0.996493i \(-0.473335\pi\)
−0.645461 + 0.763793i \(0.723335\pi\)
\(84\) −0.523244 + 0.649928i −0.0570906 + 0.0709130i
\(85\) 0 0
\(86\) 2.77180i 0.298890i
\(87\) 5.98239 3.27027i 0.641379 0.350609i
\(88\) −2.12204 10.6682i −0.226210 1.13724i
\(89\) −2.89760 + 2.89760i −0.307145 + 0.307145i −0.843801 0.536656i \(-0.819687\pi\)
0.536656 + 0.843801i \(0.319687\pi\)
\(90\) 0.202655 0.516488i 0.0213617 0.0544426i
\(91\) −0.0402848 + 0.202525i −0.00422299 + 0.0212304i
\(92\) −0.949937 1.42168i −0.0990378 0.148221i
\(93\) 4.36231 14.8824i 0.452351 1.54324i
\(94\) 3.62608 1.50197i 0.374002 0.154917i
\(95\) −0.785444 + 0.524817i −0.0805849 + 0.0538451i
\(96\) 2.03139 1.69930i 0.207328 0.173434i
\(97\) 2.54849 3.81409i 0.258760 0.387262i −0.679229 0.733926i \(-0.737686\pi\)
0.937989 + 0.346664i \(0.112686\pi\)
\(98\) −3.59692 3.59692i −0.363344 0.363344i
\(99\) 10.0135 4.36987i 1.00639 0.439189i
\(100\) −0.518941 + 1.25283i −0.0518941 + 0.125283i
\(101\) 5.06729 0.504214 0.252107 0.967699i \(-0.418877\pi\)
0.252107 + 0.967699i \(0.418877\pi\)
\(102\) 0 0
\(103\) −15.9760 −1.57416 −0.787080 0.616851i \(-0.788408\pi\)
−0.787080 + 0.616851i \(0.788408\pi\)
\(104\) 0.133405 0.322068i 0.0130814 0.0315813i
\(105\) 0.382135 + 0.199663i 0.0372925 + 0.0194851i
\(106\) −5.95315 5.95315i −0.578221 0.578221i
\(107\) −0.756986 + 1.13291i −0.0731806 + 0.109522i −0.866255 0.499603i \(-0.833479\pi\)
0.793074 + 0.609125i \(0.208479\pi\)
\(108\) 1.11856 + 0.866406i 0.107633 + 0.0833699i
\(109\) −9.54382 + 6.37698i −0.914132 + 0.610804i −0.921165 0.389171i \(-0.872761\pi\)
0.00703284 + 0.999975i \(0.497761\pi\)
\(110\) −0.622254 + 0.257746i −0.0593296 + 0.0245751i
\(111\) 0.618977 + 0.181434i 0.0587507 + 0.0172209i
\(112\) −3.32347 4.97393i −0.314039 0.469992i
\(113\) −2.64375 + 13.2910i −0.248703 + 1.25031i 0.631373 + 0.775479i \(0.282492\pi\)
−0.880076 + 0.474834i \(0.842508\pi\)
\(114\) 4.57421 + 14.5846i 0.428414 + 1.36597i
\(115\) −0.624752 + 0.624752i −0.0582584 + 0.0582584i
\(116\) −0.209101 1.05122i −0.0194146 0.0976035i
\(117\) 0.344645 + 0.0618477i 0.0318624 + 0.00571782i
\(118\) 12.5703i 1.15719i
\(119\) 0 0
\(120\) −0.566968 0.456454i −0.0517569 0.0416684i
\(121\) −2.09064 0.865970i −0.190058 0.0787246i
\(122\) −5.12316 + 1.01906i −0.463829 + 0.0922614i
\(123\) −7.57276 + 0.817741i −0.682813 + 0.0737332i
\(124\) −2.02717 1.35451i −0.182045 0.121639i
\(125\) 1.37724 + 0.273951i 0.123184 + 0.0245029i
\(126\) 4.83950 5.02483i 0.431137 0.447647i
\(127\) 3.78439 + 9.13631i 0.335810 + 0.810717i 0.998109 + 0.0614768i \(0.0195810\pi\)
−0.662299 + 0.749240i \(0.730419\pi\)
\(128\) 3.24229 + 7.82759i 0.286581 + 0.691867i
\(129\) −0.323847 + 3.63808i −0.0285131 + 0.320315i
\(130\) −0.0211709 0.00421116i −0.00185681 0.000369343i
\(131\) 10.8334 + 7.23868i 0.946523 + 0.632446i 0.930056 0.367418i \(-0.119758\pi\)
0.0164667 + 0.999864i \(0.494758\pi\)
\(132\) −0.184398 1.70763i −0.0160497 0.148630i
\(133\) −11.6498 + 2.31728i −1.01016 + 0.200934i
\(134\) 7.06574 + 2.92672i 0.610387 + 0.252830i
\(135\) 0.326337 0.654231i 0.0280866 0.0563073i
\(136\) 0 0
\(137\) 3.20492i 0.273815i −0.990584 0.136907i \(-0.956284\pi\)
0.990584 0.136907i \(-0.0437163\pi\)
\(138\) 6.85731 + 12.5443i 0.583733 + 1.06784i
\(139\) −0.993879 4.99657i −0.0842997 0.423803i −0.999771 0.0214191i \(-0.993182\pi\)
0.915471 0.402384i \(-0.131818\pi\)
\(140\) 0.0479277 0.0479277i 0.00405063 0.00405063i
\(141\) 4.93485 1.54773i 0.415589 0.130343i
\(142\) −3.33255 + 16.7539i −0.279661 + 1.40595i
\(143\) −0.236152 0.353426i −0.0197480 0.0295550i
\(144\) −8.32694 + 5.79306i −0.693912 + 0.482755i
\(145\) −0.511685 + 0.211947i −0.0424931 + 0.0176012i
\(146\) −4.88265 + 3.26248i −0.404091 + 0.270005i
\(147\) −4.30084 5.14134i −0.354727 0.424051i
\(148\) 0.0563356 0.0843122i 0.00463076 0.00693042i
\(149\) 15.7137 + 15.7137i 1.28731 + 1.28731i 0.936412 + 0.350902i \(0.114125\pi\)
0.350902 + 0.936412i \(0.385875\pi\)
\(150\) 5.25062 10.0491i 0.428711 0.820509i
\(151\) −1.57857 + 3.81101i −0.128462 + 0.310135i −0.975004 0.222187i \(-0.928681\pi\)
0.846542 + 0.532322i \(0.178681\pi\)
\(152\) 20.0526 1.62648
\(153\) 0 0
\(154\) −8.46890 −0.682443
\(155\) −0.482114 + 1.16393i −0.0387243 + 0.0934887i
\(156\) 0.0254913 0.0487877i 0.00204094 0.00390614i
\(157\) −9.87094 9.87094i −0.787787 0.787787i 0.193344 0.981131i \(-0.438067\pi\)
−0.981131 + 0.193344i \(0.938067\pi\)
\(158\) 1.78615 2.67316i 0.142098 0.212665i
\(159\) −7.11818 8.50927i −0.564508 0.674829i
\(160\) −0.178884 + 0.119526i −0.0141420 + 0.00944940i
\(161\) −10.2639 + 4.25145i −0.808909 + 0.335061i
\(162\) −8.67325 8.04483i −0.681435 0.632061i
\(163\) −6.19697 9.27442i −0.485384 0.726429i 0.505250 0.862973i \(-0.331400\pi\)
−0.990634 + 0.136544i \(0.956400\pi\)
\(164\) −0.233603 + 1.17440i −0.0182413 + 0.0917053i
\(165\) −0.846845 + 0.265599i −0.0659268 + 0.0206769i
\(166\) 5.14893 5.14893i 0.399634 0.399634i
\(167\) −0.409682 2.05961i −0.0317021 0.159377i 0.961692 0.274134i \(-0.0883912\pi\)
−0.993394 + 0.114757i \(0.963391\pi\)
\(168\) −4.39001 8.03076i −0.338697 0.619587i
\(169\) 12.9864i 0.998952i
\(170\) 0 0
\(171\) 4.29981 + 19.6772i 0.328815 + 1.50475i
\(172\) 0.530484 + 0.219734i 0.0404490 + 0.0167545i
\(173\) −12.0778 + 2.40243i −0.918260 + 0.182653i −0.631524 0.775356i \(-0.717570\pi\)
−0.286736 + 0.958010i \(0.592570\pi\)
\(174\) 0.962121 + 8.90980i 0.0729382 + 0.675450i
\(175\) 7.32598 + 4.89506i 0.553792 + 0.370032i
\(176\) 12.0774 + 2.40235i 0.910369 + 0.181084i
\(177\) −1.46867 + 16.4990i −0.110392 + 1.24014i
\(178\) −2.06124 4.97628i −0.154497 0.372988i
\(179\) −7.07462 17.0796i −0.528782 1.27659i −0.932322 0.361630i \(-0.882220\pi\)
0.403540 0.914962i \(-0.367780\pi\)
\(180\) −0.0827833 0.0797299i −0.00617030 0.00594272i
\(181\) 2.08780 + 0.415290i 0.155185 + 0.0308683i 0.272071 0.962277i \(-0.412291\pi\)
−0.116886 + 0.993145i \(0.537291\pi\)
\(182\) −0.225677 0.150792i −0.0167283 0.0111775i
\(183\) −6.84340 + 0.738981i −0.505879 + 0.0546271i
\(184\) 18.3949 3.65898i 1.35609 0.269743i
\(185\) −0.0484090 0.0200517i −0.00355910 0.00147423i
\(186\) 15.8785 + 12.7834i 1.16427 + 0.937328i
\(187\) 0 0
\(188\) 0.813051i 0.0592979i
\(189\) 6.93910 6.02984i 0.504745 0.438606i
\(190\) −0.242237 1.21781i −0.0175737 0.0883490i
\(191\) −12.2604 + 12.2604i −0.887130 + 0.887130i −0.994247 0.107116i \(-0.965838\pi\)
0.107116 + 0.994247i \(0.465838\pi\)
\(192\) 4.54703 + 14.4979i 0.328154 + 1.04630i
\(193\) −3.16756 + 15.9244i −0.228006 + 1.14626i 0.681898 + 0.731447i \(0.261155\pi\)
−0.909904 + 0.414818i \(0.863845\pi\)
\(194\) 3.34980 + 5.01333i 0.240501 + 0.359936i
\(195\) −0.0272956 0.00800084i −0.00195468 0.000572952i
\(196\) −0.973548 + 0.403257i −0.0695391 + 0.0288040i
\(197\) −6.52782 + 4.36175i −0.465088 + 0.310762i −0.765944 0.642908i \(-0.777728\pi\)
0.300855 + 0.953670i \(0.402728\pi\)
\(198\) 0.269763 + 14.3582i 0.0191712 + 1.02039i
\(199\) −7.11102 + 10.6424i −0.504087 + 0.754419i −0.993026 0.117899i \(-0.962384\pi\)
0.488939 + 0.872318i \(0.337384\pi\)
\(200\) −10.5180 10.5180i −0.743732 0.743732i
\(201\) 8.93209 + 4.66697i 0.630021 + 0.329183i
\(202\) −2.54889 + 6.15356i −0.179339 + 0.432963i
\(203\) −6.96405 −0.488780
\(204\) 0 0
\(205\) 0.618741 0.0432147
\(206\) 8.03605 19.4007i 0.559898 1.35171i
\(207\) 7.53484 + 17.2660i 0.523708 + 1.20007i
\(208\) 0.279061 + 0.279061i 0.0193494 + 0.0193494i
\(209\) 13.5840 20.3300i 0.939628 1.40625i
\(210\) −0.434682 + 0.363620i −0.0299959 + 0.0250922i
\(211\) 4.25722 2.84458i 0.293079 0.195829i −0.400334 0.916369i \(-0.631106\pi\)
0.693413 + 0.720540i \(0.256106\pi\)
\(212\) −1.61129 + 0.667417i −0.110664 + 0.0458384i
\(213\) −6.33155 + 21.6007i −0.433831 + 1.48005i
\(214\) −0.995000 1.48912i −0.0680168 0.101794i
\(215\) 0.0578841 0.291003i 0.00394766 0.0198462i
\(216\) −13.4755 + 7.69863i −0.916893 + 0.523825i
\(217\) −11.2013 + 11.2013i −0.760395 + 0.760395i
\(218\) −2.94339 14.7974i −0.199351 1.00221i
\(219\) −6.78984 + 3.71166i −0.458815 + 0.250810i
\(220\) 0.139524i 0.00940669i
\(221\) 0 0
\(222\) −0.531678 + 0.660405i −0.0356839 + 0.0443235i
\(223\) 0.174491 + 0.0722764i 0.0116848 + 0.00483999i 0.388518 0.921441i \(-0.372987\pi\)
−0.376833 + 0.926281i \(0.622987\pi\)
\(224\) −2.65322 + 0.527759i −0.177276 + 0.0352624i
\(225\) 8.06574 12.5764i 0.537716 0.838426i
\(226\) −14.8104 9.89597i −0.985171 0.658270i
\(227\) 2.08928 + 0.415583i 0.138670 + 0.0275832i 0.263937 0.964540i \(-0.414979\pi\)
−0.125267 + 0.992123i \(0.539979\pi\)
\(228\) 3.15391 + 0.280748i 0.208873 + 0.0185930i
\(229\) 6.61427 + 15.9683i 0.437084 + 1.05521i 0.976951 + 0.213463i \(0.0684743\pi\)
−0.539868 + 0.841750i \(0.681526\pi\)
\(230\) −0.444424 1.07293i −0.0293045 0.0707472i
\(231\) −11.1157 0.989476i −0.731362 0.0651028i
\(232\) 11.5309 + 2.29363i 0.757039 + 0.150584i
\(233\) −8.14185 5.44021i −0.533390 0.356400i 0.259521 0.965738i \(-0.416435\pi\)
−0.792911 + 0.609337i \(0.791435\pi\)
\(234\) −0.248465 + 0.387416i −0.0162427 + 0.0253262i
\(235\) −0.412058 + 0.0819634i −0.0268797 + 0.00534670i
\(236\) 2.40579 + 0.996510i 0.156603 + 0.0648673i
\(237\) 2.65671 3.29993i 0.172572 0.214354i
\(238\) 0 0
\(239\) 22.4367i 1.45131i 0.688059 + 0.725654i \(0.258463\pi\)
−0.688059 + 0.725654i \(0.741537\pi\)
\(240\) 0.723043 0.395251i 0.0466722 0.0255133i
\(241\) −0.0791082 0.397704i −0.00509581 0.0256184i 0.978154 0.207883i \(-0.0666573\pi\)
−0.983250 + 0.182265i \(0.941657\pi\)
\(242\) 2.10322 2.10322i 0.135200 0.135200i
\(243\) −10.4440 11.5725i −0.669985 0.742375i
\(244\) −0.211104 + 1.06129i −0.0135145 + 0.0679421i
\(245\) 0.302515 + 0.452746i 0.0193270 + 0.0289249i
\(246\) 2.81612 9.60746i 0.179549 0.612549i
\(247\) 0.723968 0.299877i 0.0460650 0.0190807i
\(248\) 22.2360 14.8577i 1.41199 0.943462i
\(249\) 7.35974 6.15657i 0.466404 0.390157i
\(250\) −1.02544 + 1.53468i −0.0648547 + 0.0970619i
\(251\) 0.749951 + 0.749951i 0.0473365 + 0.0473365i 0.730379 0.683042i \(-0.239344\pi\)
−0.683042 + 0.730379i \(0.739344\pi\)
\(252\) −0.578034 1.32456i −0.0364127 0.0834392i
\(253\) 8.75152 21.1280i 0.550203 1.32831i
\(254\) −12.9984 −0.815594
\(255\) 0 0
\(256\) 6.40833 0.400521
\(257\) 7.70425 18.5997i 0.480578 1.16022i −0.478757 0.877947i \(-0.658913\pi\)
0.959335 0.282270i \(-0.0910874\pi\)
\(258\) −4.25508 2.22326i −0.264910 0.138414i
\(259\) −0.465876 0.465876i −0.0289481 0.0289481i
\(260\) −0.00248428 + 0.00371799i −0.000154069 + 0.000230580i
\(261\) 0.221828 + 11.8068i 0.0137308 + 0.730826i
\(262\) −14.2397 + 9.51469i −0.879734 + 0.587820i
\(263\) −5.10116 + 2.11297i −0.314551 + 0.130291i −0.534373 0.845249i \(-0.679452\pi\)
0.219822 + 0.975540i \(0.429452\pi\)
\(264\) 18.0792 + 5.29936i 1.11270 + 0.326153i
\(265\) 0.500683 + 0.749325i 0.0307567 + 0.0460307i
\(266\) 3.04589 15.3127i 0.186756 0.938884i
\(267\) −2.12404 6.77237i −0.129989 0.414462i
\(268\) 1.12027 1.12027i 0.0684314 0.0684314i
\(269\) 1.78305 + 8.96401i 0.108715 + 0.546545i 0.996303 + 0.0859079i \(0.0273791\pi\)
−0.887588 + 0.460637i \(0.847621\pi\)
\(270\) 0.630328 + 0.725377i 0.0383605 + 0.0441451i
\(271\) 2.64822i 0.160868i 0.996760 + 0.0804339i \(0.0256306\pi\)
−0.996760 + 0.0804339i \(0.974369\pi\)
\(272\) 0 0
\(273\) −0.278591 0.224288i −0.0168611 0.0135745i
\(274\) 3.89196 + 1.61210i 0.235122 + 0.0973906i
\(275\) −17.7885 + 3.53836i −1.07269 + 0.213371i
\(276\) 2.94442 0.317951i 0.177233 0.0191384i
\(277\) 17.2028 + 11.4945i 1.03362 + 0.690640i 0.952023 0.306026i \(-0.0989995\pi\)
0.0815922 + 0.996666i \(0.473999\pi\)
\(278\) 6.56761 + 1.30638i 0.393899 + 0.0783514i
\(279\) 19.3475 + 18.6339i 1.15831 + 1.11558i
\(280\) 0.284517 + 0.686886i 0.0170032 + 0.0410493i
\(281\) −3.93729 9.50546i −0.234879 0.567048i 0.761860 0.647742i \(-0.224286\pi\)
−0.996739 + 0.0806938i \(0.974286\pi\)
\(282\) −0.602748 + 6.77125i −0.0358931 + 0.403222i
\(283\) −12.5960 2.50549i −0.748753 0.148936i −0.194058 0.980990i \(-0.562165\pi\)
−0.554695 + 0.832054i \(0.687165\pi\)
\(284\) 2.94227 + 1.96596i 0.174592 + 0.116659i
\(285\) −0.175660 1.62672i −0.0104052 0.0963584i
\(286\) 0.547976 0.108999i 0.0324025 0.00644525i
\(287\) 7.18785 + 2.97730i 0.424285 + 0.175745i
\(288\) 0.979277 + 4.48146i 0.0577044 + 0.264073i
\(289\) 0 0
\(290\) 0.727985i 0.0427488i
\(291\) 3.81099 + 6.97155i 0.223404 + 0.408680i
\(292\) 0.237324 + 1.19311i 0.0138883 + 0.0698213i
\(293\) 0.797696 0.797696i 0.0466019 0.0466019i −0.683422 0.730024i \(-0.739509\pi\)
0.730024 + 0.683422i \(0.239509\pi\)
\(294\) 8.40685 2.63667i 0.490297 0.153774i
\(295\) 0.262509 1.31972i 0.0152839 0.0768372i
\(296\) 0.617947 + 0.924822i 0.0359174 + 0.0537542i
\(297\) −1.32348 + 18.8771i −0.0767964 + 1.09536i
\(298\) −26.9863 + 11.1781i −1.56327 + 0.647530i
\(299\) 0.609402 0.407189i 0.0352426 0.0235484i
\(300\) −1.50703 1.80154i −0.0870082 0.104012i
\(301\) 2.07270 3.10202i 0.119469 0.178797i
\(302\) −3.83394 3.83394i −0.220618 0.220618i
\(303\) −4.06447 + 7.77896i −0.233497 + 0.446890i
\(304\) −8.68744 + 20.9733i −0.498259 + 1.20290i
\(305\) 0.559148 0.0320167
\(306\) 0 0
\(307\) −19.5814 −1.11757 −0.558785 0.829312i \(-0.688732\pi\)
−0.558785 + 0.829312i \(0.688732\pi\)
\(308\) −0.671371 + 1.62083i −0.0382549 + 0.0923555i
\(309\) 12.8143 24.5253i 0.728981 1.39519i
\(310\) −1.17093 1.17093i −0.0665042 0.0665042i
\(311\) −16.3199 + 24.4244i −0.925415 + 1.38498i −0.00249223 + 0.999997i \(0.500793\pi\)
−0.922923 + 0.384985i \(0.874207\pi\)
\(312\) 0.387413 + 0.463125i 0.0219330 + 0.0262193i
\(313\) 14.8171 9.90044i 0.837509 0.559606i −0.0612125 0.998125i \(-0.519497\pi\)
0.898722 + 0.438519i \(0.144497\pi\)
\(314\) 16.9521 7.02180i 0.956664 0.396263i
\(315\) −0.613020 + 0.426478i −0.0345398 + 0.0240293i
\(316\) −0.370010 0.553759i −0.0208147 0.0311514i
\(317\) 2.75488 13.8497i 0.154729 0.777877i −0.823006 0.568033i \(-0.807704\pi\)
0.977735 0.209844i \(-0.0672955\pi\)
\(318\) 13.9139 4.36387i 0.780253 0.244713i
\(319\) 10.1366 10.1366i 0.567542 0.567542i
\(320\) −0.240798 1.21057i −0.0134610 0.0676730i
\(321\) −1.13199 2.07078i −0.0631815 0.115580i
\(322\) 14.6027i 0.813775i
\(323\) 0 0
\(324\) −2.22724 + 1.02219i −0.123736 + 0.0567883i
\(325\) −0.537026 0.222443i −0.0297888 0.0123389i
\(326\) 14.3797 2.86030i 0.796418 0.158417i
\(327\) −2.13442 19.7660i −0.118034 1.09306i
\(328\) −10.9209 7.29708i −0.603003 0.402914i
\(329\) −5.18123 1.03061i −0.285651 0.0568194i
\(330\) 0.103435 1.16198i 0.00569389 0.0639649i
\(331\) −2.76796 6.68245i −0.152141 0.367301i 0.829372 0.558697i \(-0.188698\pi\)
−0.981513 + 0.191396i \(0.938698\pi\)
\(332\) −0.577254 1.39362i −0.0316810 0.0764846i
\(333\) −0.775006 + 0.804686i −0.0424701 + 0.0440965i
\(334\) 2.70720 + 0.538496i 0.148131 + 0.0294652i
\(335\) −0.680692 0.454824i −0.0371902 0.0248497i
\(336\) 10.3014 1.11239i 0.561988 0.0606860i
\(337\) −13.1112 + 2.60797i −0.714210 + 0.142065i −0.538804 0.842431i \(-0.681124\pi\)
−0.175406 + 0.984496i \(0.556124\pi\)
\(338\) −15.7703 6.53226i −0.857789 0.355308i
\(339\) −18.2829 14.7192i −0.992993 0.799438i
\(340\) 0 0
\(341\) 32.6085i 1.76585i
\(342\) −26.0582 4.67625i −1.40907 0.252862i
\(343\) 3.75178 + 18.8615i 0.202577 + 1.01842i
\(344\) −4.45359 + 4.45359i −0.240121 + 0.240121i
\(345\) −0.457965 1.46019i −0.0246560 0.0786140i
\(346\) 3.15781 15.8754i 0.169765 0.853466i
\(347\) −18.5966 27.8318i −0.998320 1.49409i −0.864214 0.503124i \(-0.832184\pi\)
−0.134106 0.990967i \(-0.542816\pi\)
\(348\) 1.78149 + 0.522186i 0.0954977 + 0.0279921i
\(349\) 25.7122 10.6503i 1.37634 0.570099i 0.432840 0.901471i \(-0.357511\pi\)
0.943500 + 0.331372i \(0.107511\pi\)
\(350\) −9.62945 + 6.43419i −0.514715 + 0.343922i
\(351\) −0.371384 + 0.479468i −0.0198230 + 0.0255921i
\(352\) 3.09375 4.63013i 0.164898 0.246787i
\(353\) 5.10785 + 5.10785i 0.271864 + 0.271864i 0.829850 0.557986i \(-0.188426\pi\)
−0.557986 + 0.829850i \(0.688426\pi\)
\(354\) −19.2971 10.0826i −1.02563 0.535886i
\(355\) 0.699750 1.68935i 0.0371389 0.0896611i
\(356\) −1.11580 −0.0591371
\(357\) 0 0
\(358\) 24.2996 1.28427
\(359\) −10.5450 + 25.4579i −0.556544 + 1.34362i 0.355942 + 0.934508i \(0.384160\pi\)
−0.912486 + 0.409108i \(0.865840\pi\)
\(360\) 1.15548 0.504251i 0.0608993 0.0265763i
\(361\) 18.4383 + 18.4383i 0.970437 + 0.970437i
\(362\) −1.55450 + 2.32647i −0.0817026 + 0.122277i
\(363\) 3.00628 2.51481i 0.157789 0.131994i
\(364\) −0.0467501 + 0.0312374i −0.00245037 + 0.00163729i
\(365\) 0.580747 0.240553i 0.0303977 0.0125911i
\(366\) 2.54489 8.68213i 0.133024 0.453822i
\(367\) 6.24111 + 9.34048i 0.325783 + 0.487569i 0.957820 0.287370i \(-0.0927808\pi\)
−0.632037 + 0.774939i \(0.717781\pi\)
\(368\) −4.14230 + 20.8247i −0.215932 + 1.08556i
\(369\) 4.81876 12.2811i 0.250855 0.639329i
\(370\) 0.0487002 0.0487002i 0.00253180 0.00253180i
\(371\) 2.21072 + 11.1141i 0.114775 + 0.577013i
\(372\) 3.70534 2.02552i 0.192113 0.105018i
\(373\) 5.50325i 0.284948i 0.989799 + 0.142474i \(0.0455057\pi\)
−0.989799 + 0.142474i \(0.954494\pi\)
\(374\) 0 0
\(375\) −1.52524 + 1.89452i −0.0787630 + 0.0978326i
\(376\) 8.23951 + 3.41292i 0.424920 + 0.176008i
\(377\) 0.450605 0.0896309i 0.0232073 0.00461623i
\(378\) 3.83203 + 11.4597i 0.197098 + 0.589423i
\(379\) 4.37931 + 2.92616i 0.224950 + 0.150307i 0.662939 0.748674i \(-0.269309\pi\)
−0.437989 + 0.898981i \(0.644309\pi\)
\(380\) −0.252275 0.0501806i −0.0129414 0.00257421i
\(381\) −17.0609 1.51869i −0.874057 0.0778049i
\(382\) −8.72156 21.0557i −0.446234 1.07730i
\(383\) 8.09691 + 19.5477i 0.413733 + 0.998840i 0.984127 + 0.177468i \(0.0567907\pi\)
−0.570394 + 0.821372i \(0.693209\pi\)
\(384\) −14.6170 1.30115i −0.745922 0.0663989i
\(385\) 0.889126 + 0.176858i 0.0453140 + 0.00901352i
\(386\) −17.7448 11.8567i −0.903188 0.603491i
\(387\) −5.32519 3.41525i −0.270694 0.173607i
\(388\) 1.22504 0.243675i 0.0621919 0.0123707i
\(389\) 11.5459 + 4.78245i 0.585398 + 0.242480i 0.655669 0.755048i \(-0.272387\pi\)
−0.0702713 + 0.997528i \(0.522387\pi\)
\(390\) 0.0234459 0.0291224i 0.00118723 0.00147467i
\(391\) 0 0
\(392\) 11.5587i 0.583804i
\(393\) −19.8018 + 10.8247i −0.998871 + 0.546032i
\(394\) −2.01323 10.1212i −0.101425 0.509898i
\(395\) −0.243347 + 0.243347i −0.0122441 + 0.0122441i
\(396\) 2.76934 + 1.08661i 0.139165 + 0.0546044i
\(397\) 7.58893 38.1521i 0.380877 1.91480i −0.0224569 0.999748i \(-0.507149\pi\)
0.403334 0.915053i \(-0.367851\pi\)
\(398\) −9.34689 13.9886i −0.468517 0.701186i
\(399\) 5.78693 19.7427i 0.289709 0.988369i
\(400\) 15.5576 6.44418i 0.777881 0.322209i
\(401\) 22.6390 15.1269i 1.13054 0.755401i 0.157837 0.987465i \(-0.449548\pi\)
0.972701 + 0.232064i \(0.0745478\pi\)
\(402\) −10.1603 + 8.49933i −0.506752 + 0.423908i
\(403\) 0.580609 0.868943i 0.0289222 0.0432851i
\(404\) 0.975645 + 0.975645i 0.0485401 + 0.0485401i
\(405\) 0.742578 + 1.02573i 0.0368990 + 0.0509689i
\(406\) 3.50297 8.45693i 0.173850 0.419710i
\(407\) 1.35623 0.0672256
\(408\) 0 0
\(409\) 28.2231 1.39554 0.697770 0.716322i \(-0.254176\pi\)
0.697770 + 0.716322i \(0.254176\pi\)
\(410\) −0.311232 + 0.751380i −0.0153706 + 0.0371080i
\(411\) 4.91998 + 2.57066i 0.242685 + 0.126801i
\(412\) −3.07598 3.07598i −0.151543 0.151543i
\(413\) 9.39988 14.0679i 0.462538 0.692237i
\(414\) −24.7574 + 0.465145i −1.21676 + 0.0228606i
\(415\) −0.648098 + 0.433045i −0.0318139 + 0.0212573i
\(416\) 0.164883 0.0682967i 0.00808405 0.00334852i
\(417\) 8.46759 + 2.48201i 0.414660 + 0.121544i
\(418\) 17.8552 + 26.7222i 0.873326 + 1.30703i
\(419\) −1.82223 + 9.16095i −0.0890216 + 0.447542i 0.910406 + 0.413716i \(0.135769\pi\)
−0.999428 + 0.0338260i \(0.989231\pi\)
\(420\) 0.0351327 + 0.112018i 0.00171430 + 0.00546593i
\(421\) −9.40617 + 9.40617i −0.458429 + 0.458429i −0.898139 0.439711i \(-0.855081\pi\)
0.439711 + 0.898139i \(0.355081\pi\)
\(422\) 1.31296 + 6.60069i 0.0639138 + 0.321316i
\(423\) −1.58226 + 8.81709i −0.0769320 + 0.428702i
\(424\) 19.1305i 0.929057i
\(425\) 0 0
\(426\) −23.0464 18.5542i −1.11660 0.898952i
\(427\) 6.49556 + 2.69055i 0.314342 + 0.130205i
\(428\) −0.363877 + 0.0723795i −0.0175886 + 0.00349860i
\(429\) 0.731973 0.0790418i 0.0353400 0.00381617i
\(430\) 0.324269 + 0.216670i 0.0156376 + 0.0104487i
\(431\) −14.3298 2.85038i −0.690243 0.137298i −0.162508 0.986707i \(-0.551958\pi\)
−0.527734 + 0.849409i \(0.676958\pi\)
\(432\) −2.21409 17.4296i −0.106525 0.838581i
\(433\) −6.82738 16.4827i −0.328103 0.792110i −0.998733 0.0503185i \(-0.983976\pi\)
0.670631 0.741792i \(-0.266024\pi\)
\(434\) −7.96819 19.2369i −0.382485 0.923401i
\(435\) 0.0850552 0.955507i 0.00407809 0.0458131i
\(436\) −3.06536 0.609738i −0.146804 0.0292011i
\(437\) 35.0544 + 23.4226i 1.67688 + 1.12045i
\(438\) −1.09198 10.1124i −0.0521768 0.483187i
\(439\) 25.8533 5.14255i 1.23391 0.245440i 0.465299 0.885154i \(-0.345947\pi\)
0.768614 + 0.639713i \(0.220947\pi\)
\(440\) −1.41394 0.585674i −0.0674070 0.0279209i
\(441\) 11.3424 2.47850i 0.540112 0.118024i
\(442\) 0 0
\(443\) 9.67036i 0.459453i −0.973255 0.229726i \(-0.926217\pi\)
0.973255 0.229726i \(-0.0737831\pi\)
\(444\) 0.0842438 + 0.154109i 0.00399803 + 0.00731371i
\(445\) 0.112483 + 0.565491i 0.00533221 + 0.0268068i
\(446\) −0.175541 + 0.175541i −0.00831208 + 0.00831208i
\(447\) −36.7265 + 11.5187i −1.73710 + 0.544814i
\(448\) 3.02780 15.2218i 0.143050 0.719161i
\(449\) 0.587080 + 0.878627i 0.0277060 + 0.0414650i 0.845064 0.534665i \(-0.179562\pi\)
−0.817358 + 0.576130i \(0.804562\pi\)
\(450\) 11.2153 + 16.1208i 0.528692 + 0.759942i
\(451\) −14.7960 + 6.12872i −0.696718 + 0.288590i
\(452\) −3.06805 + 2.05000i −0.144309 + 0.0964240i
\(453\) −4.58424 5.48012i −0.215386 0.257479i
\(454\) −1.55560 + 2.32811i −0.0730077 + 0.109264i
\(455\) 0.0205441 + 0.0205441i 0.000963124 + 0.000963124i
\(456\) −16.0842 + 30.7834i −0.753210 + 1.44157i
\(457\) 8.19942 19.7952i 0.383553 0.925978i −0.607720 0.794151i \(-0.707916\pi\)
0.991273 0.131827i \(-0.0420843\pi\)
\(458\) −22.7184 −1.06156
\(459\) 0 0
\(460\) −0.240577 −0.0112169
\(461\) −9.42954 + 22.7649i −0.439177 + 1.06027i 0.537056 + 0.843547i \(0.319536\pi\)
−0.976233 + 0.216721i \(0.930464\pi\)
\(462\) 6.79290 13.0009i 0.316034 0.604856i
\(463\) 13.6466 + 13.6466i 0.634213 + 0.634213i 0.949122 0.314909i \(-0.101974\pi\)
−0.314909 + 0.949122i \(0.601974\pi\)
\(464\) −7.39451 + 11.0667i −0.343281 + 0.513757i
\(465\) −1.40008 1.67369i −0.0649271 0.0776156i
\(466\) 10.7018 7.15074i 0.495753 0.331252i
\(467\) −11.4980 + 4.76264i −0.532066 + 0.220389i −0.632508 0.774554i \(-0.717974\pi\)
0.100442 + 0.994943i \(0.467974\pi\)
\(468\) 0.0544491 + 0.0782652i 0.00251691 + 0.00361781i
\(469\) −5.71897 8.55905i −0.264078 0.395220i
\(470\) 0.107735 0.541619i 0.00496943 0.0249830i
\(471\) 23.0707 7.23574i 1.06304 0.333405i
\(472\) −20.1974 + 20.1974i −0.929660 + 0.929660i
\(473\) 1.49824 + 7.53215i 0.0688890 + 0.346329i
\(474\) 2.67099 + 4.88612i 0.122683 + 0.224427i
\(475\) 33.4363i 1.53416i
\(476\) 0 0
\(477\) 18.7724 4.10208i 0.859527 0.187821i
\(478\) −27.2464 11.2858i −1.24622 0.516202i
\(479\) 22.2629 4.42837i 1.01722 0.202337i 0.341801 0.939772i \(-0.388963\pi\)
0.675418 + 0.737435i \(0.263963\pi\)
\(480\) −0.0400064 0.370483i −0.00182604 0.0169102i
\(481\) 0.0361403 + 0.0241482i 0.00164786 + 0.00110106i
\(482\) 0.522751 + 0.103982i 0.0238107 + 0.00473624i
\(483\) 1.70613 19.1665i 0.0776314 0.872108i
\(484\) −0.235795 0.569259i −0.0107179 0.0258754i
\(485\) −0.246991 0.596290i −0.0112153 0.0270761i
\(486\) 19.3067 6.86185i 0.875770 0.311260i
\(487\) −22.5436 4.48421i −1.02155 0.203199i −0.344228 0.938886i \(-0.611859\pi\)
−0.677322 + 0.735687i \(0.736859\pi\)
\(488\) −9.86902 6.59427i −0.446750 0.298509i
\(489\) 19.2081 2.07417i 0.868619 0.0937974i
\(490\) −0.701969 + 0.139630i −0.0317117 + 0.00630785i
\(491\) 18.8224 + 7.79649i 0.849443 + 0.351851i 0.764570 0.644541i \(-0.222951\pi\)
0.0848732 + 0.996392i \(0.472951\pi\)
\(492\) −1.61549 1.30060i −0.0728319 0.0586355i
\(493\) 0 0
\(494\) 1.03001i 0.0463421i
\(495\) 0.271524 1.51306i 0.0122041 0.0680069i
\(496\) 5.90648 + 29.6939i 0.265209 + 1.33329i
\(497\) 16.2578 16.2578i 0.729264 0.729264i
\(498\) 3.77434 + 12.0342i 0.169132 + 0.539267i
\(499\) 0.210533 1.05842i 0.00942477 0.0473815i −0.975787 0.218724i \(-0.929811\pi\)
0.985211 + 0.171343i \(0.0548105\pi\)
\(500\) 0.212426 + 0.317918i 0.00949997 + 0.0142177i
\(501\) 3.49038 + 1.02309i 0.155939 + 0.0457085i
\(502\) −1.28795 + 0.533486i −0.0574840 + 0.0238106i
\(503\) −7.80319 + 5.21393i −0.347927 + 0.232478i −0.717238 0.696829i \(-0.754594\pi\)
0.369311 + 0.929306i \(0.379594\pi\)
\(504\) 15.8495 0.297783i 0.705994 0.0132643i
\(505\) 0.396107 0.592815i 0.0176265 0.0263799i
\(506\) 21.2552 + 21.2552i 0.944907 + 0.944907i
\(507\) −19.9358 10.4164i −0.885381 0.462607i
\(508\) −1.03045 + 2.48772i −0.0457188 + 0.110375i
\(509\) −7.99190 −0.354235 −0.177117 0.984190i \(-0.556677\pi\)
−0.177117 + 0.984190i \(0.556677\pi\)
\(510\) 0 0
\(511\) 7.90399 0.349652
\(512\) −9.70803 + 23.4372i −0.429038 + 1.03579i
\(513\) −33.6560 9.18230i −1.48595 0.405408i
\(514\) 18.7116 + 18.7116i 0.825334 + 0.825334i
\(515\) −1.24883 + 1.86901i −0.0550301 + 0.0823584i
\(516\) −0.762822 + 0.638116i −0.0335814 + 0.0280915i
\(517\) 9.04174 6.04150i 0.397655 0.265705i
\(518\) 0.800085 0.331406i 0.0351537 0.0145611i
\(519\) 5.99957 20.4681i 0.263352 0.898449i
\(520\) −0.0272501 0.0407827i −0.00119500 0.00178844i
\(521\) 0.307543 1.54613i 0.0134737 0.0677370i −0.973463 0.228842i \(-0.926506\pi\)
0.986937 + 0.161105i \(0.0515059\pi\)
\(522\) −14.4495 5.66956i −0.632435 0.248150i
\(523\) 24.2095 24.2095i 1.05861 1.05861i 0.0604341 0.998172i \(-0.480751\pi\)
0.998172 0.0604341i \(-0.0192485\pi\)
\(524\) 0.692129 + 3.47957i 0.0302358 + 0.152006i
\(525\) −13.3907 + 7.32004i −0.584420 + 0.319473i
\(526\) 7.25753i 0.316443i
\(527\) 0 0
\(528\) −13.3752 + 16.6135i −0.582081 + 0.723011i
\(529\) 15.1812 + 6.28827i 0.660054 + 0.273403i
\(530\) −1.16181 + 0.231097i −0.0504656 + 0.0100382i
\(531\) −24.1502 15.4884i −1.04803 0.672141i
\(532\) −2.68919 1.79686i −0.116591 0.0779037i
\(533\) −0.503405 0.100134i −0.0218049 0.00433727i
\(534\) 9.29257 + 0.827186i 0.402129 + 0.0357958i
\(535\) 0.0733645 + 0.177118i 0.00317183 + 0.00765746i
\(536\) 6.65037 + 16.0554i 0.287252 + 0.693488i
\(537\) 31.8941 + 2.83908i 1.37633 + 0.122515i
\(538\) −11.7825 2.34369i −0.507980 0.101043i
\(539\) −11.7186 7.83012i −0.504756 0.337267i
\(540\) 0.188797 0.0631321i 0.00812451 0.00271677i
\(541\) 2.97344 0.591454i 0.127838 0.0254286i −0.130756 0.991415i \(-0.541741\pi\)
0.258595 + 0.965986i \(0.416741\pi\)
\(542\) −3.21592 1.33208i −0.138135 0.0572176i
\(543\) −2.31215 + 2.87196i −0.0992239 + 0.123247i
\(544\) 0 0
\(545\) 1.61500i 0.0691792i
\(546\) 0.412502 0.225494i 0.0176535 0.00965024i
\(547\) −0.339058 1.70456i −0.0144971 0.0728817i 0.972860 0.231396i \(-0.0743295\pi\)
−0.987357 + 0.158515i \(0.949329\pi\)
\(548\) 0.617069 0.617069i 0.0263599 0.0263599i
\(549\) 4.35465 11.0983i 0.185852 0.473663i
\(550\) 4.65090 23.3817i 0.198315 0.996998i
\(551\) 14.6825 + 21.9739i 0.625495 + 0.936119i
\(552\) −9.13753 + 31.1735i −0.388919 + 1.32683i
\(553\) −3.99789 + 1.65598i −0.170008 + 0.0704195i
\(554\) −22.6118 + 15.1087i −0.960681 + 0.641907i
\(555\) 0.0696108 0.0582308i 0.00295481 0.00247176i
\(556\) 0.770669 1.15339i 0.0326837 0.0489146i
\(557\) −29.9311 29.9311i −1.26822 1.26822i −0.947006 0.321217i \(-0.895908\pi\)
−0.321217 0.947006i \(-0.604092\pi\)
\(558\) −32.3604 + 14.1220i −1.36993 + 0.597833i
\(559\) −0.0941886 + 0.227391i −0.00398375 + 0.00961763i
\(560\) −0.841688 −0.0355678
\(561\) 0 0
\(562\) 13.5236 0.570460
\(563\) 10.8784 26.2627i 0.458468 1.10684i −0.510550 0.859848i \(-0.670558\pi\)
0.969018 0.246991i \(-0.0794420\pi\)
\(564\) 1.24814 + 0.652148i 0.0525563 + 0.0274604i
\(565\) 1.34824 + 1.34824i 0.0567208 + 0.0567208i
\(566\) 9.37847 14.0359i 0.394207 0.589972i
\(567\) 3.69077 + 15.4890i 0.154998 + 0.650476i
\(568\) −32.2739 + 21.5647i −1.35418 + 0.904835i
\(569\) 19.2820 7.98685i 0.808342 0.334826i 0.0600499 0.998195i \(-0.480874\pi\)
0.748292 + 0.663369i \(0.230874\pi\)
\(570\) 2.06379 + 0.604936i 0.0864428 + 0.0253380i
\(571\) 3.48855 + 5.22099i 0.145991 + 0.218492i 0.897257 0.441508i \(-0.145556\pi\)
−0.751266 + 0.660000i \(0.770556\pi\)
\(572\) 0.0225797 0.113516i 0.000944106 0.00474634i
\(573\) −8.98729 28.6554i −0.375449 1.19710i
\(574\) −7.23109 + 7.23109i −0.301820 + 0.301820i
\(575\) −6.10109 30.6723i −0.254433 1.27912i
\(576\) −25.9034 4.64846i −1.07931 0.193686i
\(577\) 36.1978i 1.50693i 0.657485 + 0.753467i \(0.271620\pi\)
−0.657485 + 0.753467i \(0.728380\pi\)
\(578\) 0 0
\(579\) −21.9054 17.6356i −0.910358 0.732911i
\(580\) −0.139326 0.0577109i −0.00578522 0.00239632i
\(581\) −9.61264 + 1.91207i −0.398799 + 0.0793261i
\(582\) −10.3830 + 1.12120i −0.430389 + 0.0464754i
\(583\) −19.3951 12.9594i −0.803262 0.536723i
\(584\) −13.0872 2.60321i −0.541553 0.107722i
\(585\) 0.0341761 0.0354849i 0.00141301 0.00146712i
\(586\) 0.567450 + 1.36995i 0.0234412 + 0.0565919i
\(587\) −2.98442 7.20502i −0.123180 0.297383i 0.850246 0.526386i \(-0.176453\pi\)
−0.973426 + 0.229003i \(0.926453\pi\)
\(588\) 0.161829 1.81798i 0.00667371 0.0749722i
\(589\) 58.9600 + 11.7279i 2.42940 + 0.483238i
\(590\) 1.47059 + 0.982614i 0.0605431 + 0.0404536i
\(591\) −1.45991 13.5196i −0.0600528 0.556124i
\(592\) −1.23500 + 0.245657i −0.0507583 + 0.0100964i
\(593\) −28.0114 11.6027i −1.15029 0.476465i −0.275659 0.961256i \(-0.588896\pi\)
−0.874630 + 0.484790i \(0.838896\pi\)
\(594\) −22.2581 11.1026i −0.913261 0.455543i
\(595\) 0 0
\(596\) 6.05095i 0.247857i
\(597\) −10.6338 19.4526i −0.435211 0.796143i
\(598\) 0.187944 + 0.944859i 0.00768561 + 0.0386381i
\(599\) 17.7610 17.7610i 0.725695 0.725695i −0.244064 0.969759i \(-0.578481\pi\)
0.969759 + 0.244064i \(0.0784808\pi\)
\(600\) 24.5829 7.71003i 1.00359 0.314761i
\(601\) −5.94298 + 29.8774i −0.242419 + 1.21872i 0.647307 + 0.762229i \(0.275895\pi\)
−0.889726 + 0.456494i \(0.849105\pi\)
\(602\) 2.72441 + 4.07737i 0.111039 + 0.166181i
\(603\) −14.3288 + 9.96858i −0.583516 + 0.405952i
\(604\) −1.03770 + 0.429829i −0.0422233 + 0.0174895i
\(605\) −0.264733 + 0.176889i −0.0107629 + 0.00719155i
\(606\) −7.40207 8.84865i −0.300689 0.359452i
\(607\) −12.1073 + 18.1199i −0.491421 + 0.735464i −0.991442 0.130550i \(-0.958326\pi\)
0.500020 + 0.866014i \(0.333326\pi\)
\(608\) 7.25911 + 7.25911i 0.294396 + 0.294396i
\(609\) 5.58586 10.6907i 0.226350 0.433211i
\(610\) −0.281256 + 0.679012i −0.0113877 + 0.0274924i
\(611\) 0.348513 0.0140993
\(612\) 0 0
\(613\) 17.5623 0.709337 0.354668 0.934992i \(-0.384594\pi\)
0.354668 + 0.934992i \(0.384594\pi\)
\(614\) 9.84962 23.7791i 0.397498 0.959646i
\(615\) −0.496292 + 0.949850i −0.0200124 + 0.0383017i
\(616\) −13.6074 13.6074i −0.548258 0.548258i
\(617\) −13.1285 + 19.6482i −0.528534 + 0.791007i −0.995648 0.0931902i \(-0.970294\pi\)
0.467115 + 0.884197i \(0.345294\pi\)
\(618\) 23.3370 + 27.8977i 0.938753 + 1.12221i
\(619\) 33.2074 22.1885i 1.33472 0.891831i 0.335973 0.941872i \(-0.390935\pi\)
0.998747 + 0.0500404i \(0.0159350\pi\)
\(620\) −0.316925 + 0.131275i −0.0127280 + 0.00527211i
\(621\) −32.5493 2.28205i −1.30616 0.0915754i
\(622\) −21.4512 32.1040i −0.860116 1.28725i
\(623\) −1.41437 + 7.11050i −0.0566654 + 0.284876i
\(624\) −0.652230 + 0.204561i −0.0261101 + 0.00818901i
\(625\) −17.4680 + 17.4680i −0.698719 + 0.698719i
\(626\) 4.56969 + 22.9734i 0.182642 + 0.918201i
\(627\) 20.3135 + 37.1600i 0.811242 + 1.48403i
\(628\) 3.80106i 0.151679i
\(629\) 0 0
\(630\) −0.209548 0.958955i −0.00834859 0.0382057i
\(631\) −24.7481 10.2510i −0.985205 0.408085i −0.168854 0.985641i \(-0.554007\pi\)
−0.816351 + 0.577556i \(0.804007\pi\)
\(632\) 7.16501 1.42521i 0.285009 0.0566917i
\(633\) 0.952104 + 8.81704i 0.0378428 + 0.350446i
\(634\) 15.4329 + 10.3120i 0.612920 + 0.409540i
\(635\) 1.36467 + 0.271450i 0.0541552 + 0.0107721i
\(636\) 0.267838 3.00888i 0.0106205 0.119310i
\(637\) −0.172855 0.417310i −0.00684878 0.0165344i
\(638\) 7.21080 + 17.4084i 0.285478 + 0.689206i
\(639\) −28.0814 27.0457i −1.11088 1.06991i
\(640\) 1.16919 + 0.232566i 0.0462162 + 0.00919297i
\(641\) −35.4034 23.6558i −1.39835 0.934349i −0.999852 0.0171805i \(-0.994531\pi\)
−0.398500 0.917168i \(-0.630469\pi\)
\(642\) 3.08409 0.333034i 0.121719 0.0131438i
\(643\) 25.2906 5.03062i 0.997365 0.198388i 0.330692 0.943739i \(-0.392718\pi\)
0.666673 + 0.745351i \(0.267718\pi\)
\(644\) −2.79475 1.15763i −0.110129 0.0456168i
\(645\) 0.400300 + 0.322273i 0.0157618 + 0.0126895i
\(646\) 0 0
\(647\) 38.1903i 1.50142i 0.660634 + 0.750709i \(0.270288\pi\)
−0.660634 + 0.750709i \(0.729712\pi\)
\(648\) −1.00972 26.8618i −0.0396656 1.05523i
\(649\) 6.79463 + 34.1589i 0.266712 + 1.34085i
\(650\) 0.540257 0.540257i 0.0211906 0.0211906i
\(651\) −8.21096 26.1801i −0.321813 1.02608i
\(652\) 0.592526 2.97883i 0.0232051 0.116660i
\(653\) 19.0588 + 28.5236i 0.745830 + 1.11621i 0.989242 + 0.146290i \(0.0467333\pi\)
−0.243412 + 0.969923i \(0.578267\pi\)
\(654\) 25.0769 + 7.35049i 0.980584 + 0.287427i
\(655\) 1.69369 0.701548i 0.0661778 0.0274118i
\(656\) 12.3634 8.26097i 0.482710 0.322537i
\(657\) −0.251769 13.4004i −0.00982243 0.522800i
\(658\) 3.85774 5.77352i 0.150391 0.225075i
\(659\) −24.7106 24.7106i −0.962589 0.962589i 0.0367361 0.999325i \(-0.488304\pi\)
−0.999325 + 0.0367361i \(0.988304\pi\)
\(660\) −0.214188 0.111912i −0.00833724 0.00435616i
\(661\) 4.65040 11.2271i 0.180880 0.436682i −0.807269 0.590184i \(-0.799055\pi\)
0.988148 + 0.153502i \(0.0490552\pi\)
\(662\) 9.50727 0.369510
\(663\) 0 0
\(664\) 16.5461 0.642113
\(665\) −0.639559 + 1.54403i −0.0248011 + 0.0598750i
\(666\) −0.587351 1.34591i −0.0227594 0.0521528i
\(667\) 17.4783 + 17.4783i 0.676762 + 0.676762i
\(668\) 0.317674 0.475432i 0.0122912 0.0183950i
\(669\) −0.250913 + 0.209894i −0.00970085 + 0.00811496i
\(670\) 0.894718 0.597832i 0.0345660 0.0230962i
\(671\) −13.3710 + 5.53844i −0.516181 + 0.213809i
\(672\) 1.31797 4.49637i 0.0508417 0.173451i
\(673\) 22.5244 + 33.7102i 0.868252 + 1.29943i 0.952982 + 0.303027i \(0.0979973\pi\)
−0.0847298 + 0.996404i \(0.527003\pi\)
\(674\) 3.42798 17.2336i 0.132041 0.663814i
\(675\) 12.8369 + 22.4695i 0.494094 + 0.864852i
\(676\) −2.50037 + 2.50037i −0.0961681 + 0.0961681i
\(677\) 1.33713 + 6.72222i 0.0513902 + 0.258356i 0.997936 0.0642128i \(-0.0204537\pi\)
−0.946546 + 0.322569i \(0.895454\pi\)
\(678\) 27.0710 14.7984i 1.03966 0.568327i
\(679\) 8.11552i 0.311445i
\(680\) 0 0
\(681\) −2.31378 + 2.87398i −0.0886644 + 0.110131i
\(682\) 39.5988 + 16.4024i 1.51632 + 0.628079i
\(683\) 9.68496 1.92646i 0.370585 0.0737139i −0.00628472 0.999980i \(-0.502001\pi\)
0.376870 + 0.926266i \(0.377001\pi\)
\(684\) −2.96073 + 4.61649i −0.113206 + 0.176516i
\(685\) −0.374940 0.250527i −0.0143257 0.00957213i
\(686\) −24.7920 4.93143i −0.946562 0.188283i
\(687\) −29.8187 2.65434i −1.13766 0.101269i
\(688\) −2.72864 6.58752i −0.104028 0.251147i
\(689\) −0.286087 0.690676i −0.0108991 0.0263127i
\(690\) 2.00357 + 0.178349i 0.0762746 + 0.00678965i
\(691\) −13.6051 2.70622i −0.517563 0.102950i −0.0706044 0.997504i \(-0.522493\pi\)
−0.446958 + 0.894555i \(0.647493\pi\)
\(692\) −2.78800 1.86288i −0.105984 0.0708161i
\(693\) 10.4349 16.2705i 0.396389 0.618065i
\(694\) 43.1524 8.58354i 1.63804 0.325827i
\(695\) −0.662233 0.274306i −0.0251199 0.0104050i
\(696\) −12.7699 + 15.8617i −0.484044 + 0.601237i
\(697\) 0 0
\(698\) 36.5813i 1.38462i
\(699\) 14.8820 8.13525i 0.562890 0.307703i
\(700\) 0.468044 + 2.35301i 0.0176904 + 0.0889356i
\(701\) −7.15325 + 7.15325i −0.270175 + 0.270175i −0.829170 0.558996i \(-0.811187\pi\)
0.558996 + 0.829170i \(0.311187\pi\)
\(702\) −0.395442 0.692173i −0.0149250 0.0261244i
\(703\) −0.487775 + 2.45221i −0.0183968 + 0.0924869i
\(704\) 17.7491 + 26.5634i 0.668945 + 1.00115i
\(705\) 0.204687 0.698307i 0.00770894 0.0262998i
\(706\) −8.77211 + 3.63353i −0.330143 + 0.136750i
\(707\) 7.45408 4.98066i 0.280340 0.187317i
\(708\) −3.45946 + 2.89391i −0.130014 + 0.108760i
\(709\) −25.0275 + 37.4563i −0.939929 + 1.40670i −0.0265247 + 0.999648i \(0.508444\pi\)
−0.913404 + 0.407054i \(0.866556\pi\)
\(710\) 1.69951 + 1.69951i 0.0637814 + 0.0637814i
\(711\) 2.93490 + 6.72528i 0.110067 + 0.252218i
\(712\) 4.68374 11.3075i 0.175531 0.423768i
\(713\) 56.2259 2.10568
\(714\) 0 0
\(715\) −0.0598067 −0.00223664
\(716\) 1.92635 4.65061i 0.0719909 0.173801i
\(717\) −34.4433 17.9965i −1.28631 0.672090i
\(718\) −25.6111 25.6111i −0.955796 0.955796i
\(719\) 15.9794 23.9148i 0.595929 0.891871i −0.403807 0.914844i \(-0.632313\pi\)
0.999736 + 0.0229732i \(0.00731323\pi\)
\(720\) 0.0268106 + 1.42700i 0.000999172 + 0.0531811i
\(721\) −23.5010 + 15.7029i −0.875222 + 0.584805i
\(722\) −31.6655 + 13.1163i −1.17847 + 0.488138i
\(723\) 0.673981 + 0.197556i 0.0250656 + 0.00734719i
\(724\) 0.322022 + 0.481940i 0.0119679 + 0.0179112i
\(725\) 3.82448 19.2269i 0.142038 0.714071i
\(726\) 1.54173 + 4.91571i 0.0572190 + 0.182439i
\(727\) −1.86673 + 1.86673i −0.0692331 + 0.0692331i −0.740876 0.671642i \(-0.765589\pi\)
0.671642 + 0.740876i \(0.265589\pi\)
\(728\) −0.120321 0.604893i −0.00445938 0.0224188i
\(729\) 26.1425 6.75071i 0.968239 0.250026i
\(730\) 0.826242i 0.0305806i
\(731\) 0 0
\(732\) −1.45990 1.17533i −0.0539593 0.0434415i
\(733\) 28.9600 + 11.9956i 1.06966 + 0.443068i 0.846871 0.531798i \(-0.178484\pi\)
0.222790 + 0.974866i \(0.428484\pi\)
\(734\) −14.4821 + 2.88067i −0.534545 + 0.106328i
\(735\) −0.937673 + 0.101254i −0.0345866 + 0.00373482i
\(736\) 7.98360 + 5.33447i 0.294279 + 0.196631i
\(737\) 20.7826 + 4.13391i 0.765537 + 0.152275i
\(738\) 12.4899 + 12.0293i 0.459761 + 0.442803i
\(739\) 1.82751 + 4.41201i 0.0672262 + 0.162298i 0.953922 0.300055i \(-0.0970051\pi\)
−0.886696 + 0.462354i \(0.847005\pi\)
\(740\) −0.00545986 0.0131813i −0.000200708 0.000484553i
\(741\) −0.120342 + 1.35192i −0.00442088 + 0.0496640i
\(742\) −14.6086 2.90583i −0.536298 0.106676i
\(743\) 17.5085 + 11.6988i 0.642325 + 0.429188i 0.833615 0.552346i \(-0.186267\pi\)
−0.191290 + 0.981534i \(0.561267\pi\)
\(744\) 4.97297 + 46.0526i 0.182318 + 1.68837i
\(745\) 3.06665 0.609995i 0.112353 0.0223485i
\(746\) −6.68298 2.76818i −0.244681 0.101350i
\(747\) 3.54792 + 16.2364i 0.129812 + 0.594058i
\(748\) 0 0
\(749\) 2.41058i 0.0880806i
\(750\) −1.53344 2.80516i −0.0559933 0.102430i
\(751\) −4.52121 22.7296i −0.164981 0.829416i −0.971286 0.237916i \(-0.923536\pi\)
0.806305 0.591500i \(-0.201464\pi\)
\(752\) −7.13925 + 7.13925i −0.260342 + 0.260342i
\(753\) −1.75281 + 0.549740i −0.0638759 + 0.0200336i
\(754\) −0.117813 + 0.592286i −0.00429050 + 0.0215698i
\(755\) 0.322449 + 0.482579i 0.0117351 + 0.0175629i
\(756\) 2.49701 + 0.175067i 0.0908155 + 0.00636711i
\(757\) −23.7983 + 9.85760i −0.864965 + 0.358280i −0.770647 0.637262i \(-0.780067\pi\)
−0.0943180 + 0.995542i \(0.530067\pi\)
\(758\) −5.75627 + 3.84622i −0.209077 + 0.139701i
\(759\) 25.4148 + 30.3815i 0.922498 + 1.10278i
\(760\) 1.56750 2.34593i 0.0568591 0.0850957i
\(761\) 15.9336 + 15.9336i 0.577594 + 0.577594i 0.934240 0.356646i \(-0.116080\pi\)
−0.356646 + 0.934240i \(0.616080\pi\)
\(762\) 10.4260 19.9543i 0.377695 0.722870i
\(763\) −7.77120 + 18.7613i −0.281336 + 0.679206i
\(764\) −4.72118 −0.170806
\(765\) 0 0
\(766\) −27.8109 −1.00485
\(767\) −0.427153 + 1.03124i −0.0154236 + 0.0372359i
\(768\) −5.14012 + 9.83764i −0.185478 + 0.354985i
\(769\) 10.2112 + 10.2112i 0.368226 + 0.368226i 0.866830 0.498604i \(-0.166154\pi\)
−0.498604 + 0.866830i \(0.666154\pi\)
\(770\) −0.662009 + 0.990766i −0.0238571 + 0.0357047i
\(771\) 22.3735 + 26.7459i 0.805761 + 0.963229i
\(772\) −3.67593 + 2.45618i −0.132300 + 0.0883998i
\(773\) −2.24744 + 0.930920i −0.0808348 + 0.0334829i −0.422734 0.906254i \(-0.638930\pi\)
0.341900 + 0.939736i \(0.388930\pi\)
\(774\) 6.82599 4.74884i 0.245355 0.170694i
\(775\) −24.7741 37.0771i −0.889912 1.33185i
\(776\) −2.67288 + 13.4375i −0.0959507 + 0.482377i
\(777\) 1.08886 0.341503i 0.0390626 0.0122514i
\(778\) −11.6153 + 11.6153i −0.416429 + 0.416429i
\(779\) −5.75994 28.9572i −0.206371 1.03750i
\(780\) −0.00371497 0.00679590i −0.000133017 0.000243332i
\(781\) 47.3287i 1.69355i
\(782\) 0 0
\(783\) −18.3030 9.12973i −0.654097 0.326270i
\(784\) 12.0895 + 5.00762i 0.431766 + 0.178844i
\(785\) −1.92639 + 0.383184i −0.0687559 + 0.0136764i
\(786\) −3.18464 29.4916i −0.113592 1.05193i
\(787\) 26.3671 + 17.6179i 0.939884 + 0.628010i 0.928264 0.371922i \(-0.121301\pi\)
0.0116199 + 0.999932i \(0.496301\pi\)
\(788\) −2.09666 0.417051i −0.0746903 0.0148568i
\(789\) 0.847945 9.52578i 0.0301876 0.339127i
\(790\) −0.173108 0.417919i −0.00615889 0.0148689i
\(791\) 9.17479 + 22.1499i 0.326218 + 0.787560i
\(792\) −22.6366 + 23.5035i −0.804356 + 0.835159i
\(793\) −0.454920 0.0904893i −0.0161547 0.00321337i
\(794\) 42.5135 + 28.4066i 1.50875 + 1.00811i
\(795\) −1.55191 + 0.167583i −0.0550407 + 0.00594354i
\(796\) −3.41820 + 0.679923i −0.121155 + 0.0240992i
\(797\) −41.8726 17.3442i −1.48320 0.614363i −0.513377 0.858163i \(-0.671606\pi\)
−0.969825 + 0.243800i \(0.921606\pi\)
\(798\) 21.0640 + 16.9582i 0.745658 + 0.600314i
\(799\) 0 0
\(800\) 7.61508i 0.269234i
\(801\) 12.1002 + 2.17142i 0.427539 + 0.0767235i
\(802\) 6.98204 + 35.1011i 0.246544 + 1.23946i
\(803\) −11.5048 + 11.5048i −0.405995 + 0.405995i
\(804\) 0.821198 + 2.61833i 0.0289614 + 0.0923415i
\(805\) −0.304951 + 1.53309i −0.0107481 + 0.0540345i
\(806\) 0.763166 + 1.14216i 0.0268814 + 0.0402308i
\(807\) −15.1911 4.45280i −0.534753 0.156746i
\(808\) −13.9827 + 5.79181i −0.491908 + 0.203755i
\(809\) −20.9122 + 13.9731i −0.735233 + 0.491267i −0.865936 0.500155i \(-0.833276\pi\)
0.130703 + 0.991422i \(0.458276\pi\)
\(810\) −1.61914 + 0.385814i −0.0568907 + 0.0135561i
\(811\) −12.9298 + 19.3507i −0.454025 + 0.679496i −0.985902 0.167325i \(-0.946487\pi\)
0.531877 + 0.846822i \(0.321487\pi\)
\(812\) −1.34084 1.34084i −0.0470544 0.0470544i
\(813\) −4.06537 2.12413i −0.142579 0.0744966i
\(814\) −0.682192 + 1.64696i −0.0239108 + 0.0577259i
\(815\) −1.56942 −0.0549743
\(816\) 0 0
\(817\) −14.1578 −0.495320
\(818\) −14.1964 + 34.2732i −0.496367 + 1.19834i
\(819\) 0.567770 0.247773i 0.0198395 0.00865790i
\(820\) 0.119131 + 0.119131i 0.00416024 + 0.00416024i
\(821\) −24.0120 + 35.9365i −0.838025 + 1.25419i 0.126965 + 0.991907i \(0.459476\pi\)
−0.964990 + 0.262286i \(0.915524\pi\)
\(822\) −5.59653 + 4.68161i −0.195201 + 0.163290i
\(823\) 14.0236 9.37028i 0.488833 0.326627i −0.286608 0.958048i \(-0.592528\pi\)
0.775441 + 0.631420i \(0.217528\pi\)
\(824\) 44.0841 18.2602i 1.53574 0.636125i
\(825\) 8.83631 30.1459i 0.307641 1.04955i
\(826\) 12.3554 + 18.4912i 0.429900 + 0.643391i
\(827\) −4.32515 + 21.7440i −0.150400 + 0.756114i 0.829793 + 0.558071i \(0.188458\pi\)
−0.980193 + 0.198042i \(0.936542\pi\)
\(828\) −1.87362 + 4.77510i −0.0651127 + 0.165946i
\(829\) 19.3451 19.3451i 0.671883 0.671883i −0.286267 0.958150i \(-0.592415\pi\)
0.958150 + 0.286267i \(0.0924145\pi\)
\(830\) −0.199878 1.00486i −0.00693787 0.0348790i
\(831\) −31.4440 + 17.1888i −1.09078 + 0.596274i
\(832\) 1.02389i 0.0354968i
\(833\) 0 0
\(834\) −7.27334 + 9.03431i −0.251855 + 0.312833i
\(835\) −0.272976 0.113070i −0.00944672 0.00391296i
\(836\) 6.52973 1.29884i 0.225836 0.0449215i
\(837\) −44.1242 + 14.7548i −1.52516 + 0.510000i
\(838\) −10.2082 6.82089i −0.352636 0.235624i
\(839\) 24.3543 + 4.84436i 0.840802 + 0.167246i 0.596661 0.802494i \(-0.296494\pi\)
0.244142 + 0.969740i \(0.421494\pi\)
\(840\) −1.28267 0.114178i −0.0442564 0.00393952i
\(841\) −5.16832 12.4774i −0.178218 0.430256i
\(842\) −6.69119 16.1539i −0.230593 0.556702i
\(843\) 17.7502 + 1.58005i 0.611351 + 0.0544199i
\(844\) 1.36737 + 0.271986i 0.0470667 + 0.00936215i
\(845\) 1.51926 + 1.01514i 0.0522641 + 0.0349218i
\(846\) −9.91131 6.35651i −0.340758 0.218541i
\(847\) −3.92654 + 0.781037i −0.134917 + 0.0268367i
\(848\) 20.0089 + 8.28795i 0.687107 + 0.284609i
\(849\) 13.9495 17.3269i 0.478745 0.594656i
\(850\) 0 0
\(851\) 2.33850i 0.0801628i
\(852\) −5.37801 + 2.93989i −0.184248 + 0.100719i
\(853\) −5.82018 29.2600i −0.199279 1.00184i −0.942858 0.333196i \(-0.891873\pi\)
0.743578 0.668649i \(-0.233127\pi\)
\(854\) −6.53464 + 6.53464i −0.223611 + 0.223611i
\(855\) 2.63813 + 1.03513i 0.0902220 + 0.0354006i
\(856\) 0.793933 3.99137i 0.0271361 0.136422i
\(857\) −18.9054 28.2940i −0.645798 0.966505i −0.999515 0.0311521i \(-0.990082\pi\)
0.353717 0.935353i \(-0.384918\pi\)
\(858\) −0.272203 + 0.928644i −0.00929284 + 0.0317034i
\(859\) 18.2111 7.54327i 0.621354 0.257373i −0.0497206 0.998763i \(-0.515833\pi\)
0.671074 + 0.741390i \(0.265833\pi\)
\(860\) 0.0671740 0.0448842i 0.00229061 0.00153054i
\(861\) −10.3359 + 8.64622i −0.352247 + 0.294662i
\(862\) 10.6694 15.9679i 0.363402 0.543869i
\(863\) 4.36492 + 4.36492i 0.148584 + 0.148584i 0.777485 0.628901i \(-0.216495\pi\)
−0.628901 + 0.777485i \(0.716495\pi\)
\(864\) −7.66513 2.09126i −0.260773 0.0711460i
\(865\) −0.663059 + 1.60077i −0.0225447 + 0.0544277i
\(866\) 23.4504 0.796876
\(867\) 0 0
\(868\) −4.31336 −0.146405
\(869\) 3.40880 8.22958i 0.115636 0.279169i
\(870\) 1.11755 + 0.583916i 0.0378887 + 0.0197966i
\(871\) 0.480203 + 0.480203i 0.0162710 + 0.0162710i
\(872\) 19.0465 28.5050i 0.644994 0.965302i
\(873\) −13.7591 + 0.258507i −0.465674 + 0.00874913i
\(874\) −46.0763 + 30.7872i −1.55855 + 1.04139i
\(875\) 2.29522 0.950712i 0.0775927 0.0321399i
\(876\) −2.02194 0.592666i −0.0683149 0.0200243i
\(877\) −5.29644 7.92668i −0.178848 0.267665i 0.731204 0.682159i \(-0.238959\pi\)
−0.910052 + 0.414494i \(0.863959\pi\)
\(878\) −6.75949 + 33.9822i −0.228122 + 1.14685i
\(879\) 0.584739 + 1.86440i 0.0197228 + 0.0628847i
\(880\) 1.22513 1.22513i 0.0412992 0.0412992i
\(881\) −8.39169 42.1879i −0.282723 1.42135i −0.817294 0.576222i \(-0.804527\pi\)
0.534570 0.845124i \(-0.320473\pi\)
\(882\) −2.69548 + 15.0205i −0.0907617 + 0.505767i
\(883\) 41.3162i 1.39040i 0.718816 + 0.695200i \(0.244684\pi\)
−0.718816 + 0.695200i \(0.755316\pi\)
\(884\) 0 0
\(885\) 1.81539 + 1.46153i 0.0610237 + 0.0491289i
\(886\) 11.7434 + 4.86427i 0.394527 + 0.163418i
\(887\) 14.5578 2.89572i 0.488801 0.0972287i 0.0554646 0.998461i \(-0.482336\pi\)
0.433337 + 0.901232i \(0.357336\pi\)
\(888\) −1.91538 + 0.206831i −0.0642760 + 0.00694081i
\(889\) 14.5470 + 9.72002i 0.487892 + 0.325999i
\(890\) −0.743294 0.147850i −0.0249153 0.00495596i
\(891\) −27.9174 17.1731i −0.935267 0.575319i
\(892\) 0.0196801 + 0.0475120i 0.000658939 + 0.00159082i
\(893\) 7.67180 + 18.5214i 0.256727 + 0.619794i
\(894\) 4.48582 50.3935i 0.150028 1.68541i
\(895\) −2.55114 0.507454i −0.0852754 0.0169623i
\(896\) 12.4632 + 8.32768i 0.416368 + 0.278208i
\(897\) 0.136289 + 1.26212i 0.00455057 + 0.0421410i
\(898\) −1.36228 + 0.270975i −0.0454600 + 0.00904256i
\(899\) 32.5624 + 13.4878i 1.08602 + 0.449843i
\(900\) 3.97439 0.868473i 0.132480 0.0289491i
\(901\) 0 0
\(902\) 21.0507i 0.700910i
\(903\) 3.09950 + 5.67001i 0.103145 + 0.188686i
\(904\) −7.89621 39.6970i −0.262624 1.32030i
\(905\) 0.211787 0.211787i 0.00704002 0.00704002i
\(906\) 8.96080 2.81041i 0.297703 0.0933696i
\(907\) −3.33756 + 16.7791i −0.110822 + 0.557140i 0.884982 + 0.465626i \(0.154171\pi\)
−0.995804 + 0.0915140i \(0.970829\pi\)
\(908\) 0.322250 + 0.482281i 0.0106942 + 0.0160050i
\(909\) −8.68165 12.4790i −0.287952 0.413902i
\(910\) −0.0352820 + 0.0146143i −0.00116959 + 0.000484459i
\(911\) −45.9977 + 30.7347i −1.52397 + 1.01829i −0.539653 + 0.841887i \(0.681445\pi\)
−0.984319 + 0.176398i \(0.943555\pi\)
\(912\) −25.2287 30.1591i −0.835406 0.998667i
\(913\) 11.2087 16.7750i 0.370953 0.555171i
\(914\) 19.9143 + 19.9143i 0.658705 + 0.658705i
\(915\) −0.448492 + 0.858366i −0.0148267 + 0.0283767i
\(916\) −1.80100 + 4.34800i −0.0595067 + 0.143662i
\(917\) 23.0511 0.761216
\(918\) 0 0
\(919\) −57.0283 −1.88119 −0.940595 0.339530i \(-0.889732\pi\)
−0.940595 + 0.339530i \(0.889732\pi\)
\(920\) 1.00986 2.43802i 0.0332941 0.0803791i
\(921\) 15.7062 30.0601i 0.517538 0.990514i
\(922\) −22.9019 22.9019i −0.754233 0.754233i
\(923\) −0.842708 + 1.26120i −0.0277381 + 0.0415130i
\(924\) −1.94969 2.33071i −0.0641401 0.0766748i
\(925\) 1.54208 1.03038i 0.0507032 0.0338788i
\(926\) −23.4364 + 9.70769i −0.770169 + 0.319014i
\(927\) 27.3712 + 39.3434i 0.898989 + 1.29221i
\(928\) 3.34392 + 5.00453i 0.109770 + 0.164282i
\(929\) 6.98713 35.1267i 0.229240 1.15247i −0.679038 0.734103i \(-0.737603\pi\)
0.908278 0.418366i \(-0.137397\pi\)
\(930\) 2.73673 0.858331i 0.0897410 0.0281458i
\(931\) 18.3724 18.3724i 0.602132 0.602132i
\(932\) −0.520168 2.61506i −0.0170387 0.0856592i
\(933\) −24.4046 44.6440i −0.798971 1.46158i
\(934\) 16.3585i 0.535267i
\(935\) 0 0
\(936\) −1.02170 + 0.223259i −0.0333954 + 0.00729746i
\(937\) −18.6808 7.73785i −0.610276 0.252785i 0.0560704 0.998427i \(-0.482143\pi\)
−0.666347 + 0.745642i \(0.732143\pi\)
\(938\) 13.2705 2.63967i 0.433298 0.0861884i
\(939\) 3.31375 + 30.6873i 0.108140 + 1.00144i
\(940\) −0.0951179 0.0635557i −0.00310240 0.00207296i
\(941\) −7.61499 1.51472i −0.248242 0.0493783i 0.0694010 0.997589i \(-0.477891\pi\)
−0.317643 + 0.948211i \(0.602891\pi\)
\(942\) −2.81788 + 31.6560i −0.0918116 + 1.03141i
\(943\) −10.5676 25.5124i −0.344128 0.830798i
\(944\) −12.3746 29.8749i −0.402759 0.972347i
\(945\) −0.162998 1.28315i −0.00530234 0.0417407i
\(946\) −9.90043 1.96932i −0.321891 0.0640281i
\(947\) 2.99573 + 2.00168i 0.0973480 + 0.0650459i 0.603291 0.797521i \(-0.293856\pi\)
−0.505943 + 0.862567i \(0.668856\pi\)
\(948\) 1.14688 0.123845i 0.0372489 0.00402231i
\(949\) −0.511424 + 0.101728i −0.0166015 + 0.00330225i
\(950\) 40.6040 + 16.8187i 1.31737 + 0.545672i
\(951\) 19.0515 + 15.3379i 0.617786 + 0.497367i
\(952\) 0 0
\(953\) 22.5397i 0.730132i −0.930982 0.365066i \(-0.881046\pi\)
0.930982 0.365066i \(-0.118954\pi\)
\(954\) −4.46121 + 24.8600i −0.144437 + 0.804871i
\(955\) 0.475940 + 2.39271i 0.0154011 + 0.0774264i
\(956\) −4.31991 + 4.31991i −0.139716 + 0.139716i
\(957\) 7.43050 + 23.6917i 0.240194 + 0.765843i
\(958\) −5.82076 + 29.2629i −0.188060 + 0.945442i
\(959\) −3.15013 4.71450i −0.101723 0.152239i
\(960\) 2.05153 + 0.601342i 0.0662129 + 0.0194082i
\(961\) 45.4292 18.8174i 1.46546 0.607013i
\(962\) −0.0475037 + 0.0317410i −0.00153158 + 0.00102337i
\(963\) 4.08689 0.0767851i 0.131698 0.00247436i
\(964\) 0.0613417 0.0918044i 0.00197568 0.00295682i
\(965\) 1.61537 + 1.61537i 0.0520007 + 0.0520007i
\(966\) 22.4171 + 11.7128i 0.721257 + 0.376853i
\(967\) 8.59605 20.7527i 0.276430 0.667362i −0.723301 0.690533i \(-0.757376\pi\)
0.999732 + 0.0231709i \(0.00737619\pi\)
\(968\) 6.75869 0.217233
\(969\) 0 0
\(970\) 0.848355 0.0272390
\(971\) 13.1165 31.6660i 0.420928 1.01621i −0.561147 0.827716i \(-0.689640\pi\)
0.982075 0.188493i \(-0.0603603\pi\)
\(972\) 0.217270 4.23901i 0.00696893 0.135966i
\(973\) −6.37317 6.37317i −0.204314 0.204314i
\(974\) 16.7851 25.1207i 0.537830 0.804920i
\(975\) 0.772229 0.645985i 0.0247311 0.0206881i
\(976\) 11.1726 7.46532i 0.357628 0.238959i
\(977\) 26.0166 10.7764i 0.832345 0.344769i 0.0745143 0.997220i \(-0.476259\pi\)
0.757831 + 0.652451i \(0.226259\pi\)
\(978\) −7.14301 + 24.3690i −0.228408 + 0.779235i
\(979\) −8.29109 12.4085i −0.264985 0.396577i
\(980\) −0.0289251 + 0.145416i −0.000923980 + 0.00464516i
\(981\) 32.0555 + 12.5777i 1.02345 + 0.401574i
\(982\) −18.9356 + 18.9356i −0.604261 + 0.604261i
\(983\) 8.14020 + 40.9235i 0.259632 + 1.30526i 0.861946 + 0.506999i \(0.169245\pi\)
−0.602314 + 0.798259i \(0.705755\pi\)
\(984\) 19.9616 10.9120i 0.636353 0.347862i
\(985\) 1.10464i 0.0351967i
\(986\) 0 0
\(987\) 5.73799 7.12723i 0.182642 0.226862i
\(988\) 0.197129 + 0.0816535i 0.00627151 + 0.00259774i
\(989\) −12.9875 + 2.58337i −0.412977 + 0.0821463i
\(990\) 1.70083 + 1.09081i 0.0540560 + 0.0346682i
\(991\) −8.43842 5.63837i −0.268055 0.179109i 0.414277 0.910151i \(-0.364034\pi\)
−0.682333 + 0.731042i \(0.739034\pi\)
\(992\) 13.4281 + 2.67101i 0.426341 + 0.0848046i
\(993\) 12.4786 + 1.11080i 0.395998 + 0.0352500i
\(994\) 11.5652 + 27.9208i 0.366826 + 0.885595i
\(995\) 0.689176 + 1.66382i 0.0218483 + 0.0527466i
\(996\) 2.60240 + 0.231655i 0.0824603 + 0.00734027i
\(997\) 39.1586 + 7.78912i 1.24016 + 0.246684i 0.771234 0.636552i \(-0.219640\pi\)
0.468930 + 0.883235i \(0.344640\pi\)
\(998\) 1.17942 + 0.788061i 0.0373338 + 0.0249456i
\(999\) −0.613668 1.83518i −0.0194156 0.0580624i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 867.2.i.h.827.2 32
3.2 odd 2 inner 867.2.i.h.827.3 32
17.2 even 8 867.2.i.g.503.2 32
17.3 odd 16 51.2.i.a.14.3 yes 32
17.4 even 4 867.2.i.d.329.3 32
17.5 odd 16 867.2.i.c.224.2 32
17.6 odd 16 867.2.i.b.158.2 32
17.7 odd 16 867.2.i.g.131.3 32
17.8 even 8 867.2.i.b.653.3 32
17.9 even 8 867.2.i.i.653.3 32
17.10 odd 16 867.2.i.f.131.3 32
17.11 odd 16 867.2.i.i.158.2 32
17.12 odd 16 867.2.i.d.224.2 32
17.13 even 4 867.2.i.c.329.3 32
17.14 odd 16 inner 867.2.i.h.65.3 32
17.15 even 8 867.2.i.f.503.2 32
17.16 even 2 51.2.i.a.11.2 32
51.2 odd 8 867.2.i.g.503.3 32
51.5 even 16 867.2.i.c.224.3 32
51.8 odd 8 867.2.i.b.653.2 32
51.11 even 16 867.2.i.i.158.3 32
51.14 even 16 inner 867.2.i.h.65.2 32
51.20 even 16 51.2.i.a.14.2 yes 32
51.23 even 16 867.2.i.b.158.3 32
51.26 odd 8 867.2.i.i.653.2 32
51.29 even 16 867.2.i.d.224.3 32
51.32 odd 8 867.2.i.f.503.3 32
51.38 odd 4 867.2.i.d.329.2 32
51.41 even 16 867.2.i.g.131.2 32
51.44 even 16 867.2.i.f.131.2 32
51.47 odd 4 867.2.i.c.329.2 32
51.50 odd 2 51.2.i.a.11.3 yes 32
68.3 even 16 816.2.cj.c.65.4 32
68.67 odd 2 816.2.cj.c.113.1 32
204.71 odd 16 816.2.cj.c.65.1 32
204.203 even 2 816.2.cj.c.113.4 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.2.i.a.11.2 32 17.16 even 2
51.2.i.a.11.3 yes 32 51.50 odd 2
51.2.i.a.14.2 yes 32 51.20 even 16
51.2.i.a.14.3 yes 32 17.3 odd 16
816.2.cj.c.65.1 32 204.71 odd 16
816.2.cj.c.65.4 32 68.3 even 16
816.2.cj.c.113.1 32 68.67 odd 2
816.2.cj.c.113.4 32 204.203 even 2
867.2.i.b.158.2 32 17.6 odd 16
867.2.i.b.158.3 32 51.23 even 16
867.2.i.b.653.2 32 51.8 odd 8
867.2.i.b.653.3 32 17.8 even 8
867.2.i.c.224.2 32 17.5 odd 16
867.2.i.c.224.3 32 51.5 even 16
867.2.i.c.329.2 32 51.47 odd 4
867.2.i.c.329.3 32 17.13 even 4
867.2.i.d.224.2 32 17.12 odd 16
867.2.i.d.224.3 32 51.29 even 16
867.2.i.d.329.2 32 51.38 odd 4
867.2.i.d.329.3 32 17.4 even 4
867.2.i.f.131.2 32 51.44 even 16
867.2.i.f.131.3 32 17.10 odd 16
867.2.i.f.503.2 32 17.15 even 8
867.2.i.f.503.3 32 51.32 odd 8
867.2.i.g.131.2 32 51.41 even 16
867.2.i.g.131.3 32 17.7 odd 16
867.2.i.g.503.2 32 17.2 even 8
867.2.i.g.503.3 32 51.2 odd 8
867.2.i.h.65.2 32 51.14 even 16 inner
867.2.i.h.65.3 32 17.14 odd 16 inner
867.2.i.h.827.2 32 1.1 even 1 trivial
867.2.i.h.827.3 32 3.2 odd 2 inner
867.2.i.i.158.2 32 17.11 odd 16
867.2.i.i.158.3 32 51.11 even 16
867.2.i.i.653.2 32 51.26 odd 8
867.2.i.i.653.3 32 17.9 even 8