Properties

Label 867.2.i.d.224.2
Level $867$
Weight $2$
Character 867.224
Analytic conductor $6.923$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [867,2,Mod(65,867)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(867, base_ring=CyclotomicField(16))
 
chi = DirichletCharacter(H, H._module([8, 9]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("867.65");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 867 = 3 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 867.i (of order \(16\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.92302985525\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(4\) over \(\Q(\zeta_{16})\)
Twist minimal: no (minimal twist has level 51)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 224.2
Character \(\chi\) \(=\) 867.224
Dual form 867.2.i.d.329.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.503008 - 1.21437i) q^{2} +(1.11133 + 1.32851i) q^{3} +(0.192538 - 0.192538i) q^{4} +(0.116989 - 0.0781694i) q^{5} +(1.05430 - 2.01782i) q^{6} +(0.982905 - 1.47102i) q^{7} +(-2.75940 - 1.14298i) q^{8} +(-0.529896 + 2.95283i) q^{9} +(-0.153773 - 0.102748i) q^{10} +(3.57185 - 0.710485i) q^{11} +(0.469762 + 0.0418163i) q^{12} +(-0.0825311 - 0.0825311i) q^{13} +(-2.28077 - 0.453674i) q^{14} +(0.233862 + 0.0685492i) q^{15} +3.38128i q^{16} +(3.85237 - 0.841809i) q^{18} +(6.20278 - 2.56928i) q^{19} +(0.00747420 - 0.0375753i) q^{20} +(3.04660 - 0.328986i) q^{21} +(-2.65946 - 3.98016i) q^{22} +(-1.22507 - 6.15884i) q^{23} +(-1.54813 - 4.93613i) q^{24} +(-1.90584 + 4.60111i) q^{25} +(-0.0587094 + 0.141737i) q^{26} +(-4.51176 + 2.57759i) q^{27} +(-0.0939809 - 0.472474i) q^{28} +(2.18690 + 3.27292i) q^{29} +(-0.0343905 - 0.318476i) q^{30} +(1.74682 - 8.78185i) q^{31} +(-1.41268 + 0.585150i) q^{32} +(4.91339 + 3.95567i) q^{33} -0.248926i q^{35} +(0.466507 + 0.670557i) q^{36} +(-0.365247 - 0.0726522i) q^{37} +(-6.24010 - 6.24010i) q^{38} +(0.0179245 - 0.201363i) q^{39} +(-0.412165 + 0.0819847i) q^{40} +(3.65643 + 2.44315i) q^{41} +(-1.93198 - 3.53422i) q^{42} +(-1.94823 - 0.806985i) q^{43} +(0.550921 - 0.824512i) q^{44} +(0.168829 + 0.386870i) q^{45} +(-6.86288 + 4.58563i) q^{46} +(2.11141 - 2.11141i) q^{47} +(-4.49207 + 3.75771i) q^{48} +(1.48098 + 3.57541i) q^{49} +6.54610 q^{50} -0.0317807 q^{52} +(-2.45113 - 5.91755i) q^{53} +(5.39960 + 4.18240i) q^{54} +(0.362328 - 0.362328i) q^{55} +(-4.39357 + 2.93569i) q^{56} +(10.3066 + 5.38517i) q^{57} +(2.87451 - 4.30201i) q^{58} +(8.83540 + 3.65974i) q^{59} +(0.0582256 - 0.0318290i) q^{60} +(-3.30427 - 2.20784i) q^{61} +(-11.5431 + 2.29606i) q^{62} +(3.82284 + 3.68184i) q^{63} +(6.20303 + 6.20303i) q^{64} +(-0.0161066 - 0.00320381i) q^{65} +(2.33217 - 7.95640i) q^{66} +5.81844i q^{67} +(6.82064 - 8.47201i) q^{69} +(-0.302288 + 0.125212i) q^{70} +(2.53537 - 12.7462i) q^{71} +(4.83722 - 7.54238i) q^{72} +(2.48206 + 3.71467i) q^{73} +(0.0954957 + 0.480089i) q^{74} +(-8.23065 + 2.58141i) q^{75} +(0.699588 - 1.68895i) q^{76} +(2.46565 - 5.95260i) q^{77} +(-0.253545 + 0.0795203i) q^{78} +(0.477177 + 2.39893i) q^{79} +(0.264312 + 0.395572i) q^{80} +(-8.43842 - 3.12939i) q^{81} +(1.12767 - 5.66918i) q^{82} +(-5.11813 + 2.12000i) q^{83} +(0.523244 - 0.649928i) q^{84} +2.77180i q^{86} +(-1.91776 + 6.54262i) q^{87} +(-10.6682 - 2.12204i) q^{88} +(2.89760 + 2.89760i) q^{89} +(0.384880 - 0.399620i) q^{90} +(-0.202525 + 0.0402848i) q^{91} +(-1.42168 - 0.949937i) q^{92} +(13.6081 - 7.43885i) q^{93} +(-3.62608 - 1.50197i) q^{94} +(0.524817 - 0.785444i) q^{95} +(-2.34733 - 1.22647i) q^{96} +(-3.81409 + 2.54849i) q^{97} +(3.59692 - 3.59692i) q^{98} +(0.205233 + 10.9235i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 16 q^{4} + 8 q^{9} + 32 q^{10} + 24 q^{12} - 16 q^{13} - 16 q^{15} + 16 q^{18} + 16 q^{19} + 16 q^{21} - 48 q^{22} + 8 q^{24} - 16 q^{25} - 48 q^{27} - 64 q^{28} - 8 q^{30} + 16 q^{31} - 8 q^{36}+ \cdots + 96 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/867\mathbb{Z}\right)^\times\).

\(n\) \(290\) \(292\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.503008 1.21437i −0.355681 0.858689i −0.995897 0.0904942i \(-0.971155\pi\)
0.640216 0.768195i \(-0.278845\pi\)
\(3\) 1.11133 + 1.32851i 0.641626 + 0.767018i
\(4\) 0.192538 0.192538i 0.0962690 0.0962690i
\(5\) 0.116989 0.0781694i 0.0523190 0.0349584i −0.529136 0.848537i \(-0.677484\pi\)
0.581455 + 0.813579i \(0.302484\pi\)
\(6\) 1.05430 2.01782i 0.430416 0.823770i
\(7\) 0.982905 1.47102i 0.371503 0.555994i −0.597868 0.801595i \(-0.703985\pi\)
0.969371 + 0.245601i \(0.0789853\pi\)
\(8\) −2.75940 1.14298i −0.975595 0.404105i
\(9\) −0.529896 + 2.95283i −0.176632 + 0.984277i
\(10\) −0.153773 0.102748i −0.0486272 0.0324917i
\(11\) 3.57185 0.710485i 1.07695 0.214219i 0.375419 0.926855i \(-0.377499\pi\)
0.701534 + 0.712636i \(0.252499\pi\)
\(12\) 0.469762 + 0.0418163i 0.135609 + 0.0120713i
\(13\) −0.0825311 0.0825311i −0.0228900 0.0228900i 0.695569 0.718459i \(-0.255152\pi\)
−0.718459 + 0.695569i \(0.755152\pi\)
\(14\) −2.28077 0.453674i −0.609562 0.121249i
\(15\) 0.233862 + 0.0685492i 0.0603829 + 0.0176993i
\(16\) 3.38128i 0.845320i
\(17\) 0 0
\(18\) 3.85237 0.841809i 0.908012 0.198416i
\(19\) 6.20278 2.56928i 1.42302 0.589432i 0.467399 0.884046i \(-0.345191\pi\)
0.955616 + 0.294614i \(0.0951910\pi\)
\(20\) 0.00747420 0.0375753i 0.00167128 0.00840210i
\(21\) 3.04660 0.328986i 0.664823 0.0717906i
\(22\) −2.65946 3.98016i −0.566999 0.848574i
\(23\) −1.22507 6.15884i −0.255444 1.28421i −0.869102 0.494633i \(-0.835302\pi\)
0.613657 0.789573i \(-0.289698\pi\)
\(24\) −1.54813 4.93613i −0.316012 1.00758i
\(25\) −1.90584 + 4.60111i −0.381168 + 0.920222i
\(26\) −0.0587094 + 0.141737i −0.0115139 + 0.0277969i
\(27\) −4.51176 + 2.57759i −0.868289 + 0.496058i
\(28\) −0.0939809 0.472474i −0.0177607 0.0892891i
\(29\) 2.18690 + 3.27292i 0.406097 + 0.607766i 0.976997 0.213253i \(-0.0684058\pi\)
−0.570900 + 0.821019i \(0.693406\pi\)
\(30\) −0.0343905 0.318476i −0.00627881 0.0581455i
\(31\) 1.74682 8.78185i 0.313738 1.57727i −0.426224 0.904618i \(-0.640156\pi\)
0.739962 0.672649i \(-0.234844\pi\)
\(32\) −1.41268 + 0.585150i −0.249728 + 0.103441i
\(33\) 4.91339 + 3.95567i 0.855311 + 0.688593i
\(34\) 0 0
\(35\) 0.248926i 0.0420762i
\(36\) 0.466507 + 0.670557i 0.0777511 + 0.111760i
\(37\) −0.365247 0.0726522i −0.0600462 0.0119439i 0.164976 0.986298i \(-0.447245\pi\)
−0.225022 + 0.974354i \(0.572245\pi\)
\(38\) −6.24010 6.24010i −1.01228 1.01228i
\(39\) 0.0179245 0.201363i 0.00287022 0.0322439i
\(40\) −0.412165 + 0.0819847i −0.0651690 + 0.0129629i
\(41\) 3.65643 + 2.44315i 0.571039 + 0.381556i 0.807307 0.590132i \(-0.200924\pi\)
−0.236268 + 0.971688i \(0.575924\pi\)
\(42\) −1.93198 3.53422i −0.298110 0.545341i
\(43\) −1.94823 0.806985i −0.297103 0.123064i 0.229153 0.973390i \(-0.426404\pi\)
−0.526256 + 0.850326i \(0.676404\pi\)
\(44\) 0.550921 0.824512i 0.0830545 0.124300i
\(45\) 0.168829 + 0.386870i 0.0251676 + 0.0576711i
\(46\) −6.86288 + 4.58563i −1.01188 + 0.676114i
\(47\) 2.11141 2.11141i 0.307980 0.307980i −0.536145 0.844126i \(-0.680120\pi\)
0.844126 + 0.536145i \(0.180120\pi\)
\(48\) −4.49207 + 3.75771i −0.648375 + 0.542379i
\(49\) 1.48098 + 3.57541i 0.211569 + 0.510773i
\(50\) 6.54610 0.925758
\(51\) 0 0
\(52\) −0.0317807 −0.00440720
\(53\) −2.45113 5.91755i −0.336688 0.812837i −0.998029 0.0627519i \(-0.980012\pi\)
0.661341 0.750085i \(-0.269988\pi\)
\(54\) 5.39960 + 4.18240i 0.734793 + 0.569152i
\(55\) 0.362328 0.362328i 0.0488563 0.0488563i
\(56\) −4.39357 + 2.93569i −0.587116 + 0.392298i
\(57\) 10.3066 + 5.38517i 1.36515 + 0.713283i
\(58\) 2.87451 4.30201i 0.377442 0.564881i
\(59\) 8.83540 + 3.65974i 1.15027 + 0.476458i 0.874624 0.484801i \(-0.161108\pi\)
0.275647 + 0.961259i \(0.411108\pi\)
\(60\) 0.0582256 0.0318290i 0.00751690 0.00410910i
\(61\) −3.30427 2.20784i −0.423068 0.282685i 0.325756 0.945454i \(-0.394381\pi\)
−0.748824 + 0.662769i \(0.769381\pi\)
\(62\) −11.5431 + 2.29606i −1.46597 + 0.291600i
\(63\) 3.82284 + 3.68184i 0.481632 + 0.463868i
\(64\) 6.20303 + 6.20303i 0.775378 + 0.775378i
\(65\) −0.0161066 0.00320381i −0.00199778 0.000397383i
\(66\) 2.33217 7.95640i 0.287070 0.979365i
\(67\) 5.81844i 0.710836i 0.934707 + 0.355418i \(0.115661\pi\)
−0.934707 + 0.355418i \(0.884339\pi\)
\(68\) 0 0
\(69\) 6.82064 8.47201i 0.821109 1.01991i
\(70\) −0.302288 + 0.125212i −0.0361303 + 0.0149657i
\(71\) 2.53537 12.7462i 0.300893 1.51269i −0.473959 0.880547i \(-0.657175\pi\)
0.774851 0.632143i \(-0.217825\pi\)
\(72\) 4.83722 7.54238i 0.570072 0.888878i
\(73\) 2.48206 + 3.71467i 0.290504 + 0.434769i 0.947801 0.318862i \(-0.103301\pi\)
−0.657298 + 0.753631i \(0.728301\pi\)
\(74\) 0.0954957 + 0.480089i 0.0111012 + 0.0558093i
\(75\) −8.23065 + 2.58141i −0.950394 + 0.298075i
\(76\) 0.699588 1.68895i 0.0802482 0.193736i
\(77\) 2.46565 5.95260i 0.280987 0.678362i
\(78\) −0.253545 + 0.0795203i −0.0287083 + 0.00900390i
\(79\) 0.477177 + 2.39893i 0.0536866 + 0.269901i 0.998300 0.0582845i \(-0.0185630\pi\)
−0.944613 + 0.328185i \(0.893563\pi\)
\(80\) 0.264312 + 0.395572i 0.0295510 + 0.0442262i
\(81\) −8.43842 3.12939i −0.937602 0.347710i
\(82\) 1.12767 5.66918i 0.124530 0.626057i
\(83\) −5.11813 + 2.12000i −0.561788 + 0.232700i −0.645461 0.763793i \(-0.723335\pi\)
0.0836731 + 0.996493i \(0.473335\pi\)
\(84\) 0.523244 0.649928i 0.0570906 0.0709130i
\(85\) 0 0
\(86\) 2.77180i 0.298890i
\(87\) −1.91776 + 6.54262i −0.205605 + 0.701442i
\(88\) −10.6682 2.12204i −1.13724 0.226210i
\(89\) 2.89760 + 2.89760i 0.307145 + 0.307145i 0.843801 0.536656i \(-0.180313\pi\)
−0.536656 + 0.843801i \(0.680313\pi\)
\(90\) 0.384880 0.399620i 0.0405699 0.0421236i
\(91\) −0.202525 + 0.0402848i −0.0212304 + 0.00422299i
\(92\) −1.42168 0.949937i −0.148221 0.0990378i
\(93\) 13.6081 7.43885i 1.41109 0.771373i
\(94\) −3.62608 1.50197i −0.374002 0.154917i
\(95\) 0.524817 0.785444i 0.0538451 0.0805849i
\(96\) −2.34733 1.22647i −0.239573 0.125176i
\(97\) −3.81409 + 2.54849i −0.387262 + 0.258760i −0.733926 0.679229i \(-0.762314\pi\)
0.346664 + 0.937989i \(0.387314\pi\)
\(98\) 3.59692 3.59692i 0.363344 0.363344i
\(99\) 0.205233 + 10.9235i 0.0206267 + 1.09786i
\(100\) 0.518941 + 1.25283i 0.0518941 + 0.125283i
\(101\) −5.06729 −0.504214 −0.252107 0.967699i \(-0.581123\pi\)
−0.252107 + 0.967699i \(0.581123\pi\)
\(102\) 0 0
\(103\) −15.9760 −1.57416 −0.787080 0.616851i \(-0.788408\pi\)
−0.787080 + 0.616851i \(0.788408\pi\)
\(104\) 0.133405 + 0.322068i 0.0130814 + 0.0315813i
\(105\) 0.330701 0.276639i 0.0322732 0.0269972i
\(106\) −5.95315 + 5.95315i −0.578221 + 0.578221i
\(107\) −1.13291 + 0.756986i −0.109522 + 0.0731806i −0.609125 0.793074i \(-0.708479\pi\)
0.499603 + 0.866255i \(0.333479\pi\)
\(108\) −0.372402 + 1.36497i −0.0358344 + 0.131344i
\(109\) −6.37698 + 9.54382i −0.610804 + 0.914132i −0.999975 0.00703284i \(-0.997761\pi\)
0.389171 + 0.921165i \(0.372761\pi\)
\(110\) −0.622254 0.257746i −0.0593296 0.0245751i
\(111\) −0.309390 0.565976i −0.0293660 0.0537201i
\(112\) 4.97393 + 3.32347i 0.469992 + 0.314039i
\(113\) 13.2910 2.64375i 1.25031 0.248703i 0.474834 0.880076i \(-0.342508\pi\)
0.775479 + 0.631373i \(0.217508\pi\)
\(114\) 1.35525 15.2249i 0.126931 1.42594i
\(115\) −0.624752 0.624752i −0.0582584 0.0582584i
\(116\) 1.05122 + 0.209101i 0.0976035 + 0.0194146i
\(117\) 0.287433 0.199968i 0.0265732 0.0184870i
\(118\) 12.5703i 1.15719i
\(119\) 0 0
\(120\) −0.566968 0.456454i −0.0517569 0.0416684i
\(121\) 2.09064 0.865970i 0.190058 0.0787246i
\(122\) −1.01906 + 5.12316i −0.0922614 + 0.463829i
\(123\) 0.817741 + 7.57276i 0.0737332 + 0.682813i
\(124\) −1.35451 2.02717i −0.121639 0.182045i
\(125\) 0.273951 + 1.37724i 0.0245029 + 0.123184i
\(126\) 2.54819 6.49433i 0.227011 0.578561i
\(127\) −3.78439 + 9.13631i −0.335810 + 0.810717i 0.662299 + 0.749240i \(0.269581\pi\)
−0.998109 + 0.0614768i \(0.980419\pi\)
\(128\) 3.24229 7.82759i 0.286581 0.691867i
\(129\) −1.09304 3.48508i −0.0962367 0.306844i
\(130\) 0.00421116 + 0.0211709i 0.000369343 + 0.00185681i
\(131\) −7.23868 10.8334i −0.632446 0.946523i −0.999864 0.0164667i \(-0.994758\pi\)
0.367418 0.930056i \(-0.380242\pi\)
\(132\) 1.70763 0.184398i 0.148630 0.0160497i
\(133\) 2.31728 11.6498i 0.200934 1.01016i
\(134\) 7.06574 2.92672i 0.610387 0.252830i
\(135\) −0.326337 + 0.654231i −0.0280866 + 0.0563073i
\(136\) 0 0
\(137\) 3.20492i 0.273815i −0.990584 0.136907i \(-0.956284\pi\)
0.990584 0.136907i \(-0.0437163\pi\)
\(138\) −13.7190 4.02129i −1.16784 0.342315i
\(139\) −4.99657 0.993879i −0.423803 0.0842997i −0.0214191 0.999771i \(-0.506818\pi\)
−0.402384 + 0.915471i \(0.631818\pi\)
\(140\) −0.0479277 0.0479277i −0.00405063 0.00405063i
\(141\) 5.15150 + 0.458565i 0.433834 + 0.0386181i
\(142\) −16.7539 + 3.33255i −1.40595 + 0.279661i
\(143\) −0.353426 0.236152i −0.0295550 0.0197480i
\(144\) −9.98434 1.79173i −0.832029 0.149311i
\(145\) 0.511685 + 0.211947i 0.0424931 + 0.0176012i
\(146\) 3.26248 4.88265i 0.270005 0.404091i
\(147\) −3.10412 + 5.94096i −0.256024 + 0.490003i
\(148\) −0.0843122 + 0.0563356i −0.00693042 + 0.00463076i
\(149\) −15.7137 + 15.7137i −1.28731 + 1.28731i −0.350902 + 0.936412i \(0.614125\pi\)
−0.936412 + 0.350902i \(0.885875\pi\)
\(150\) 7.27487 + 8.69658i 0.593990 + 0.710073i
\(151\) 1.57857 + 3.81101i 0.128462 + 0.310135i 0.975004 0.222187i \(-0.0713195\pi\)
−0.846542 + 0.532322i \(0.821319\pi\)
\(152\) −20.0526 −1.62648
\(153\) 0 0
\(154\) −8.46890 −0.682443
\(155\) −0.482114 1.16393i −0.0387243 0.0934887i
\(156\) −0.0353189 0.0422212i −0.00282777 0.00338040i
\(157\) −9.87094 + 9.87094i −0.787787 + 0.787787i −0.981131 0.193344i \(-0.938067\pi\)
0.193344 + 0.981131i \(0.438067\pi\)
\(158\) 2.67316 1.78615i 0.212665 0.142098i
\(159\) 5.13753 9.83270i 0.407433 0.779784i
\(160\) −0.119526 + 0.178884i −0.00944940 + 0.0141420i
\(161\) −10.2639 4.25145i −0.808909 0.335061i
\(162\) 0.444363 + 11.8215i 0.0349125 + 0.928782i
\(163\) 9.27442 + 6.19697i 0.726429 + 0.485384i 0.862973 0.505250i \(-0.168600\pi\)
−0.136544 + 0.990634i \(0.543600\pi\)
\(164\) 1.17440 0.233603i 0.0917053 0.0182413i
\(165\) 0.884023 + 0.0786920i 0.0688211 + 0.00612617i
\(166\) 5.14893 + 5.14893i 0.399634 + 0.399634i
\(167\) 2.05961 + 0.409682i 0.159377 + 0.0317021i 0.274134 0.961692i \(-0.411609\pi\)
−0.114757 + 0.993394i \(0.536609\pi\)
\(168\) −8.78281 2.57440i −0.677609 0.198619i
\(169\) 12.9864i 0.998952i
\(170\) 0 0
\(171\) 4.29981 + 19.6772i 0.328815 + 1.50475i
\(172\) −0.530484 + 0.219734i −0.0404490 + 0.0167545i
\(173\) −2.40243 + 12.0778i −0.182653 + 0.918260i 0.775356 + 0.631524i \(0.217570\pi\)
−0.958010 + 0.286736i \(0.907430\pi\)
\(174\) 8.90980 0.962121i 0.675450 0.0729382i
\(175\) 4.89506 + 7.32598i 0.370032 + 0.553792i
\(176\) 2.40235 + 12.0774i 0.181084 + 0.910369i
\(177\) 4.95702 + 15.8051i 0.372592 + 1.18799i
\(178\) 2.06124 4.97628i 0.154497 0.372988i
\(179\) −7.07462 + 17.0796i −0.528782 + 1.27659i 0.403540 + 0.914962i \(0.367780\pi\)
−0.932322 + 0.361630i \(0.882220\pi\)
\(180\) 0.106993 + 0.0419811i 0.00797479 + 0.00312908i
\(181\) −0.415290 2.08780i −0.0308683 0.155185i 0.962277 0.272071i \(-0.0877087\pi\)
−0.993145 + 0.116886i \(0.962709\pi\)
\(182\) 0.150792 + 0.225677i 0.0111775 + 0.0167283i
\(183\) −0.738981 6.84340i −0.0546271 0.505879i
\(184\) −3.65898 + 18.3949i −0.269743 + 1.35609i
\(185\) −0.0484090 + 0.0200517i −0.00355910 + 0.00147423i
\(186\) −15.8785 12.7834i −1.16427 0.937328i
\(187\) 0 0
\(188\) 0.813051i 0.0592979i
\(189\) −0.642943 + 9.17043i −0.0467672 + 0.667050i
\(190\) −1.21781 0.242237i −0.0883490 0.0175737i
\(191\) 12.2604 + 12.2604i 0.887130 + 0.887130i 0.994247 0.107116i \(-0.0341617\pi\)
−0.107116 + 0.994247i \(0.534162\pi\)
\(192\) −1.34720 + 15.1344i −0.0972259 + 1.09223i
\(193\) −15.9244 + 3.16756i −1.14626 + 0.228006i −0.731447 0.681898i \(-0.761155\pi\)
−0.414818 + 0.909904i \(0.636155\pi\)
\(194\) 5.01333 + 3.34980i 0.359936 + 0.240501i
\(195\) −0.0136435 0.0249583i −0.000977028 0.00178730i
\(196\) 0.973548 + 0.403257i 0.0695391 + 0.0288040i
\(197\) 4.36175 6.52782i 0.310762 0.465088i −0.642908 0.765944i \(-0.722272\pi\)
0.953670 + 0.300855i \(0.0972722\pi\)
\(198\) 13.1620 5.74386i 0.935382 0.408199i
\(199\) 10.6424 7.11102i 0.754419 0.504087i −0.117899 0.993026i \(-0.537616\pi\)
0.872318 + 0.488939i \(0.162616\pi\)
\(200\) 10.5180 10.5180i 0.743732 0.743732i
\(201\) −7.72988 + 6.46620i −0.545224 + 0.456091i
\(202\) 2.54889 + 6.15356i 0.179339 + 0.432963i
\(203\) 6.96405 0.488780
\(204\) 0 0
\(205\) 0.618741 0.0432147
\(206\) 8.03605 + 19.4007i 0.559898 + 1.35171i
\(207\) 18.8352 0.353877i 1.30913 0.0245962i
\(208\) 0.279061 0.279061i 0.0193494 0.0193494i
\(209\) 20.3300 13.5840i 1.40625 0.939628i
\(210\) −0.502287 0.262442i −0.0346611 0.0181102i
\(211\) 2.84458 4.25722i 0.195829 0.293079i −0.720540 0.693413i \(-0.756106\pi\)
0.916369 + 0.400334i \(0.131106\pi\)
\(212\) −1.61129 0.667417i −0.110664 0.0458384i
\(213\) 19.7511 10.7969i 1.35332 0.739792i
\(214\) 1.48912 + 0.995000i 0.101794 + 0.0680168i
\(215\) −0.291003 + 0.0578841i −0.0198462 + 0.00394766i
\(216\) 15.3959 1.95575i 1.04756 0.133072i
\(217\) −11.2013 11.2013i −0.760395 0.760395i
\(218\) 14.7974 + 2.94339i 1.00221 + 0.199351i
\(219\) −2.17660 + 7.42568i −0.147081 + 0.501781i
\(220\) 0.139524i 0.00940669i
\(221\) 0 0
\(222\) −0.531678 + 0.660405i −0.0356839 + 0.0443235i
\(223\) −0.174491 + 0.0722764i −0.0116848 + 0.00483999i −0.388518 0.921441i \(-0.627013\pi\)
0.376833 + 0.926281i \(0.377013\pi\)
\(224\) −0.527759 + 2.65322i −0.0352624 + 0.177276i
\(225\) −12.5764 8.06574i −0.838426 0.537716i
\(226\) −9.89597 14.8104i −0.658270 0.985171i
\(227\) 0.415583 + 2.08928i 0.0275832 + 0.138670i 0.992123 0.125267i \(-0.0399788\pi\)
−0.964540 + 0.263937i \(0.914979\pi\)
\(228\) 3.02127 0.947572i 0.200088 0.0627545i
\(229\) −6.61427 + 15.9683i −0.437084 + 1.05521i 0.539868 + 0.841750i \(0.318474\pi\)
−0.976951 + 0.213463i \(0.931526\pi\)
\(230\) −0.444424 + 1.07293i −0.0293045 + 0.0707472i
\(231\) 10.6483 3.33965i 0.700604 0.219733i
\(232\) −2.29363 11.5309i −0.150584 0.757039i
\(233\) 5.44021 + 8.14185i 0.356400 + 0.533390i 0.965738 0.259521i \(-0.0835645\pi\)
−0.609337 + 0.792911i \(0.708565\pi\)
\(234\) −0.387416 0.248465i −0.0253262 0.0162427i
\(235\) 0.0819634 0.412058i 0.00534670 0.0268797i
\(236\) 2.40579 0.996510i 0.156603 0.0648673i
\(237\) −2.65671 + 3.29993i −0.172572 + 0.214354i
\(238\) 0 0
\(239\) 22.4367i 1.45131i 0.688059 + 0.725654i \(0.258463\pi\)
−0.688059 + 0.725654i \(0.741537\pi\)
\(240\) −0.231784 + 0.790753i −0.0149616 + 0.0510429i
\(241\) −0.397704 0.0791082i −0.0256184 0.00509581i 0.182265 0.983250i \(-0.441657\pi\)
−0.207883 + 0.978154i \(0.566657\pi\)
\(242\) −2.10322 2.10322i −0.135200 0.135200i
\(243\) −5.22043 14.6883i −0.334891 0.942257i
\(244\) −1.06129 + 0.211104i −0.0679421 + 0.0135145i
\(245\) 0.452746 + 0.302515i 0.0289249 + 0.0193270i
\(246\) 8.78480 4.80220i 0.560098 0.306177i
\(247\) −0.723968 0.299877i −0.0460650 0.0190807i
\(248\) −14.8577 + 22.2360i −0.943462 + 1.41199i
\(249\) −8.50438 4.44349i −0.538943 0.281595i
\(250\) 1.53468 1.02544i 0.0970619 0.0648547i
\(251\) −0.749951 + 0.749951i −0.0473365 + 0.0473365i −0.730379 0.683042i \(-0.760656\pi\)
0.683042 + 0.730379i \(0.260656\pi\)
\(252\) 1.44493 0.0271476i 0.0910223 0.00171014i
\(253\) −8.75152 21.1280i −0.550203 1.32831i
\(254\) 12.9984 0.815594
\(255\) 0 0
\(256\) 6.40833 0.400521
\(257\) 7.70425 + 18.5997i 0.480578 + 1.16022i 0.959335 + 0.282270i \(0.0910874\pi\)
−0.478757 + 0.877947i \(0.658913\pi\)
\(258\) −3.68237 + 3.08038i −0.229254 + 0.191776i
\(259\) −0.465876 + 0.465876i −0.0289481 + 0.0289481i
\(260\) −0.00371799 + 0.00248428i −0.000230580 + 0.000154069i
\(261\) −10.8232 + 4.72323i −0.669940 + 0.292360i
\(262\) −9.51469 + 14.2397i −0.587820 + 0.879734i
\(263\) −5.10116 2.11297i −0.314551 0.130291i 0.219822 0.975540i \(-0.429452\pi\)
−0.534373 + 0.845249i \(0.679452\pi\)
\(264\) −9.03675 16.5312i −0.556173 1.01742i
\(265\) −0.749325 0.500683i −0.0460307 0.0307567i
\(266\) −15.3127 + 3.04589i −0.938884 + 0.186756i
\(267\) −0.629315 + 7.06969i −0.0385134 + 0.432658i
\(268\) 1.12027 + 1.12027i 0.0684314 + 0.0684314i
\(269\) −8.96401 1.78305i −0.546545 0.108715i −0.0859079 0.996303i \(-0.527379\pi\)
−0.460637 + 0.887588i \(0.652379\pi\)
\(270\) 0.958628 + 0.0672099i 0.0583403 + 0.00409026i
\(271\) 2.64822i 0.160868i −0.996760 0.0804339i \(-0.974369\pi\)
0.996760 0.0804339i \(-0.0256306\pi\)
\(272\) 0 0
\(273\) −0.278591 0.224288i −0.0168611 0.0135745i
\(274\) −3.89196 + 1.61210i −0.235122 + 0.0973906i
\(275\) −3.53836 + 17.7885i −0.213371 + 1.07269i
\(276\) −0.317951 2.94442i −0.0191384 0.177233i
\(277\) 11.4945 + 17.2028i 0.690640 + 1.03362i 0.996666 + 0.0815922i \(0.0260005\pi\)
−0.306026 + 0.952023i \(0.598999\pi\)
\(278\) 1.30638 + 6.56761i 0.0783514 + 0.393899i
\(279\) 25.0057 + 9.81153i 1.49705 + 0.587401i
\(280\) −0.284517 + 0.686886i −0.0170032 + 0.0410493i
\(281\) −3.93729 + 9.50546i −0.234879 + 0.567048i −0.996739 0.0806938i \(-0.974286\pi\)
0.761860 + 0.647742i \(0.224286\pi\)
\(282\) −2.03438 6.48648i −0.121145 0.386264i
\(283\) 2.50549 + 12.5960i 0.148936 + 0.748753i 0.980990 + 0.194058i \(0.0621650\pi\)
−0.832054 + 0.554695i \(0.812835\pi\)
\(284\) −1.96596 2.94227i −0.116659 0.174592i
\(285\) 1.62672 0.175660i 0.0963584 0.0104052i
\(286\) −0.108999 + 0.547976i −0.00644525 + 0.0324025i
\(287\) 7.18785 2.97730i 0.424285 0.175745i
\(288\) −0.979277 4.48146i −0.0577044 0.264073i
\(289\) 0 0
\(290\) 0.727985i 0.0427488i
\(291\) −7.62441 2.23485i −0.446951 0.131009i
\(292\) 1.19311 + 0.237324i 0.0698213 + 0.0138883i
\(293\) −0.797696 0.797696i −0.0466019 0.0466019i 0.683422 0.730024i \(-0.260491\pi\)
−0.730024 + 0.683422i \(0.760491\pi\)
\(294\) 8.77592 + 0.781196i 0.511822 + 0.0455603i
\(295\) 1.31972 0.262509i 0.0768372 0.0152839i
\(296\) 0.924822 + 0.617947i 0.0537542 + 0.0359174i
\(297\) −14.2840 + 12.4123i −0.828842 + 0.720235i
\(298\) 26.9863 + 11.1781i 1.56327 + 0.647530i
\(299\) −0.407189 + 0.609402i −0.0235484 + 0.0352426i
\(300\) −1.08769 + 2.08173i −0.0627980 + 0.120189i
\(301\) −3.10202 + 2.07270i −0.178797 + 0.119469i
\(302\) 3.83394 3.83394i 0.220618 0.220618i
\(303\) −5.63142 6.73196i −0.323517 0.386741i
\(304\) 8.68744 + 20.9733i 0.498259 + 1.20290i
\(305\) −0.559148 −0.0320167
\(306\) 0 0
\(307\) −19.5814 −1.11757 −0.558785 0.829312i \(-0.688732\pi\)
−0.558785 + 0.829312i \(0.688732\pi\)
\(308\) −0.671371 1.62083i −0.0382549 0.0923555i
\(309\) −17.7546 21.2243i −1.01002 1.20741i
\(310\) −1.17093 + 1.17093i −0.0665042 + 0.0665042i
\(311\) −24.4244 + 16.3199i −1.38498 + 0.925415i −0.384985 + 0.922923i \(0.625793\pi\)
−0.999997 + 0.00249223i \(0.999207\pi\)
\(312\) −0.279615 + 0.535153i −0.0158301 + 0.0302971i
\(313\) 9.90044 14.8171i 0.559606 0.837509i −0.438519 0.898722i \(-0.644497\pi\)
0.998125 + 0.0612125i \(0.0194967\pi\)
\(314\) 16.9521 + 7.02180i 0.956664 + 0.396263i
\(315\) 0.735036 + 0.131905i 0.0414146 + 0.00743200i
\(316\) 0.553759 + 0.370010i 0.0311514 + 0.0208147i
\(317\) −13.8497 + 2.75488i −0.777877 + 0.154729i −0.568033 0.823006i \(-0.692296\pi\)
−0.209844 + 0.977735i \(0.567296\pi\)
\(318\) −14.5247 1.29293i −0.814507 0.0725040i
\(319\) 10.1366 + 10.1366i 0.567542 + 0.567542i
\(320\) 1.21057 + 0.240798i 0.0676730 + 0.0134610i
\(321\) −2.26470 0.663825i −0.126403 0.0370511i
\(322\) 14.6027i 0.813775i
\(323\) 0 0
\(324\) −2.22724 + 1.02219i −0.123736 + 0.0567883i
\(325\) 0.537026 0.222443i 0.0297888 0.0123389i
\(326\) 2.86030 14.3797i 0.158417 0.796418i
\(327\) −19.7660 + 2.13442i −1.09306 + 0.118034i
\(328\) −7.29708 10.9209i −0.402914 0.603003i
\(329\) −1.03061 5.18123i −0.0568194 0.285651i
\(330\) −0.349110 1.11311i −0.0192179 0.0612749i
\(331\) 2.76796 6.68245i 0.152141 0.367301i −0.829372 0.558697i \(-0.811302\pi\)
0.981513 + 0.191396i \(0.0613015\pi\)
\(332\) −0.577254 + 1.39362i −0.0316810 + 0.0764846i
\(333\) 0.408072 1.04001i 0.0223622 0.0569924i
\(334\) −0.538496 2.70720i −0.0294652 0.148131i
\(335\) 0.454824 + 0.680692i 0.0248497 + 0.0371902i
\(336\) 1.11239 + 10.3014i 0.0606860 + 0.561988i
\(337\) 2.60797 13.1112i 0.142065 0.714210i −0.842431 0.538804i \(-0.818876\pi\)
0.984496 0.175406i \(-0.0561238\pi\)
\(338\) −15.7703 + 6.53226i −0.857789 + 0.355308i
\(339\) 18.2829 + 14.7192i 0.992993 + 0.799438i
\(340\) 0 0
\(341\) 32.6085i 1.76585i
\(342\) 21.7326 15.1194i 1.17516 0.817561i
\(343\) 18.8615 + 3.75178i 1.01842 + 0.202577i
\(344\) 4.45359 + 4.45359i 0.240121 + 0.240121i
\(345\) 0.135686 1.52430i 0.00730511 0.0820653i
\(346\) 15.8754 3.15781i 0.853466 0.169765i
\(347\) −27.8318 18.5966i −1.49409 0.998320i −0.990967 0.134106i \(-0.957184\pi\)
−0.503124 0.864214i \(-0.667816\pi\)
\(348\) 0.890460 + 1.62894i 0.0477337 + 0.0873205i
\(349\) −25.7122 10.6503i −1.37634 0.570099i −0.432840 0.901471i \(-0.642489\pi\)
−0.943500 + 0.331372i \(0.892489\pi\)
\(350\) 6.43419 9.62945i 0.343922 0.514715i
\(351\) 0.585093 + 0.159629i 0.0312299 + 0.00852039i
\(352\) −4.63013 + 3.09375i −0.246787 + 0.164898i
\(353\) −5.10785 + 5.10785i −0.271864 + 0.271864i −0.829850 0.557986i \(-0.811574\pi\)
0.557986 + 0.829850i \(0.311574\pi\)
\(354\) 16.6998 13.9698i 0.887586 0.742484i
\(355\) −0.699750 1.68935i −0.0371389 0.0896611i
\(356\) 1.11580 0.0591371
\(357\) 0 0
\(358\) 24.2996 1.28427
\(359\) −10.5450 25.4579i −0.556544 1.34362i −0.912486 0.409108i \(-0.865840\pi\)
0.355942 0.934508i \(-0.384160\pi\)
\(360\) −0.0236823 1.26050i −0.00124817 0.0664340i
\(361\) 18.4383 18.4383i 0.970437 0.970437i
\(362\) −2.32647 + 1.55450i −0.122277 + 0.0817026i
\(363\) 3.47384 + 1.81506i 0.182329 + 0.0952660i
\(364\) −0.0312374 + 0.0467501i −0.00163729 + 0.00245037i
\(365\) 0.580747 + 0.240553i 0.0303977 + 0.0125911i
\(366\) −7.93870 + 4.33968i −0.414963 + 0.226839i
\(367\) −9.34048 6.24111i −0.487569 0.325783i 0.287370 0.957820i \(-0.407219\pi\)
−0.774939 + 0.632037i \(0.782219\pi\)
\(368\) 20.8247 4.14230i 1.08556 0.215932i
\(369\) −9.15174 + 9.50221i −0.476420 + 0.494665i
\(370\) 0.0487002 + 0.0487002i 0.00253180 + 0.00253180i
\(371\) −11.1141 2.21072i −0.577013 0.114775i
\(372\) 1.18781 4.05234i 0.0615853 0.210104i
\(373\) 5.50325i 0.284948i −0.989799 0.142474i \(-0.954494\pi\)
0.989799 0.142474i \(-0.0455057\pi\)
\(374\) 0 0
\(375\) −1.52524 + 1.89452i −0.0787630 + 0.0978326i
\(376\) −8.23951 + 3.41292i −0.424920 + 0.176008i
\(377\) 0.0896309 0.450605i 0.00461623 0.0232073i
\(378\) 11.4597 3.83203i 0.589423 0.197098i
\(379\) 2.92616 + 4.37931i 0.150307 + 0.224950i 0.898981 0.437989i \(-0.144309\pi\)
−0.748674 + 0.662939i \(0.769309\pi\)
\(380\) −0.0501806 0.252275i −0.00257421 0.0129414i
\(381\) −16.3434 + 5.12584i −0.837298 + 0.262605i
\(382\) 8.72156 21.0557i 0.446234 1.07730i
\(383\) 8.09691 19.5477i 0.413733 0.998840i −0.570394 0.821372i \(-0.693209\pi\)
0.984127 0.177468i \(-0.0567907\pi\)
\(384\) 14.0023 4.39159i 0.714552 0.224108i
\(385\) −0.176858 0.889126i −0.00901352 0.0453140i
\(386\) 11.8567 + 17.7448i 0.603491 + 0.903188i
\(387\) 3.41525 5.32519i 0.173607 0.270694i
\(388\) −0.243675 + 1.22504i −0.0123707 + 0.0621919i
\(389\) 11.5459 4.78245i 0.585398 0.242480i −0.0702713 0.997528i \(-0.522387\pi\)
0.655669 + 0.755048i \(0.272387\pi\)
\(390\) −0.0234459 + 0.0291224i −0.00118723 + 0.00147467i
\(391\) 0 0
\(392\) 11.5587i 0.583804i
\(393\) 6.34783 21.6562i 0.320206 1.09241i
\(394\) −10.1212 2.01323i −0.509898 0.101425i
\(395\) 0.243347 + 0.243347i 0.0122441 + 0.0122441i
\(396\) 2.14271 + 2.06368i 0.107675 + 0.103704i
\(397\) 38.1521 7.58893i 1.91480 0.380877i 0.915053 0.403334i \(-0.132149\pi\)
0.999748 + 0.0224569i \(0.00714887\pi\)
\(398\) −13.9886 9.34689i −0.701186 0.468517i
\(399\) 18.0521 9.86819i 0.903738 0.494027i
\(400\) −15.5576 6.44418i −0.777881 0.322209i
\(401\) −15.1269 + 22.6390i −0.755401 + 1.13054i 0.232064 + 0.972701i \(0.425452\pi\)
−0.987465 + 0.157837i \(0.949548\pi\)
\(402\) 11.7406 + 6.13437i 0.585565 + 0.305955i
\(403\) −0.868943 + 0.580609i −0.0432851 + 0.0289222i
\(404\) −0.975645 + 0.975645i −0.0485401 + 0.0485401i
\(405\) −1.23182 + 0.293523i −0.0612098 + 0.0145853i
\(406\) −3.50297 8.45693i −0.173850 0.419710i
\(407\) −1.35623 −0.0672256
\(408\) 0 0
\(409\) 28.2231 1.39554 0.697770 0.716322i \(-0.254176\pi\)
0.697770 + 0.716322i \(0.254176\pi\)
\(410\) −0.311232 0.751380i −0.0153706 0.0371080i
\(411\) 4.25778 3.56172i 0.210021 0.175687i
\(412\) −3.07598 + 3.07598i −0.151543 + 0.151543i
\(413\) 14.0679 9.39988i 0.692237 0.462538i
\(414\) −9.90398 22.6948i −0.486754 1.11539i
\(415\) −0.433045 + 0.648098i −0.0212573 + 0.0318139i
\(416\) 0.164883 + 0.0682967i 0.00808405 + 0.00334852i
\(417\) −4.23245 7.74253i −0.207264 0.379154i
\(418\) −26.7222 17.8552i −1.30703 0.873326i
\(419\) 9.16095 1.82223i 0.447542 0.0890216i 0.0338260 0.999428i \(-0.489231\pi\)
0.413716 + 0.910406i \(0.364231\pi\)
\(420\) 0.0104092 0.116936i 0.000507915 0.00570589i
\(421\) −9.40617 9.40617i −0.458429 0.458429i 0.439711 0.898139i \(-0.355081\pi\)
−0.898139 + 0.439711i \(0.855081\pi\)
\(422\) −6.60069 1.31296i −0.321316 0.0639138i
\(423\) 5.11580 + 7.35345i 0.248739 + 0.357537i
\(424\) 19.1305i 0.929057i
\(425\) 0 0
\(426\) −23.0464 18.5542i −1.11660 0.898952i
\(427\) −6.49556 + 2.69055i −0.314342 + 0.130205i
\(428\) −0.0723795 + 0.363877i −0.00349860 + 0.0175886i
\(429\) −0.0790418 0.731973i −0.00381617 0.0353400i
\(430\) 0.216670 + 0.324269i 0.0104487 + 0.0156376i
\(431\) −2.85038 14.3298i −0.137298 0.690243i −0.986707 0.162508i \(-0.948042\pi\)
0.849409 0.527734i \(-0.176958\pi\)
\(432\) −8.71556 15.2555i −0.419327 0.733982i
\(433\) 6.82738 16.4827i 0.328103 0.792110i −0.670631 0.741792i \(-0.733976\pi\)
0.998733 0.0503185i \(-0.0160236\pi\)
\(434\) −7.96819 + 19.2369i −0.382485 + 0.923401i
\(435\) 0.287076 + 0.915323i 0.0137642 + 0.0438864i
\(436\) 0.609738 + 3.06536i 0.0292011 + 0.146804i
\(437\) −23.4226 35.0544i −1.12045 1.67688i
\(438\) 10.1124 1.09198i 0.483187 0.0521768i
\(439\) −5.14255 + 25.8533i −0.245440 + 1.23391i 0.639713 + 0.768614i \(0.279053\pi\)
−0.885154 + 0.465299i \(0.845947\pi\)
\(440\) −1.41394 + 0.585674i −0.0674070 + 0.0279209i
\(441\) −11.3424 + 2.47850i −0.540112 + 0.118024i
\(442\) 0 0
\(443\) 9.67036i 0.459453i −0.973255 0.229726i \(-0.926217\pi\)
0.973255 0.229726i \(-0.0737831\pi\)
\(444\) −0.168541 0.0494025i −0.00799861 0.00234454i
\(445\) 0.565491 + 0.112483i 0.0268068 + 0.00533221i
\(446\) 0.175541 + 0.175541i 0.00831208 + 0.00831208i
\(447\) −38.3389 3.41277i −1.81337 0.161418i
\(448\) 15.2218 3.02780i 0.719161 0.143050i
\(449\) 0.878627 + 0.587080i 0.0414650 + 0.0277060i 0.576130 0.817358i \(-0.304562\pi\)
−0.534665 + 0.845064i \(0.679562\pi\)
\(450\) −3.46875 + 19.3295i −0.163519 + 0.911202i
\(451\) 14.7960 + 6.12872i 0.696718 + 0.288590i
\(452\) 2.05000 3.06805i 0.0964240 0.144309i
\(453\) −3.30866 + 6.33243i −0.155455 + 0.297524i
\(454\) 2.32811 1.55560i 0.109264 0.0730077i
\(455\) −0.0205441 + 0.0205441i −0.000963124 + 0.000963124i
\(456\) −22.2850 26.6401i −1.04359 1.24754i
\(457\) −8.19942 19.7952i −0.383553 0.925978i −0.991273 0.131827i \(-0.957916\pi\)
0.607720 0.794151i \(-0.292084\pi\)
\(458\) 22.7184 1.06156
\(459\) 0 0
\(460\) −0.240577 −0.0112169
\(461\) −9.42954 22.7649i −0.439177 1.06027i −0.976233 0.216721i \(-0.930464\pi\)
0.537056 0.843547i \(-0.319536\pi\)
\(462\) −9.41173 11.2510i −0.437873 0.523446i
\(463\) 13.6466 13.6466i 0.634213 0.634213i −0.314909 0.949122i \(-0.601974\pi\)
0.949122 + 0.314909i \(0.101974\pi\)
\(464\) −11.0667 + 7.39451i −0.513757 + 0.343281i
\(465\) 1.01050 1.93400i 0.0468610 0.0896870i
\(466\) 7.15074 10.7018i 0.331252 0.495753i
\(467\) −11.4980 4.76264i −0.532066 0.220389i 0.100442 0.994943i \(-0.467974\pi\)
−0.632508 + 0.774554i \(0.717974\pi\)
\(468\) 0.0168405 0.0938432i 0.000778452 0.00433790i
\(469\) 8.55905 + 5.71897i 0.395220 + 0.264078i
\(470\) −0.541619 + 0.107735i −0.0249830 + 0.00496943i
\(471\) −24.0835 2.14382i −1.10971 0.0987818i
\(472\) −20.1974 20.1974i −0.929660 0.929660i
\(473\) −7.53215 1.49824i −0.346329 0.0688890i
\(474\) 5.34369 + 1.56633i 0.245444 + 0.0719440i
\(475\) 33.4363i 1.53416i
\(476\) 0 0
\(477\) 18.7724 4.10208i 0.859527 0.187821i
\(478\) 27.2464 11.2858i 1.24622 0.516202i
\(479\) 4.42837 22.2629i 0.202337 1.01722i −0.737435 0.675418i \(-0.763963\pi\)
0.939772 0.341801i \(-0.111037\pi\)
\(480\) −0.370483 + 0.0400064i −0.0169102 + 0.00182604i
\(481\) 0.0241482 + 0.0361403i 0.00110106 + 0.00164786i
\(482\) 0.103982 + 0.522751i 0.00473624 + 0.0238107i
\(483\) −5.75846 18.3605i −0.262019 0.835431i
\(484\) 0.235795 0.569259i 0.0107179 0.0258754i
\(485\) −0.246991 + 0.596290i −0.0112153 + 0.0270761i
\(486\) −15.2111 + 13.7279i −0.689992 + 0.622709i
\(487\) 4.48421 + 22.5436i 0.203199 + 1.02155i 0.938886 + 0.344228i \(0.111859\pi\)
−0.735687 + 0.677322i \(0.763141\pi\)
\(488\) 6.59427 + 9.86902i 0.298509 + 0.446750i
\(489\) 2.07417 + 19.2081i 0.0937974 + 0.868619i
\(490\) 0.139630 0.701969i 0.00630785 0.0317117i
\(491\) 18.8224 7.79649i 0.849443 0.351851i 0.0848732 0.996392i \(-0.472951\pi\)
0.764570 + 0.644541i \(0.222951\pi\)
\(492\) 1.61549 + 1.30060i 0.0728319 + 0.0586355i
\(493\) 0 0
\(494\) 1.03001i 0.0463421i
\(495\) 0.877897 + 1.26189i 0.0394585 + 0.0567177i
\(496\) 29.6939 + 5.90648i 1.33329 + 0.265209i
\(497\) −16.2578 16.2578i −0.729264 0.729264i
\(498\) −1.11827 + 12.5626i −0.0501108 + 0.562942i
\(499\) 1.05842 0.210533i 0.0473815 0.00942477i −0.171343 0.985211i \(-0.554811\pi\)
0.218724 + 0.975787i \(0.429811\pi\)
\(500\) 0.317918 + 0.212426i 0.0142177 + 0.00949997i
\(501\) 1.74464 + 3.19151i 0.0779446 + 0.142586i
\(502\) 1.28795 + 0.533486i 0.0574840 + 0.0238106i
\(503\) 5.21393 7.80319i 0.232478 0.347927i −0.696829 0.717238i \(-0.745406\pi\)
0.929306 + 0.369311i \(0.120406\pi\)
\(504\) −6.34046 14.5291i −0.282427 0.647177i
\(505\) −0.592815 + 0.396107i −0.0263799 + 0.0176265i
\(506\) −21.2552 + 21.2552i −0.944907 + 0.944907i
\(507\) 17.2526 14.4321i 0.766214 0.640954i
\(508\) 1.03045 + 2.48772i 0.0457188 + 0.110375i
\(509\) 7.99190 0.354235 0.177117 0.984190i \(-0.443323\pi\)
0.177117 + 0.984190i \(0.443323\pi\)
\(510\) 0 0
\(511\) 7.90399 0.349652
\(512\) −9.70803 23.4372i −0.429038 1.03579i
\(513\) −21.3629 + 27.5802i −0.943197 + 1.21770i
\(514\) 18.7116 18.7116i 0.825334 0.825334i
\(515\) −1.86901 + 1.24883i −0.0823584 + 0.0550301i
\(516\) −0.881462 0.460559i −0.0388042 0.0202750i
\(517\) 6.04150 9.04174i 0.265705 0.397655i
\(518\) 0.800085 + 0.331406i 0.0351537 + 0.0145611i
\(519\) −18.7154 + 10.2308i −0.821517 + 0.449081i
\(520\) 0.0407827 + 0.0272501i 0.00178844 + 0.00119500i
\(521\) −1.54613 + 0.307543i −0.0677370 + 0.0134737i −0.228842 0.973463i \(-0.573494\pi\)
0.161105 + 0.986937i \(0.448494\pi\)
\(522\) 11.1799 + 10.7676i 0.489331 + 0.471283i
\(523\) 24.2095 + 24.2095i 1.05861 + 1.05861i 0.998172 + 0.0604341i \(0.0192485\pi\)
0.0604341 + 0.998172i \(0.480751\pi\)
\(524\) −3.47957 0.692129i −0.152006 0.0302358i
\(525\) −4.29264 + 14.6447i −0.187346 + 0.639149i
\(526\) 7.25753i 0.316443i
\(527\) 0 0
\(528\) −13.3752 + 16.6135i −0.582081 + 0.723011i
\(529\) −15.1812 + 6.28827i −0.660054 + 0.273403i
\(530\) −0.231097 + 1.16181i −0.0100382 + 0.0504656i
\(531\) −15.4884 + 24.1502i −0.672141 + 1.04803i
\(532\) −1.79686 2.68919i −0.0779037 0.116591i
\(533\) −0.100134 0.503405i −0.00433727 0.0218049i
\(534\) 8.90177 2.79189i 0.385217 0.120817i
\(535\) −0.0733645 + 0.177118i −0.00317183 + 0.00765746i
\(536\) 6.65037 16.0554i 0.287252 0.693488i
\(537\) −30.5528 + 9.58237i −1.31845 + 0.413510i
\(538\) 2.34369 + 11.7825i 0.101043 + 0.507980i
\(539\) 7.83012 + 11.7186i 0.337267 + 0.504756i
\(540\) 0.0631321 + 0.188797i 0.00271677 + 0.00812451i
\(541\) −0.591454 + 2.97344i −0.0254286 + 0.127838i −0.991415 0.130756i \(-0.958259\pi\)
0.965986 + 0.258595i \(0.0832594\pi\)
\(542\) −3.21592 + 1.33208i −0.138135 + 0.0572176i
\(543\) 2.31215 2.87196i 0.0992239 0.123247i
\(544\) 0 0
\(545\) 1.61500i 0.0691792i
\(546\) −0.132235 + 0.451131i −0.00565912 + 0.0193066i
\(547\) −1.70456 0.339058i −0.0728817 0.0144971i 0.158515 0.987357i \(-0.449329\pi\)
−0.231396 + 0.972860i \(0.574329\pi\)
\(548\) −0.617069 0.617069i −0.0263599 0.0263599i
\(549\) 8.27030 8.58701i 0.352968 0.366485i
\(550\) 23.3817 4.65090i 0.996998 0.198315i
\(551\) 21.9739 + 14.6825i 0.936119 + 0.625495i
\(552\) −28.5042 + 15.5818i −1.21322 + 0.663206i
\(553\) 3.99789 + 1.65598i 0.170008 + 0.0704195i
\(554\) 15.1087 22.6118i 0.641907 0.960681i
\(555\) −0.0804372 0.0420280i −0.00341437 0.00178399i
\(556\) −1.15339 + 0.770669i −0.0489146 + 0.0326837i
\(557\) 29.9311 29.9311i 1.26822 1.26822i 0.321217 0.947006i \(-0.395908\pi\)
0.947006 0.321217i \(-0.104092\pi\)
\(558\) −0.663247 35.3014i −0.0280775 1.49443i
\(559\) 0.0941886 + 0.227391i 0.00398375 + 0.00961763i
\(560\) 0.841688 0.0355678
\(561\) 0 0
\(562\) 13.5236 0.570460
\(563\) 10.8784 + 26.2627i 0.458468 + 1.10684i 0.969018 + 0.246991i \(0.0794420\pi\)
−0.510550 + 0.859848i \(0.670558\pi\)
\(564\) 1.08015 0.903567i 0.0454825 0.0380471i
\(565\) 1.34824 1.34824i 0.0567208 0.0567208i
\(566\) 14.0359 9.37847i 0.589972 0.394207i
\(567\) −12.8976 + 9.33720i −0.541646 + 0.392126i
\(568\) −21.5647 + 32.2739i −0.904835 + 1.35418i
\(569\) 19.2820 + 7.98685i 0.808342 + 0.334826i 0.748292 0.663369i \(-0.230874\pi\)
0.0600499 + 0.998195i \(0.480874\pi\)
\(570\) −1.03157 1.88708i −0.0432077 0.0790410i
\(571\) −5.22099 3.48855i −0.218492 0.145991i 0.441508 0.897257i \(-0.354444\pi\)
−0.660000 + 0.751266i \(0.729444\pi\)
\(572\) −0.113516 + 0.0225797i −0.00474634 + 0.000944106i
\(573\) −2.66277 + 29.9134i −0.111239 + 1.24965i
\(574\) −7.23109 7.23109i −0.301820 0.301820i
\(575\) 30.6723 + 6.10109i 1.27912 + 0.254433i
\(576\) −21.6034 + 15.0295i −0.900144 + 0.626230i
\(577\) 36.1978i 1.50693i −0.657485 0.753467i \(-0.728380\pi\)
0.657485 0.753467i \(-0.271620\pi\)
\(578\) 0 0
\(579\) −21.9054 17.6356i −0.910358 0.732911i
\(580\) 0.139326 0.0577109i 0.00578522 0.00239632i
\(581\) −1.91207 + 9.61264i −0.0793261 + 0.398799i
\(582\) 1.12120 + 10.3830i 0.0464754 + 0.430389i
\(583\) −12.9594 19.3951i −0.536723 0.803262i
\(584\) −2.60321 13.0872i −0.107722 0.541553i
\(585\) 0.0179951 0.0458624i 0.000744007 0.00189618i
\(586\) −0.567450 + 1.36995i −0.0234412 + 0.0565919i
\(587\) −2.98442 + 7.20502i −0.123180 + 0.297383i −0.973426 0.229003i \(-0.926453\pi\)
0.850246 + 0.526386i \(0.176453\pi\)
\(588\) 0.546200 + 1.74152i 0.0225249 + 0.0718192i
\(589\) −11.7279 58.9600i −0.483238 2.42940i
\(590\) −0.982614 1.47059i −0.0404536 0.0605431i
\(591\) 13.5196 1.45991i 0.556124 0.0600528i
\(592\) 0.245657 1.23500i 0.0100964 0.0507583i
\(593\) −28.0114 + 11.6027i −1.15029 + 0.476465i −0.874630 0.484790i \(-0.838896\pi\)
−0.275659 + 0.961256i \(0.588896\pi\)
\(594\) 22.2581 + 11.1026i 0.913261 + 0.455543i
\(595\) 0 0
\(596\) 6.05095i 0.247857i
\(597\) 21.2743 + 6.23588i 0.870698 + 0.255218i
\(598\) 0.944859 + 0.187944i 0.0386381 + 0.00768561i
\(599\) −17.7610 17.7610i −0.725695 0.725695i 0.244064 0.969759i \(-0.421519\pi\)
−0.969759 + 0.244064i \(0.921519\pi\)
\(600\) 25.6621 + 2.28434i 1.04765 + 0.0932577i
\(601\) −29.8774 + 5.94298i −1.21872 + 0.242419i −0.762229 0.647307i \(-0.775895\pi\)
−0.456494 + 0.889726i \(0.650895\pi\)
\(602\) 4.07737 + 2.72441i 0.166181 + 0.111039i
\(603\) −17.1809 3.08317i −0.699659 0.125556i
\(604\) 1.03770 + 0.429829i 0.0422233 + 0.0174895i
\(605\) 0.176889 0.264733i 0.00719155 0.0107629i
\(606\) −5.34243 + 10.2249i −0.217021 + 0.415356i
\(607\) 18.1199 12.1073i 0.735464 0.491421i −0.130550 0.991442i \(-0.541674\pi\)
0.866014 + 0.500020i \(0.166674\pi\)
\(608\) −7.25911 + 7.25911i −0.294396 + 0.294396i
\(609\) 7.73935 + 9.25183i 0.313614 + 0.374903i
\(610\) 0.281256 + 0.679012i 0.0113877 + 0.0274924i
\(611\) −0.348513 −0.0140993
\(612\) 0 0
\(613\) 17.5623 0.709337 0.354668 0.934992i \(-0.384594\pi\)
0.354668 + 0.934992i \(0.384594\pi\)
\(614\) 9.84962 + 23.7791i 0.397498 + 0.959646i
\(615\) 0.687625 + 0.822006i 0.0277277 + 0.0331465i
\(616\) −13.6074 + 13.6074i −0.548258 + 0.548258i
\(617\) −19.6482 + 13.1285i −0.791007 + 0.528534i −0.884197 0.467115i \(-0.845294\pi\)
0.0931902 + 0.995648i \(0.470294\pi\)
\(618\) −16.8434 + 32.2366i −0.677543 + 1.29675i
\(619\) 22.1885 33.2074i 0.891831 1.33472i −0.0500404 0.998747i \(-0.515935\pi\)
0.941872 0.335973i \(-0.109065\pi\)
\(620\) −0.316925 0.131275i −0.0127280 0.00527211i
\(621\) 21.4022 + 24.6295i 0.858840 + 0.988347i
\(622\) 32.1040 + 21.4512i 1.28725 + 0.860116i
\(623\) 7.11050 1.41437i 0.284876 0.0566654i
\(624\) 0.680864 + 0.0606077i 0.0272564 + 0.00242625i
\(625\) −17.4680 17.4680i −0.698719 0.698719i
\(626\) −22.9734 4.56969i −0.918201 0.182642i
\(627\) 40.6399 + 11.9123i 1.62300 + 0.475731i
\(628\) 3.80106i 0.151679i
\(629\) 0 0
\(630\) −0.209548 0.958955i −0.00834859 0.0382057i
\(631\) 24.7481 10.2510i 0.985205 0.408085i 0.168854 0.985641i \(-0.445993\pi\)
0.816351 + 0.577556i \(0.195993\pi\)
\(632\) 1.42521 7.16501i 0.0566917 0.285009i
\(633\) 8.81704 0.952104i 0.350446 0.0378428i
\(634\) 10.3120 + 15.4329i 0.409540 + 0.612920i
\(635\) 0.271450 + 1.36467i 0.0107721 + 0.0541552i
\(636\) −0.903997 2.88234i −0.0358458 0.114292i
\(637\) 0.172855 0.417310i 0.00684878 0.0165344i
\(638\) 7.21080 17.4084i 0.285478 0.689206i
\(639\) 36.2938 + 14.2407i 1.43576 + 0.563352i
\(640\) −0.232566 1.16919i −0.00919297 0.0462162i
\(641\) 23.6558 + 35.4034i 0.934349 + 1.39835i 0.917168 + 0.398500i \(0.130469\pi\)
0.0171805 + 0.999852i \(0.494531\pi\)
\(642\) 0.333034 + 3.08409i 0.0131438 + 0.121719i
\(643\) −5.03062 + 25.2906i −0.198388 + 0.997365i 0.745351 + 0.666673i \(0.232282\pi\)
−0.943739 + 0.330692i \(0.892718\pi\)
\(644\) −2.79475 + 1.15763i −0.110129 + 0.0456168i
\(645\) −0.400300 0.322273i −0.0157618 0.0126895i
\(646\) 0 0
\(647\) 38.1903i 1.50142i 0.660634 + 0.750709i \(0.270288\pi\)
−0.660634 + 0.750709i \(0.729712\pi\)
\(648\) 19.7081 + 18.2802i 0.774209 + 0.718113i
\(649\) 34.1589 + 6.79463i 1.34085 + 0.266712i
\(650\) −0.540257 0.540257i −0.0211906 0.0211906i
\(651\) 2.43275 27.3295i 0.0953472 1.07113i
\(652\) 2.97883 0.592526i 0.116660 0.0232051i
\(653\) 28.5236 + 19.0588i 1.11621 + 0.745830i 0.969923 0.243412i \(-0.0782667\pi\)
0.146290 + 0.989242i \(0.453267\pi\)
\(654\) 12.5345 + 22.9296i 0.490136 + 0.896619i
\(655\) −1.69369 0.701548i −0.0661778 0.0274118i
\(656\) −8.26097 + 12.3634i −0.322537 + 0.482710i
\(657\) −12.2840 + 5.36072i −0.479246 + 0.209142i
\(658\) −5.77352 + 3.85774i −0.225075 + 0.150391i
\(659\) 24.7106 24.7106i 0.962589 0.962589i −0.0367361 0.999325i \(-0.511696\pi\)
0.999325 + 0.0367361i \(0.0116961\pi\)
\(660\) 0.185359 0.155057i 0.00721510 0.00603558i
\(661\) −4.65040 11.2271i −0.180880 0.436682i 0.807269 0.590184i \(-0.200945\pi\)
−0.988148 + 0.153502i \(0.950945\pi\)
\(662\) −9.50727 −0.369510
\(663\) 0 0
\(664\) 16.5461 0.642113
\(665\) −0.639559 1.54403i −0.0248011 0.0598750i
\(666\) −1.46823 + 0.0275852i −0.0568926 + 0.00106890i
\(667\) 17.4783 17.4783i 0.676762 0.676762i
\(668\) 0.475432 0.317674i 0.0183950 0.0122912i
\(669\) −0.289937 0.151490i −0.0112096 0.00585696i
\(670\) 0.597832 0.894718i 0.0230962 0.0345660i
\(671\) −13.3710 5.53844i −0.516181 0.213809i
\(672\) −4.11136 + 2.24747i −0.158599 + 0.0866980i
\(673\) −33.7102 22.5244i −1.29943 0.868252i −0.303027 0.952982i \(-0.597997\pi\)
−0.996404 + 0.0847298i \(0.972997\pi\)
\(674\) −17.2336 + 3.42798i −0.663814 + 0.132041i
\(675\) −3.26107 25.6716i −0.125519 0.988100i
\(676\) −2.50037 2.50037i −0.0961681 0.0961681i
\(677\) −6.72222 1.33713i −0.258356 0.0513902i 0.0642128 0.997936i \(-0.479546\pi\)
−0.322569 + 0.946546i \(0.604546\pi\)
\(678\) 8.67810 29.6061i 0.333280 1.13702i
\(679\) 8.11552i 0.311445i
\(680\) 0 0
\(681\) −2.31378 + 2.87398i −0.0886644 + 0.110131i
\(682\) −39.5988 + 16.4024i −1.51632 + 0.628079i
\(683\) 1.92646 9.68496i 0.0737139 0.370585i −0.926266 0.376870i \(-0.877001\pi\)
0.999980 + 0.00628472i \(0.00200050\pi\)
\(684\) 4.61649 + 2.96073i 0.176516 + 0.113206i
\(685\) −0.250527 0.374940i −0.00957213 0.0143257i
\(686\) −4.93143 24.7920i −0.188283 0.946562i
\(687\) −28.5647 + 8.95885i −1.08981 + 0.341801i
\(688\) 2.72864 6.58752i 0.104028 0.251147i
\(689\) −0.286087 + 0.690676i −0.0108991 + 0.0263127i
\(690\) −1.91931 + 0.601960i −0.0730669 + 0.0229162i
\(691\) 2.70622 + 13.6051i 0.102950 + 0.517563i 0.997504 + 0.0706044i \(0.0224928\pi\)
−0.894555 + 0.446958i \(0.852507\pi\)
\(692\) 1.86288 + 2.78800i 0.0708161 + 0.105984i
\(693\) 16.2705 + 10.4349i 0.618065 + 0.396389i
\(694\) −8.58354 + 43.1524i −0.325827 + 1.63804i
\(695\) −0.662233 + 0.274306i −0.0251199 + 0.0104050i
\(696\) 12.7699 15.8617i 0.484044 0.601237i
\(697\) 0 0
\(698\) 36.5813i 1.38462i
\(699\) −4.77070 + 16.2757i −0.180444 + 0.615602i
\(700\) 2.35301 + 0.468044i 0.0889356 + 0.0176904i
\(701\) 7.15325 + 7.15325i 0.270175 + 0.270175i 0.829170 0.558996i \(-0.188813\pi\)
−0.558996 + 0.829170i \(0.688813\pi\)
\(702\) −0.100457 0.790814i −0.00379152 0.0298473i
\(703\) −2.45221 + 0.487775i −0.0924869 + 0.0183968i
\(704\) 26.5634 + 17.7491i 1.00115 + 0.668945i
\(705\) 0.638513 0.349042i 0.0240478 0.0131457i
\(706\) 8.77211 + 3.63353i 0.330143 + 0.136750i
\(707\) −4.98066 + 7.45408i −0.187317 + 0.280340i
\(708\) 3.99750 + 2.08867i 0.150235 + 0.0784971i
\(709\) 37.4563 25.0275i 1.40670 0.939929i 0.407054 0.913404i \(-0.366556\pi\)
0.999648 0.0265247i \(-0.00844407\pi\)
\(710\) −1.69951 + 1.69951i −0.0637814 + 0.0637814i
\(711\) −7.33648 + 0.137839i −0.275140 + 0.00516936i
\(712\) −4.68374 11.3075i −0.175531 0.423768i
\(713\) −56.2259 −2.10568
\(714\) 0 0
\(715\) −0.0598067 −0.00223664
\(716\) 1.92635 + 4.65061i 0.0719909 + 0.173801i
\(717\) −29.8074 + 24.9345i −1.11318 + 0.931197i
\(718\) −25.6111 + 25.6111i −0.955796 + 0.955796i
\(719\) 23.9148 15.9794i 0.891871 0.595929i −0.0229732 0.999736i \(-0.507313\pi\)
0.914844 + 0.403807i \(0.132313\pi\)
\(720\) −1.30811 + 0.570858i −0.0487505 + 0.0212746i
\(721\) −15.7029 + 23.5010i −0.584805 + 0.875222i
\(722\) −31.6655 13.1163i −1.17847 0.488138i
\(723\) −0.336883 0.616270i −0.0125288 0.0229193i
\(724\) −0.481940 0.322022i −0.0179112 0.0119679i
\(725\) −19.2269 + 3.82448i −0.714071 + 0.142038i
\(726\) 0.456786 5.13151i 0.0169529 0.190448i
\(727\) −1.86673 1.86673i −0.0692331 0.0692331i 0.671642 0.740876i \(-0.265589\pi\)
−0.740876 + 0.671642i \(0.765589\pi\)
\(728\) 0.604893 + 0.120321i 0.0224188 + 0.00445938i
\(729\) 13.7120 23.2590i 0.507853 0.861444i
\(730\) 0.826242i 0.0305806i
\(731\) 0 0
\(732\) −1.45990 1.17533i −0.0539593 0.0434415i
\(733\) −28.9600 + 11.9956i −1.06966 + 0.443068i −0.846871 0.531798i \(-0.821516\pi\)
−0.222790 + 0.974866i \(0.571516\pi\)
\(734\) −2.88067 + 14.4821i −0.106328 + 0.534545i
\(735\) 0.101254 + 0.937673i 0.00373482 + 0.0345866i
\(736\) 5.33447 + 7.98360i 0.196631 + 0.294279i
\(737\) 4.13391 + 20.7826i 0.152275 + 0.765537i
\(738\) 16.1426 + 6.33390i 0.594217 + 0.233154i
\(739\) −1.82751 + 4.41201i −0.0672262 + 0.162298i −0.953922 0.300055i \(-0.902995\pi\)
0.886696 + 0.462354i \(0.152995\pi\)
\(740\) −0.00545986 + 0.0131813i −0.000200708 + 0.000484553i
\(741\) −0.406175 1.29506i −0.0149212 0.0475753i
\(742\) 2.90583 + 14.6086i 0.106676 + 0.536298i
\(743\) −11.6988 17.5085i −0.429188 0.642325i 0.552346 0.833615i \(-0.313733\pi\)
−0.981534 + 0.191290i \(0.938733\pi\)
\(744\) −46.0526 + 4.97297i −1.68837 + 0.182318i
\(745\) −0.609995 + 3.06665i −0.0223485 + 0.112353i
\(746\) −6.68298 + 2.76818i −0.244681 + 0.101350i
\(747\) −3.54792 16.2364i −0.129812 0.594058i
\(748\) 0 0
\(749\) 2.41058i 0.0880806i
\(750\) 3.06785 + 0.899244i 0.112022 + 0.0328357i
\(751\) −22.7296 4.52121i −0.829416 0.164981i −0.237916 0.971286i \(-0.576464\pi\)
−0.591500 + 0.806305i \(0.701464\pi\)
\(752\) 7.13925 + 7.13925i 0.260342 + 0.260342i
\(753\) −1.82976 0.162878i −0.0666802 0.00593559i
\(754\) −0.592286 + 0.117813i −0.0215698 + 0.00429050i
\(755\) 0.482579 + 0.322449i 0.0175629 + 0.0117351i
\(756\) 1.64186 + 1.88945i 0.0597140 + 0.0687185i
\(757\) 23.7983 + 9.85760i 0.864965 + 0.358280i 0.770647 0.637262i \(-0.219933\pi\)
0.0943180 + 0.995542i \(0.469933\pi\)
\(758\) 3.84622 5.75627i 0.139701 0.209077i
\(759\) 18.3431 35.1067i 0.665811 1.27429i
\(760\) −2.34593 + 1.56750i −0.0850957 + 0.0568591i
\(761\) −15.9336 + 15.9336i −0.577594 + 0.577594i −0.934240 0.356646i \(-0.883920\pi\)
0.356646 + 0.934240i \(0.383920\pi\)
\(762\) 14.4455 + 17.2686i 0.523307 + 0.625575i
\(763\) 7.77120 + 18.7613i 0.281336 + 0.679206i
\(764\) 4.72118 0.170806
\(765\) 0 0
\(766\) −27.8109 −1.00485
\(767\) −0.427153 1.03124i −0.0154236 0.0372359i
\(768\) 7.12176 + 8.51355i 0.256984 + 0.307206i
\(769\) 10.2112 10.2112i 0.368226 0.368226i −0.498604 0.866830i \(-0.666154\pi\)
0.866830 + 0.498604i \(0.166154\pi\)
\(770\) −0.990766 + 0.662009i −0.0357047 + 0.0238571i
\(771\) −16.1480 + 30.9056i −0.581556 + 1.11304i
\(772\) −2.45618 + 3.67593i −0.0883998 + 0.132300i
\(773\) −2.24744 0.930920i −0.0808348 0.0334829i 0.341900 0.939736i \(-0.388930\pi\)
−0.422734 + 0.906254i \(0.638930\pi\)
\(774\) −8.18464 1.46876i −0.294191 0.0527936i
\(775\) 37.0771 + 24.7741i 1.33185 + 0.889912i
\(776\) 13.4375 2.67288i 0.482377 0.0959507i
\(777\) −1.13666 0.101181i −0.0407776 0.00362985i
\(778\) −11.6153 11.6153i −0.416429 0.416429i
\(779\) 28.9572 + 5.75994i 1.03750 + 0.206371i
\(780\) −0.00743231 0.00217855i −0.000266119 7.80045e-5i
\(781\) 47.3287i 1.69355i
\(782\) 0 0
\(783\) −18.3030 9.12973i −0.654097 0.326270i
\(784\) −12.0895 + 5.00762i −0.431766 + 0.178844i
\(785\) −0.383184 + 1.92639i −0.0136764 + 0.0687559i
\(786\) −29.4916 + 3.18464i −1.05193 + 0.113592i
\(787\) 17.6179 + 26.3671i 0.628010 + 0.939884i 0.999932 + 0.0116199i \(0.00369882\pi\)
−0.371922 + 0.928264i \(0.621301\pi\)
\(788\) −0.417051 2.09666i −0.0148568 0.0746903i
\(789\) −2.86196 9.12516i −0.101888 0.324864i
\(790\) 0.173108 0.417919i 0.00615889 0.0148689i
\(791\) 9.17479 22.1499i 0.326218 0.787560i
\(792\) 11.9191 30.3770i 0.423526 1.07940i
\(793\) 0.0904893 + 0.454920i 0.00321337 + 0.0161547i
\(794\) −28.4066 42.5135i −1.00811 1.50875i
\(795\) −0.167583 1.55191i −0.00594354 0.0550407i
\(796\) 0.679923 3.41820i 0.0240992 0.121155i
\(797\) −41.8726 + 17.3442i −1.48320 + 0.614363i −0.969825 0.243800i \(-0.921606\pi\)
−0.513377 + 0.858163i \(0.671606\pi\)
\(798\) −21.0640 16.9582i −0.745658 0.600314i
\(799\) 0 0
\(800\) 7.61508i 0.269234i
\(801\) −10.0916 + 7.02070i −0.356568 + 0.248064i
\(802\) 35.1011 + 6.98204i 1.23946 + 0.246544i
\(803\) 11.5048 + 11.5048i 0.405995 + 0.405995i
\(804\) −0.243306 + 2.73328i −0.00858072 + 0.0963955i
\(805\) −1.53309 + 0.304951i −0.0540345 + 0.0107481i
\(806\) 1.14216 + 0.763166i 0.0402308 + 0.0268814i
\(807\) −7.59315 13.8904i −0.267292 0.488964i
\(808\) 13.9827 + 5.79181i 0.491908 + 0.203755i
\(809\) 13.9731 20.9122i 0.491267 0.735233i −0.500155 0.865936i \(-0.666724\pi\)
0.991422 + 0.130703i \(0.0417236\pi\)
\(810\) 0.976062 + 1.34824i 0.0342953 + 0.0473724i
\(811\) 19.3507 12.9298i 0.679496 0.454025i −0.167325 0.985902i \(-0.553513\pi\)
0.846822 + 0.531877i \(0.178513\pi\)
\(812\) 1.34084 1.34084i 0.0470544 0.0470544i
\(813\) 3.51819 2.94304i 0.123388 0.103217i
\(814\) 0.682192 + 1.64696i 0.0239108 + 0.0577259i
\(815\) 1.56942 0.0549743
\(816\) 0 0
\(817\) −14.1578 −0.495320
\(818\) −14.1964 34.2732i −0.496367 1.19834i
\(819\) −0.0116368 0.619369i −0.000406622 0.0216425i
\(820\) 0.119131 0.119131i 0.00416024 0.00416024i
\(821\) −35.9365 + 24.0120i −1.25419 + 0.838025i −0.991907 0.126965i \(-0.959476\pi\)
−0.262286 + 0.964990i \(0.584476\pi\)
\(822\) −6.46694 3.37894i −0.225560 0.117854i
\(823\) 9.37028 14.0236i 0.326627 0.488833i −0.631420 0.775441i \(-0.717528\pi\)
0.958048 + 0.286608i \(0.0925278\pi\)
\(824\) 44.0841 + 18.2602i 1.53574 + 0.636125i
\(825\) −27.5646 + 15.0682i −0.959676 + 0.524606i
\(826\) −18.4912 12.3554i −0.643391 0.429900i
\(827\) 21.7440 4.32515i 0.756114 0.150400i 0.198042 0.980193i \(-0.436542\pi\)
0.558071 + 0.829793i \(0.311542\pi\)
\(828\) 3.55835 3.69462i 0.123661 0.128397i
\(829\) 19.3451 + 19.3451i 0.671883 + 0.671883i 0.958150 0.286267i \(-0.0924145\pi\)
−0.286267 + 0.958150i \(0.592415\pi\)
\(830\) 1.00486 + 0.199878i 0.0348790 + 0.00693787i
\(831\) −10.0799 + 34.3886i −0.349669 + 1.19293i
\(832\) 1.02389i 0.0354968i
\(833\) 0 0
\(834\) −7.27334 + 9.03431i −0.251855 + 0.312833i
\(835\) 0.272976 0.113070i 0.00944672 0.00391296i
\(836\) 1.29884 6.52973i 0.0449215 0.225836i
\(837\) 14.7548 + 44.1242i 0.510000 + 1.52516i
\(838\) −6.82089 10.2082i −0.235624 0.352636i
\(839\) 4.84436 + 24.3543i 0.167246 + 0.840802i 0.969740 + 0.244142i \(0.0785062\pi\)
−0.802494 + 0.596661i \(0.796494\pi\)
\(840\) −1.22873 + 0.385371i −0.0423952 + 0.0132966i
\(841\) 5.16832 12.4774i 0.178218 0.430256i
\(842\) −6.69119 + 16.1539i −0.230593 + 0.556702i
\(843\) −17.0037 + 5.33295i −0.585640 + 0.183676i
\(844\) −0.271986 1.36737i −0.00936215 0.0470667i
\(845\) −1.01514 1.51926i −0.0349218 0.0522641i
\(846\) 6.35651 9.91131i 0.218541 0.340758i
\(847\) 0.781037 3.92654i 0.0268367 0.134917i
\(848\) 20.0089 8.28795i 0.687107 0.284609i
\(849\) −13.9495 + 17.3269i −0.478745 + 0.594656i
\(850\) 0 0
\(851\) 2.33850i 0.0801628i
\(852\) 1.72402 5.88164i 0.0590638 0.201502i
\(853\) −29.2600 5.82018i −1.00184 0.199279i −0.333196 0.942858i \(-0.608127\pi\)
−0.668649 + 0.743578i \(0.733127\pi\)
\(854\) 6.53464 + 6.53464i 0.223611 + 0.223611i
\(855\) 2.04119 + 1.96590i 0.0698071 + 0.0672323i
\(856\) 3.99137 0.793933i 0.136422 0.0271361i
\(857\) −28.2940 18.9054i −0.966505 0.645798i −0.0311521 0.999515i \(-0.509918\pi\)
−0.935353 + 0.353717i \(0.884918\pi\)
\(858\) −0.849127 + 0.464174i −0.0289887 + 0.0158467i
\(859\) −18.2111 7.54327i −0.621354 0.257373i 0.0497206 0.998763i \(-0.484167\pi\)
−0.671074 + 0.741390i \(0.734167\pi\)
\(860\) −0.0448842 + 0.0671740i −0.00153054 + 0.00229061i
\(861\) 11.9435 + 6.24039i 0.407032 + 0.212672i
\(862\) −15.9679 + 10.6694i −0.543869 + 0.363402i
\(863\) −4.36492 + 4.36492i −0.148584 + 0.148584i −0.777485 0.628901i \(-0.783505\pi\)
0.628901 + 0.777485i \(0.283505\pi\)
\(864\) 4.86539 6.28136i 0.165524 0.213696i
\(865\) 0.663059 + 1.60077i 0.0225447 + 0.0544277i
\(866\) −23.4504 −0.796876
\(867\) 0 0
\(868\) −4.31336 −0.146405
\(869\) 3.40880 + 8.22958i 0.115636 + 0.279169i
\(870\) 0.967138 0.809031i 0.0327891 0.0274287i
\(871\) 0.480203 0.480203i 0.0162710 0.0162710i
\(872\) 28.5050 19.0465i 0.965302 0.644994i
\(873\) −5.50419 12.6128i −0.186289 0.426878i
\(874\) −30.7872 + 46.0763i −1.04139 + 1.55855i
\(875\) 2.29522 + 0.950712i 0.0775927 + 0.0321399i
\(876\) 1.01065 + 1.84880i 0.0341466 + 0.0624652i
\(877\) 7.92668 + 5.29644i 0.267665 + 0.178848i 0.682159 0.731204i \(-0.261041\pi\)
−0.414494 + 0.910052i \(0.636041\pi\)
\(878\) 33.9822 6.75949i 1.14685 0.228122i
\(879\) 0.173247 1.94625i 0.00584349 0.0656455i
\(880\) 1.22513 + 1.22513i 0.0412992 + 0.0412992i
\(881\) 42.1879 + 8.39169i 1.42135 + 0.282723i 0.845124 0.534570i \(-0.179527\pi\)
0.576222 + 0.817294i \(0.304527\pi\)
\(882\) 8.71511 + 12.5271i 0.293453 + 0.421809i
\(883\) 41.3162i 1.39040i −0.718816 0.695200i \(-0.755316\pi\)
0.718816 0.695200i \(-0.244684\pi\)
\(884\) 0 0
\(885\) 1.81539 + 1.46153i 0.0610237 + 0.0491289i
\(886\) −11.7434 + 4.86427i −0.394527 + 0.163418i
\(887\) 2.89572 14.5578i 0.0972287 0.488801i −0.901232 0.433337i \(-0.857336\pi\)
0.998461 0.0554646i \(-0.0176640\pi\)
\(888\) 0.206831 + 1.91538i 0.00694081 + 0.0642760i
\(889\) 9.72002 + 14.5470i 0.325999 + 0.487892i
\(890\) −0.147850 0.743294i −0.00495596 0.0249153i
\(891\) −32.3641 5.18233i −1.08424 0.173614i
\(892\) −0.0196801 + 0.0475120i −0.000658939 + 0.00159082i
\(893\) 7.67180 18.5214i 0.256727 0.619794i
\(894\) 15.1404 + 48.2742i 0.506371 + 1.61453i
\(895\) 0.507454 + 2.55114i 0.0169623 + 0.0852754i
\(896\) −8.32768 12.4632i −0.278208 0.416368i
\(897\) −1.26212 + 0.136289i −0.0421410 + 0.00455057i
\(898\) 0.270975 1.36228i 0.00904256 0.0454600i
\(899\) 32.5624 13.4878i 1.08602 0.449843i
\(900\) −3.97439 + 0.868473i −0.132480 + 0.0289491i
\(901\) 0 0
\(902\) 21.0507i 0.700910i
\(903\) −6.20098 1.81762i −0.206356 0.0604866i
\(904\) −39.6970 7.89621i −1.32030 0.262624i
\(905\) −0.211787 0.211787i −0.00704002 0.00704002i
\(906\) 9.35420 + 0.832672i 0.310772 + 0.0276637i
\(907\) −16.7791 + 3.33756i −0.557140 + 0.110822i −0.465626 0.884982i \(-0.654171\pi\)
−0.0915140 + 0.995804i \(0.529171\pi\)
\(908\) 0.482281 + 0.322250i 0.0160050 + 0.0106942i
\(909\) 2.68514 14.9628i 0.0890603 0.496286i
\(910\) 0.0352820 + 0.0146143i 0.00116959 + 0.000484459i
\(911\) 30.7347 45.9977i 1.01829 1.52397i 0.176398 0.984319i \(-0.443555\pi\)
0.841887 0.539653i \(-0.181445\pi\)
\(912\) −18.2088 + 34.8497i −0.602952 + 1.15399i
\(913\) −16.7750 + 11.2087i −0.555171 + 0.370953i
\(914\) −19.9143 + 19.9143i −0.658705 + 0.658705i
\(915\) −0.621397 0.742835i −0.0205427 0.0245574i
\(916\) 1.80100 + 4.34800i 0.0595067 + 0.143662i
\(917\) −23.0511 −0.761216
\(918\) 0 0
\(919\) −57.0283 −1.88119 −0.940595 0.339530i \(-0.889732\pi\)
−0.940595 + 0.339530i \(0.889732\pi\)
\(920\) 1.00986 + 2.43802i 0.0332941 + 0.0803791i
\(921\) −21.7614 26.0142i −0.717063 0.857196i
\(922\) −22.9019 + 22.9019i −0.754233 + 0.754233i
\(923\) −1.26120 + 0.842708i −0.0415130 + 0.0277381i
\(924\) 1.40718 2.69320i 0.0462929 0.0885999i
\(925\) 1.03038 1.54208i 0.0338788 0.0507032i
\(926\) −23.4364 9.70769i −0.770169 0.319014i
\(927\) 8.46561 47.1743i 0.278047 1.54941i
\(928\) −5.00453 3.34392i −0.164282 0.109770i
\(929\) −35.1267 + 6.98713i −1.15247 + 0.229240i −0.734103 0.679038i \(-0.762397\pi\)
−0.418366 + 0.908278i \(0.637397\pi\)
\(930\) −2.85688 0.254308i −0.0936808 0.00833907i
\(931\) 18.3724 + 18.3724i 0.602132 + 0.602132i
\(932\) 2.61506 + 0.520168i 0.0856592 + 0.0170387i
\(933\) −48.8247 14.3114i −1.59845 0.468535i
\(934\) 16.3585i 0.535267i
\(935\) 0 0
\(936\) −1.02170 + 0.223259i −0.0333954 + 0.00729746i
\(937\) 18.6808 7.73785i 0.610276 0.252785i −0.0560704 0.998427i \(-0.517857\pi\)
0.666347 + 0.745642i \(0.267857\pi\)
\(938\) 2.63967 13.2705i 0.0861884 0.433298i
\(939\) 30.6873 3.31375i 1.00144 0.108140i
\(940\) −0.0635557 0.0951179i −0.00207296 0.00310240i
\(941\) −1.51472 7.61499i −0.0493783 0.248242i 0.948211 0.317643i \(-0.102891\pi\)
−0.997589 + 0.0694010i \(0.977891\pi\)
\(942\) 9.51083 + 30.3247i 0.309880 + 0.988031i
\(943\) 10.5676 25.5124i 0.344128 0.830798i
\(944\) −12.3746 + 29.8749i −0.402759 + 0.972347i
\(945\) 0.641629 + 1.12310i 0.0208722 + 0.0365343i
\(946\) 1.96932 + 9.90043i 0.0640281 + 0.321891i
\(947\) −2.00168 2.99573i −0.0650459 0.0973480i 0.797521 0.603291i \(-0.206144\pi\)
−0.862567 + 0.505943i \(0.831144\pi\)
\(948\) 0.123845 + 1.14688i 0.00402231 + 0.0372489i
\(949\) 0.101728 0.511424i 0.00330225 0.0166015i
\(950\) 40.6040 16.8187i 1.31737 0.545672i
\(951\) −19.0515 15.3379i −0.617786 0.497367i
\(952\) 0 0
\(953\) 22.5397i 0.730132i −0.930982 0.365066i \(-0.881046\pi\)
0.930982 0.365066i \(-0.118954\pi\)
\(954\) −14.4241 20.7332i −0.466997 0.671262i
\(955\) 2.39271 + 0.475940i 0.0774264 + 0.0154011i
\(956\) 4.31991 + 4.31991i 0.139716 + 0.139716i
\(957\) −2.20152 + 24.7318i −0.0711650 + 0.799465i
\(958\) −29.2629 + 5.82076i −0.945442 + 0.188060i
\(959\) −4.71450 3.15013i −0.152239 0.101723i
\(960\) 1.02544 + 1.87587i 0.0330959 + 0.0605433i
\(961\) −45.4292 18.8174i −1.46546 0.607013i
\(962\) 0.0317410 0.0475037i 0.00102337 0.00153158i
\(963\) −1.63493 3.74641i −0.0526848 0.120727i
\(964\) −0.0918044 + 0.0613417i −0.00295682 + 0.00197568i
\(965\) −1.61537 + 1.61537i −0.0520007 + 0.0520007i
\(966\) −19.3999 + 16.2284i −0.624180 + 0.522140i
\(967\) −8.59605 20.7527i −0.276430 0.667362i 0.723301 0.690533i \(-0.242624\pi\)
−0.999732 + 0.0231709i \(0.992624\pi\)
\(968\) −6.75869 −0.217233
\(969\) 0 0
\(970\) 0.848355 0.0272390
\(971\) 13.1165 + 31.6660i 0.420928 + 1.01621i 0.982075 + 0.188493i \(0.0603603\pi\)
−0.561147 + 0.827716i \(0.689640\pi\)
\(972\) −3.83319 1.82293i −0.122950 0.0584705i
\(973\) −6.37317 + 6.37317i −0.204314 + 0.204314i
\(974\) 25.1207 16.7851i 0.804920 0.537830i
\(975\) 0.892331 + 0.466238i 0.0285775 + 0.0149316i
\(976\) 7.46532 11.1726i 0.238959 0.357628i
\(977\) 26.0166 + 10.7764i 0.832345 + 0.344769i 0.757831 0.652451i \(-0.226259\pi\)
0.0745143 + 0.997220i \(0.476259\pi\)
\(978\) 22.2824 12.1806i 0.712512 0.389494i
\(979\) 12.4085 + 8.29109i 0.396577 + 0.264985i
\(980\) 0.145416 0.0289251i 0.00464516 0.000923980i
\(981\) −24.8022 23.8874i −0.791872 0.762665i
\(982\) −18.9356 18.9356i −0.604261 0.604261i
\(983\) −40.9235 8.14020i −1.30526 0.259632i −0.506999 0.861946i \(-0.669245\pi\)
−0.798259 + 0.602314i \(0.794245\pi\)
\(984\) 6.39905 21.8309i 0.203994 0.695945i
\(985\) 1.10464i 0.0351967i
\(986\) 0 0
\(987\) 5.73799 7.12723i 0.182642 0.226862i
\(988\) −0.197129 + 0.0816535i −0.00627151 + 0.00259774i
\(989\) −2.58337 + 12.9875i −0.0821463 + 0.412977i
\(990\) 1.09081 1.70083i 0.0346682 0.0540560i
\(991\) −5.63837 8.43842i −0.179109 0.268055i 0.731042 0.682333i \(-0.239034\pi\)
−0.910151 + 0.414277i \(0.864034\pi\)
\(992\) 2.67101 + 13.4281i 0.0848046 + 0.426341i
\(993\) 11.9538 3.74913i 0.379344 0.118975i
\(994\) −11.5652 + 27.9208i −0.366826 + 0.885595i
\(995\) 0.689176 1.66382i 0.0218483 0.0527466i
\(996\) −2.49296 + 0.781875i −0.0789923 + 0.0247747i
\(997\) −7.78912 39.1586i −0.246684 1.24016i −0.883235 0.468930i \(-0.844640\pi\)
0.636552 0.771234i \(-0.280360\pi\)
\(998\) −0.788061 1.17942i −0.0249456 0.0373338i
\(999\) 1.83518 0.613668i 0.0580624 0.0194156i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 867.2.i.d.224.2 32
3.2 odd 2 inner 867.2.i.d.224.3 32
17.2 even 8 867.2.i.g.131.3 32
17.3 odd 16 867.2.i.g.503.2 32
17.4 even 4 867.2.i.h.65.3 32
17.5 odd 16 867.2.i.i.653.3 32
17.6 odd 16 inner 867.2.i.d.329.3 32
17.7 odd 16 51.2.i.a.11.2 32
17.8 even 8 867.2.i.i.158.2 32
17.9 even 8 867.2.i.b.158.2 32
17.10 odd 16 867.2.i.h.827.2 32
17.11 odd 16 867.2.i.c.329.3 32
17.12 odd 16 867.2.i.b.653.3 32
17.13 even 4 51.2.i.a.14.3 yes 32
17.14 odd 16 867.2.i.f.503.2 32
17.15 even 8 867.2.i.f.131.3 32
17.16 even 2 867.2.i.c.224.2 32
51.2 odd 8 867.2.i.g.131.2 32
51.5 even 16 867.2.i.i.653.2 32
51.8 odd 8 867.2.i.i.158.3 32
51.11 even 16 867.2.i.c.329.2 32
51.14 even 16 867.2.i.f.503.3 32
51.20 even 16 867.2.i.g.503.3 32
51.23 even 16 inner 867.2.i.d.329.2 32
51.26 odd 8 867.2.i.b.158.3 32
51.29 even 16 867.2.i.b.653.2 32
51.32 odd 8 867.2.i.f.131.2 32
51.38 odd 4 867.2.i.h.65.2 32
51.41 even 16 51.2.i.a.11.3 yes 32
51.44 even 16 867.2.i.h.827.3 32
51.47 odd 4 51.2.i.a.14.2 yes 32
51.50 odd 2 867.2.i.c.224.3 32
68.7 even 16 816.2.cj.c.113.1 32
68.47 odd 4 816.2.cj.c.65.4 32
204.47 even 4 816.2.cj.c.65.1 32
204.143 odd 16 816.2.cj.c.113.4 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.2.i.a.11.2 32 17.7 odd 16
51.2.i.a.11.3 yes 32 51.41 even 16
51.2.i.a.14.2 yes 32 51.47 odd 4
51.2.i.a.14.3 yes 32 17.13 even 4
816.2.cj.c.65.1 32 204.47 even 4
816.2.cj.c.65.4 32 68.47 odd 4
816.2.cj.c.113.1 32 68.7 even 16
816.2.cj.c.113.4 32 204.143 odd 16
867.2.i.b.158.2 32 17.9 even 8
867.2.i.b.158.3 32 51.26 odd 8
867.2.i.b.653.2 32 51.29 even 16
867.2.i.b.653.3 32 17.12 odd 16
867.2.i.c.224.2 32 17.16 even 2
867.2.i.c.224.3 32 51.50 odd 2
867.2.i.c.329.2 32 51.11 even 16
867.2.i.c.329.3 32 17.11 odd 16
867.2.i.d.224.2 32 1.1 even 1 trivial
867.2.i.d.224.3 32 3.2 odd 2 inner
867.2.i.d.329.2 32 51.23 even 16 inner
867.2.i.d.329.3 32 17.6 odd 16 inner
867.2.i.f.131.2 32 51.32 odd 8
867.2.i.f.131.3 32 17.15 even 8
867.2.i.f.503.2 32 17.14 odd 16
867.2.i.f.503.3 32 51.14 even 16
867.2.i.g.131.2 32 51.2 odd 8
867.2.i.g.131.3 32 17.2 even 8
867.2.i.g.503.2 32 17.3 odd 16
867.2.i.g.503.3 32 51.20 even 16
867.2.i.h.65.2 32 51.38 odd 4
867.2.i.h.65.3 32 17.4 even 4
867.2.i.h.827.2 32 17.10 odd 16
867.2.i.h.827.3 32 51.44 even 16
867.2.i.i.158.2 32 17.8 even 8
867.2.i.i.158.3 32 51.8 odd 8
867.2.i.i.653.2 32 51.5 even 16
867.2.i.i.653.3 32 17.5 odd 16