Properties

Label 867.2.i.g.503.3
Level $867$
Weight $2$
Character 867.503
Analytic conductor $6.923$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [867,2,Mod(65,867)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(867, base_ring=CyclotomicField(16))
 
chi = DirichletCharacter(H, H._module([8, 9]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("867.65");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 867 = 3 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 867.i (of order \(16\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.92302985525\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(4\) over \(\Q(\zeta_{16})\)
Twist minimal: no (minimal twist has level 51)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 503.3
Character \(\chi\) \(=\) 867.503
Dual form 867.2.i.g.131.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.21437 + 0.503008i) q^{2} +(1.72523 - 0.153573i) q^{3} +(-0.192538 - 0.192538i) q^{4} +(-0.0274494 - 0.137998i) q^{5} +(2.17231 + 0.681311i) q^{6} +(-1.73519 - 0.345150i) q^{7} +(-1.14298 - 2.75940i) q^{8} +(2.95283 - 0.529896i) q^{9} +(0.0360802 - 0.181387i) q^{10} +(3.02807 - 2.02329i) q^{11} +(-0.361741 - 0.302603i) q^{12} +(0.0825311 - 0.0825311i) q^{13} +(-1.93354 - 1.29195i) q^{14} +(-0.0685492 - 0.233862i) q^{15} -3.38128i q^{16} +(3.85237 + 0.841809i) q^{18} +(2.56928 - 6.20278i) q^{19} +(-0.0212847 + 0.0318548i) q^{20} +(-3.04660 - 0.328986i) q^{21} +(4.69492 - 0.933878i) q^{22} +(3.48870 + 5.22121i) q^{23} +(-2.39567 - 4.58506i) q^{24} +(4.60111 - 1.90584i) q^{25} +(0.141737 - 0.0587094i) q^{26} +(5.01293 - 1.36767i) q^{27} +(0.267635 + 0.400544i) q^{28} +(-3.86068 + 0.767936i) q^{29} +(0.0343905 - 0.318476i) q^{30} +(-4.97452 + 7.44489i) q^{31} +(-0.585150 + 1.41268i) q^{32} +(4.91339 - 3.95567i) q^{33} +0.248926i q^{35} +(-0.670557 - 0.466507i) q^{36} +(-0.309641 - 0.206896i) q^{37} +(6.24010 - 6.24010i) q^{38} +(0.129711 - 0.155060i) q^{39} +(-0.349416 + 0.233473i) q^{40} +(-0.857920 + 4.31306i) q^{41} +(-3.53422 - 1.93198i) q^{42} +(-0.806985 - 1.94823i) q^{43} +(-0.972578 - 0.193458i) q^{44} +(-0.154178 - 0.392938i) q^{45} +(1.61026 + 8.09532i) q^{46} +(-2.11141 - 2.11141i) q^{47} +(-0.519272 - 5.83348i) q^{48} +(-3.57541 - 1.48098i) q^{49} +6.54610 q^{50} -0.0317807 q^{52} +(5.91755 + 2.45113i) q^{53} +(6.77550 + 0.860694i) q^{54} +(-0.362328 - 0.362328i) q^{55} +(1.03088 + 5.18257i) q^{56} +(3.48001 - 11.0958i) q^{57} +(-5.07456 - 1.00939i) q^{58} +(3.65974 + 8.83540i) q^{59} +(-0.0318290 + 0.0582256i) q^{60} +(0.775290 - 3.89765i) q^{61} +(-9.78574 + 6.53863i) q^{62} +(-5.30661 - 0.0997012i) q^{63} +(-6.20303 + 6.20303i) q^{64} +(-0.0136545 - 0.00912367i) q^{65} +(7.95640 - 2.33217i) q^{66} -5.81844i q^{67} +(6.82064 + 8.47201i) q^{69} +(-0.125212 + 0.302288i) q^{70} +(-7.22012 + 10.8057i) q^{71} +(-4.83722 - 7.54238i) q^{72} +(-4.38175 + 0.871585i) q^{73} +(-0.271949 - 0.407000i) q^{74} +(7.64528 - 3.99462i) q^{75} +(-1.68895 + 0.699588i) q^{76} +(-5.95260 + 2.46565i) q^{77} +(0.235513 - 0.123054i) q^{78} +(-1.35888 - 2.03371i) q^{79} +(-0.466609 + 0.0928142i) q^{80} +(8.43842 - 3.12939i) q^{81} +(-3.21133 + 4.80610i) q^{82} +(-2.12000 + 5.11813i) q^{83} +(0.523244 + 0.649928i) q^{84} -2.77180i q^{86} +(-6.54262 + 1.91776i) q^{87} +(-9.04408 - 6.04306i) q^{88} +(-2.89760 + 2.89760i) q^{89} +(0.0104222 - 0.554725i) q^{90} +(-0.171693 + 0.114721i) q^{91} +(0.333574 - 1.67699i) q^{92} +(-7.43885 + 13.6081i) q^{93} +(-1.50197 - 3.62608i) q^{94} +(-0.926494 - 0.184291i) q^{95} +(-0.792569 + 2.52705i) q^{96} +(0.894911 + 4.49902i) q^{97} +(-3.59692 - 3.59692i) q^{98} +(7.86924 - 7.57899i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 16 q^{4} + 8 q^{6} + 24 q^{9} + 16 q^{10} + 16 q^{12} + 16 q^{13} + 16 q^{15} + 16 q^{18} + 32 q^{19} - 16 q^{21} - 16 q^{22} - 24 q^{24} - 24 q^{27} + 8 q^{30} - 32 q^{31} - 24 q^{36} - 16 q^{37}+ \cdots + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/867\mathbb{Z}\right)^\times\).

\(n\) \(290\) \(292\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.21437 + 0.503008i 0.858689 + 0.355681i 0.768195 0.640216i \(-0.221155\pi\)
0.0904942 + 0.995897i \(0.471155\pi\)
\(3\) 1.72523 0.153573i 0.996061 0.0886652i
\(4\) −0.192538 0.192538i −0.0962690 0.0962690i
\(5\) −0.0274494 0.137998i −0.0122758 0.0617144i 0.974162 0.225851i \(-0.0725162\pi\)
−0.986438 + 0.164137i \(0.947516\pi\)
\(6\) 2.17231 + 0.681311i 0.886843 + 0.278144i
\(7\) −1.73519 0.345150i −0.655839 0.130455i −0.144056 0.989569i \(-0.546015\pi\)
−0.511783 + 0.859115i \(0.671015\pi\)
\(8\) −1.14298 2.75940i −0.404105 0.975595i
\(9\) 2.95283 0.529896i 0.984277 0.176632i
\(10\) 0.0360802 0.181387i 0.0114096 0.0573597i
\(11\) 3.02807 2.02329i 0.912997 0.610045i −0.00785036 0.999969i \(-0.502499\pi\)
0.920847 + 0.389924i \(0.127499\pi\)
\(12\) −0.361741 0.302603i −0.104426 0.0873541i
\(13\) 0.0825311 0.0825311i 0.0228900 0.0228900i −0.695569 0.718459i \(-0.744848\pi\)
0.718459 + 0.695569i \(0.244848\pi\)
\(14\) −1.93354 1.29195i −0.516762 0.345289i
\(15\) −0.0685492 0.233862i −0.0176993 0.0603829i
\(16\) 3.38128i 0.845320i
\(17\) 0 0
\(18\) 3.85237 + 0.841809i 0.908012 + 0.198416i
\(19\) 2.56928 6.20278i 0.589432 1.42302i −0.294614 0.955616i \(-0.595191\pi\)
0.884046 0.467399i \(-0.154809\pi\)
\(20\) −0.0212847 + 0.0318548i −0.00475941 + 0.00712296i
\(21\) −3.04660 0.328986i −0.664823 0.0717906i
\(22\) 4.69492 0.933878i 1.00096 0.199104i
\(23\) 3.48870 + 5.22121i 0.727444 + 1.08870i 0.992233 + 0.124391i \(0.0396977\pi\)
−0.264789 + 0.964306i \(0.585302\pi\)
\(24\) −2.39567 4.58506i −0.489014 0.935922i
\(25\) 4.60111 1.90584i 0.920222 0.381168i
\(26\) 0.141737 0.0587094i 0.0277969 0.0115139i
\(27\) 5.01293 1.36767i 0.964739 0.263208i
\(28\) 0.267635 + 0.400544i 0.0505782 + 0.0756957i
\(29\) −3.86068 + 0.767936i −0.716909 + 0.142602i −0.540049 0.841634i \(-0.681594\pi\)
−0.176861 + 0.984236i \(0.556594\pi\)
\(30\) 0.0343905 0.318476i 0.00627881 0.0581455i
\(31\) −4.97452 + 7.44489i −0.893450 + 1.33714i 0.0475974 + 0.998867i \(0.484844\pi\)
−0.941047 + 0.338275i \(0.890156\pi\)
\(32\) −0.585150 + 1.41268i −0.103441 + 0.249728i
\(33\) 4.91339 3.95567i 0.855311 0.688593i
\(34\) 0 0
\(35\) 0.248926i 0.0420762i
\(36\) −0.670557 0.466507i −0.111760 0.0777511i
\(37\) −0.309641 0.206896i −0.0509047 0.0340135i 0.529858 0.848087i \(-0.322245\pi\)
−0.580762 + 0.814073i \(0.697245\pi\)
\(38\) 6.24010 6.24010i 1.01228 1.01228i
\(39\) 0.129711 0.155060i 0.0207703 0.0248294i
\(40\) −0.349416 + 0.233473i −0.0552476 + 0.0369153i
\(41\) −0.857920 + 4.31306i −0.133985 + 0.673586i 0.854154 + 0.520020i \(0.174076\pi\)
−0.988138 + 0.153566i \(0.950924\pi\)
\(42\) −3.53422 1.93198i −0.545341 0.298110i
\(43\) −0.806985 1.94823i −0.123064 0.297103i 0.850326 0.526256i \(-0.176404\pi\)
−0.973390 + 0.229153i \(0.926404\pi\)
\(44\) −0.972578 0.193458i −0.146622 0.0291648i
\(45\) −0.154178 0.392938i −0.0229835 0.0585758i
\(46\) 1.61026 + 8.09532i 0.237420 + 1.19359i
\(47\) −2.11141 2.11141i −0.307980 0.307980i 0.536145 0.844126i \(-0.319880\pi\)
−0.844126 + 0.536145i \(0.819880\pi\)
\(48\) −0.519272 5.83348i −0.0749505 0.841990i
\(49\) −3.57541 1.48098i −0.510773 0.211569i
\(50\) 6.54610 0.925758
\(51\) 0 0
\(52\) −0.0317807 −0.00440720
\(53\) 5.91755 + 2.45113i 0.812837 + 0.336688i 0.750085 0.661341i \(-0.230012\pi\)
0.0627519 + 0.998029i \(0.480012\pi\)
\(54\) 6.77550 + 0.860694i 0.922029 + 0.117126i
\(55\) −0.362328 0.362328i −0.0488563 0.0488563i
\(56\) 1.03088 + 5.18257i 0.137757 + 0.692551i
\(57\) 3.48001 11.0958i 0.460939 1.46967i
\(58\) −5.07456 1.00939i −0.666323 0.132540i
\(59\) 3.65974 + 8.83540i 0.476458 + 1.15027i 0.961259 + 0.275647i \(0.0888919\pi\)
−0.484801 + 0.874624i \(0.661108\pi\)
\(60\) −0.0318290 + 0.0582256i −0.00410910 + 0.00751690i
\(61\) 0.775290 3.89765i 0.0992658 0.499043i −0.898881 0.438193i \(-0.855619\pi\)
0.998147 0.0608502i \(-0.0193812\pi\)
\(62\) −9.78574 + 6.53863i −1.24279 + 0.830406i
\(63\) −5.30661 0.0997012i −0.668570 0.0125612i
\(64\) −6.20303 + 6.20303i −0.775378 + 0.775378i
\(65\) −0.0136545 0.00912367i −0.00169364 0.00113165i
\(66\) 7.95640 2.33217i 0.979365 0.287070i
\(67\) 5.81844i 0.710836i −0.934707 0.355418i \(-0.884339\pi\)
0.934707 0.355418i \(-0.115661\pi\)
\(68\) 0 0
\(69\) 6.82064 + 8.47201i 0.821109 + 1.01991i
\(70\) −0.125212 + 0.302288i −0.0149657 + 0.0361303i
\(71\) −7.22012 + 10.8057i −0.856870 + 1.28240i 0.100910 + 0.994896i \(0.467825\pi\)
−0.957780 + 0.287502i \(0.907175\pi\)
\(72\) −4.83722 7.54238i −0.570072 0.888878i
\(73\) −4.38175 + 0.871585i −0.512845 + 0.102011i −0.444727 0.895666i \(-0.646699\pi\)
−0.0681180 + 0.997677i \(0.521699\pi\)
\(74\) −0.271949 0.407000i −0.0316134 0.0473128i
\(75\) 7.64528 3.99462i 0.882801 0.461259i
\(76\) −1.68895 + 0.699588i −0.193736 + 0.0802482i
\(77\) −5.95260 + 2.46565i −0.678362 + 0.280987i
\(78\) 0.235513 0.123054i 0.0266666 0.0139331i
\(79\) −1.35888 2.03371i −0.152886 0.228811i 0.747118 0.664691i \(-0.231437\pi\)
−0.900004 + 0.435881i \(0.856437\pi\)
\(80\) −0.466609 + 0.0928142i −0.0521684 + 0.0103769i
\(81\) 8.43842 3.12939i 0.937602 0.347710i
\(82\) −3.21133 + 4.80610i −0.354633 + 0.530745i
\(83\) −2.12000 + 5.11813i −0.232700 + 0.561788i −0.996493 0.0836731i \(-0.973335\pi\)
0.763793 + 0.645461i \(0.223335\pi\)
\(84\) 0.523244 + 0.649928i 0.0570906 + 0.0709130i
\(85\) 0 0
\(86\) 2.77180i 0.298890i
\(87\) −6.54262 + 1.91776i −0.701442 + 0.205605i
\(88\) −9.04408 6.04306i −0.964103 0.644193i
\(89\) −2.89760 + 2.89760i −0.307145 + 0.307145i −0.843801 0.536656i \(-0.819687\pi\)
0.536656 + 0.843801i \(0.319687\pi\)
\(90\) 0.0104222 0.554725i 0.00109860 0.0584732i
\(91\) −0.171693 + 0.114721i −0.0179983 + 0.0120261i
\(92\) 0.333574 1.67699i 0.0347775 0.174838i
\(93\) −7.43885 + 13.6081i −0.771373 + 1.41109i
\(94\) −1.50197 3.62608i −0.154917 0.374002i
\(95\) −0.926494 0.184291i −0.0950563 0.0189079i
\(96\) −0.792569 + 2.52705i −0.0808912 + 0.257916i
\(97\) 0.894911 + 4.49902i 0.0908645 + 0.456807i 0.999252 + 0.0386768i \(0.0123143\pi\)
−0.908387 + 0.418130i \(0.862686\pi\)
\(98\) −3.59692 3.59692i −0.363344 0.363344i
\(99\) 7.86924 7.57899i 0.790888 0.761717i
\(100\) −1.25283 0.518941i −0.125283 0.0518941i
\(101\) −5.06729 −0.504214 −0.252107 0.967699i \(-0.581123\pi\)
−0.252107 + 0.967699i \(0.581123\pi\)
\(102\) 0 0
\(103\) −15.9760 −1.57416 −0.787080 0.616851i \(-0.788408\pi\)
−0.787080 + 0.616851i \(0.788408\pi\)
\(104\) −0.322068 0.133405i −0.0315813 0.0130814i
\(105\) 0.0382282 + 0.429454i 0.00373069 + 0.0419104i
\(106\) 5.95315 + 5.95315i 0.578221 + 0.578221i
\(107\) 0.265818 + 1.33636i 0.0256976 + 0.129191i 0.991505 0.130071i \(-0.0415207\pi\)
−0.965807 + 0.259262i \(0.916521\pi\)
\(108\) −1.22851 0.701852i −0.118213 0.0675357i
\(109\) 11.2577 + 2.23930i 1.07829 + 0.214486i 0.702116 0.712062i \(-0.252239\pi\)
0.376176 + 0.926548i \(0.377239\pi\)
\(110\) −0.257746 0.622254i −0.0245751 0.0593296i
\(111\) −0.565976 0.309390i −0.0537201 0.0293660i
\(112\) −1.16705 + 5.86715i −0.110276 + 0.554394i
\(113\) 11.2676 7.52875i 1.05996 0.708245i 0.101899 0.994795i \(-0.467508\pi\)
0.958066 + 0.286549i \(0.0925082\pi\)
\(114\) 9.80729 11.7239i 0.918537 1.09805i
\(115\) 0.624752 0.624752i 0.0582584 0.0582584i
\(116\) 0.891183 + 0.595470i 0.0827443 + 0.0552880i
\(117\) 0.199968 0.287433i 0.0184870 0.0265732i
\(118\) 12.5703i 1.15719i
\(119\) 0 0
\(120\) −0.566968 + 0.456454i −0.0517569 + 0.0416684i
\(121\) 0.865970 2.09064i 0.0787246 0.190058i
\(122\) 2.90204 4.34321i 0.262738 0.393215i
\(123\) −0.817741 + 7.57276i −0.0737332 + 0.682813i
\(124\) 2.39121 0.475641i 0.214737 0.0427138i
\(125\) −0.780146 1.16757i −0.0697784 0.104431i
\(126\) −6.39403 2.79034i −0.569626 0.248583i
\(127\) 9.13631 3.78439i 0.810717 0.335810i 0.0614768 0.998109i \(-0.480419\pi\)
0.749240 + 0.662299i \(0.230419\pi\)
\(128\) −7.82759 + 3.24229i −0.691867 + 0.286581i
\(129\) −1.69143 3.23722i −0.148922 0.285021i
\(130\) −0.0119924 0.0179478i −0.00105180 0.00157413i
\(131\) 12.7789 2.54189i 1.11650 0.222086i 0.397845 0.917453i \(-0.369758\pi\)
0.718655 + 0.695367i \(0.244758\pi\)
\(132\) −1.70763 0.184398i −0.148630 0.0160497i
\(133\) −6.59907 + 9.87620i −0.572212 + 0.856375i
\(134\) 2.92672 7.06574i 0.252830 0.610387i
\(135\) −0.326337 0.654231i −0.0280866 0.0563073i
\(136\) 0 0
\(137\) 3.20492i 0.273815i 0.990584 + 0.136907i \(0.0437163\pi\)
−0.990584 + 0.136907i \(0.956284\pi\)
\(138\) 4.02129 + 13.7190i 0.342315 + 1.16784i
\(139\) −4.23589 2.83033i −0.359283 0.240065i 0.362807 0.931864i \(-0.381818\pi\)
−0.722090 + 0.691799i \(0.756818\pi\)
\(140\) 0.0479277 0.0479277i 0.00405063 0.00405063i
\(141\) −3.96691 3.31840i −0.334074 0.279460i
\(142\) −14.2032 + 9.49030i −1.19191 + 0.796408i
\(143\) 0.0829254 0.416894i 0.00693457 0.0348624i
\(144\) −1.79173 9.98434i −0.149311 0.832029i
\(145\) 0.211947 + 0.511685i 0.0176012 + 0.0424931i
\(146\) −5.75948 1.14563i −0.476658 0.0948132i
\(147\) −6.39584 2.00595i −0.527520 0.165448i
\(148\) 0.0197824 + 0.0994530i 0.00162611 + 0.00817499i
\(149\) 15.7137 + 15.7137i 1.28731 + 1.28731i 0.936412 + 0.350902i \(0.114125\pi\)
0.350902 + 0.936412i \(0.385875\pi\)
\(150\) 11.2935 1.00530i 0.922112 0.0820826i
\(151\) −3.81101 1.57857i −0.310135 0.128462i 0.222187 0.975004i \(-0.428681\pi\)
−0.532322 + 0.846542i \(0.678681\pi\)
\(152\) −20.0526 −1.62648
\(153\) 0 0
\(154\) −8.46890 −0.682443
\(155\) 1.16393 + 0.482114i 0.0934887 + 0.0387243i
\(156\) −0.0548291 + 0.00488065i −0.00438984 + 0.000390765i
\(157\) 9.87094 + 9.87094i 0.787787 + 0.787787i 0.981131 0.193344i \(-0.0619335\pi\)
−0.193344 + 0.981131i \(0.561933\pi\)
\(158\) −0.627212 3.15321i −0.0498983 0.250856i
\(159\) 10.5855 + 3.31998i 0.839489 + 0.263292i
\(160\) 0.211008 + 0.0419721i 0.0166817 + 0.00331819i
\(161\) −4.25145 10.2639i −0.335061 0.808909i
\(162\) 11.8215 + 0.444363i 0.928782 + 0.0349125i
\(163\) −2.17609 + 10.9399i −0.170444 + 0.856881i 0.797035 + 0.603933i \(0.206400\pi\)
−0.967480 + 0.252949i \(0.918600\pi\)
\(164\) 0.995609 0.665245i 0.0777440 0.0519469i
\(165\) −0.680742 0.569455i −0.0529957 0.0443320i
\(166\) −5.14893 + 5.14893i −0.399634 + 0.399634i
\(167\) 1.74605 + 1.16668i 0.135114 + 0.0902801i 0.621290 0.783581i \(-0.286609\pi\)
−0.486177 + 0.873861i \(0.661609\pi\)
\(168\) 2.57440 + 8.78281i 0.198619 + 0.677609i
\(169\) 12.9864i 0.998952i
\(170\) 0 0
\(171\) 4.29981 19.6772i 0.328815 1.50475i
\(172\) −0.219734 + 0.530484i −0.0167545 + 0.0404490i
\(173\) 6.84154 10.2391i 0.520153 0.778463i −0.474662 0.880168i \(-0.657430\pi\)
0.994815 + 0.101705i \(0.0324297\pi\)
\(174\) −8.90980 0.962121i −0.675450 0.0729382i
\(175\) −8.64158 + 1.71892i −0.653242 + 0.129938i
\(176\) −6.84131 10.2387i −0.515683 0.771774i
\(177\) 7.67077 + 14.6811i 0.576570 + 1.10350i
\(178\) −4.97628 + 2.06124i −0.372988 + 0.154497i
\(179\) 17.0796 7.07462i 1.27659 0.528782i 0.361630 0.932322i \(-0.382220\pi\)
0.914962 + 0.403540i \(0.132220\pi\)
\(180\) −0.0459704 + 0.105341i −0.00342643 + 0.00785163i
\(181\) 1.18265 + 1.76995i 0.0879054 + 0.131560i 0.872816 0.488049i \(-0.162291\pi\)
−0.784911 + 0.619609i \(0.787291\pi\)
\(182\) −0.266204 + 0.0529513i −0.0197324 + 0.00392501i
\(183\) 0.738981 6.84340i 0.0546271 0.505879i
\(184\) 10.4199 15.5945i 0.768164 1.14964i
\(185\) −0.0200517 + 0.0484090i −0.00147423 + 0.00355910i
\(186\) −15.8785 + 12.7834i −1.16427 + 0.937328i
\(187\) 0 0
\(188\) 0.813051i 0.0592979i
\(189\) −9.17043 + 0.642943i −0.667050 + 0.0467672i
\(190\) −1.03241 0.689832i −0.0748986 0.0500457i
\(191\) −12.2604 + 12.2604i −0.887130 + 0.887130i −0.994247 0.107116i \(-0.965838\pi\)
0.107116 + 0.994247i \(0.465838\pi\)
\(192\) −9.74903 + 11.6543i −0.703575 + 0.841074i
\(193\) −13.5001 + 9.02046i −0.971757 + 0.649307i −0.936720 0.350079i \(-0.886155\pi\)
−0.0350364 + 0.999386i \(0.511155\pi\)
\(194\) −1.17629 + 5.91362i −0.0844529 + 0.424573i
\(195\) −0.0249583 0.0136435i −0.00178730 0.000977028i
\(196\) 0.403257 + 0.973548i 0.0288040 + 0.0695391i
\(197\) −7.70009 1.53164i −0.548609 0.109125i −0.0869994 0.996208i \(-0.527728\pi\)
−0.461609 + 0.887083i \(0.652728\pi\)
\(198\) 13.3685 5.24541i 0.950055 0.372775i
\(199\) −2.49706 12.5536i −0.177012 0.889898i −0.962554 0.271090i \(-0.912616\pi\)
0.785542 0.618808i \(-0.212384\pi\)
\(200\) −10.5180 10.5180i −0.743732 0.743732i
\(201\) −0.893554 10.0381i −0.0630264 0.708036i
\(202\) −6.15356 2.54889i −0.432963 0.179339i
\(203\) 6.96405 0.488780
\(204\) 0 0
\(205\) 0.618741 0.0432147
\(206\) −19.4007 8.03605i −1.35171 0.559898i
\(207\) 13.0682 + 13.5687i 0.908305 + 0.943090i
\(208\) −0.279061 0.279061i −0.0193494 0.0193494i
\(209\) −4.77008 23.9808i −0.329954 1.65879i
\(210\) −0.169596 + 0.540745i −0.0117032 + 0.0373150i
\(211\) −5.02173 0.998885i −0.345710 0.0687661i 0.0191813 0.999816i \(-0.493894\pi\)
−0.364892 + 0.931050i \(0.618894\pi\)
\(212\) −0.667417 1.61129i −0.0458384 0.110664i
\(213\) −10.7969 + 19.7511i −0.739792 + 1.35332i
\(214\) −0.349398 + 1.75654i −0.0238843 + 0.120075i
\(215\) −0.246700 + 0.164840i −0.0168248 + 0.0112420i
\(216\) −9.50362 12.2695i −0.646640 0.834831i
\(217\) 11.2013 11.2013i 0.760395 0.760395i
\(218\) 12.5446 + 8.38205i 0.849630 + 0.567704i
\(219\) −7.42568 + 2.17660i −0.501781 + 0.147081i
\(220\) 0.139524i 0.00940669i
\(221\) 0 0
\(222\) −0.531678 0.660405i −0.0356839 0.0443235i
\(223\) −0.0722764 + 0.174491i −0.00483999 + 0.0116848i −0.926281 0.376833i \(-0.877013\pi\)
0.921441 + 0.388518i \(0.127013\pi\)
\(224\) 1.50293 2.24929i 0.100419 0.150287i
\(225\) 12.5764 8.06574i 0.838426 0.537716i
\(226\) 17.4700 3.47500i 1.16209 0.231154i
\(227\) −1.18348 1.77120i −0.0785504 0.117559i 0.790114 0.612960i \(-0.210021\pi\)
−0.868665 + 0.495401i \(0.835021\pi\)
\(228\) −2.80639 + 1.46633i −0.185858 + 0.0971098i
\(229\) 15.9683 6.61427i 1.05521 0.437084i 0.213463 0.976951i \(-0.431526\pi\)
0.841750 + 0.539868i \(0.181526\pi\)
\(230\) 1.07293 0.444424i 0.0707472 0.0293045i
\(231\) −9.89094 + 5.16796i −0.650776 + 0.340027i
\(232\) 6.53172 + 9.77541i 0.428828 + 0.641787i
\(233\) −9.60397 + 1.91035i −0.629177 + 0.125151i −0.499371 0.866388i \(-0.666435\pi\)
−0.129806 + 0.991539i \(0.541435\pi\)
\(234\) 0.387416 0.248465i 0.0253262 0.0162427i
\(235\) −0.233412 + 0.349326i −0.0152261 + 0.0227875i
\(236\) 0.996510 2.40579i 0.0648673 0.156603i
\(237\) −2.65671 3.29993i −0.172572 0.214354i
\(238\) 0 0
\(239\) 22.4367i 1.45131i −0.688059 0.725654i \(-0.741537\pi\)
0.688059 0.725654i \(-0.258463\pi\)
\(240\) −0.790753 + 0.231784i −0.0510429 + 0.0149616i
\(241\) −0.337157 0.225281i −0.0217182 0.0145116i 0.544664 0.838655i \(-0.316657\pi\)
−0.566382 + 0.824143i \(0.691657\pi\)
\(242\) 2.10322 2.10322i 0.135200 0.135200i
\(243\) 14.0776 6.69482i 0.903080 0.429473i
\(244\) −0.899718 + 0.601172i −0.0575985 + 0.0384861i
\(245\) −0.106229 + 0.534050i −0.00678674 + 0.0341192i
\(246\) −4.80220 + 8.78480i −0.306177 + 0.560098i
\(247\) −0.299877 0.723968i −0.0190807 0.0460650i
\(248\) 26.2292 + 5.21731i 1.66556 + 0.331300i
\(249\) −2.87148 + 9.15553i −0.181973 + 0.580208i
\(250\) −0.360088 1.81028i −0.0227739 0.114492i
\(251\) 0.749951 + 0.749951i 0.0473365 + 0.0473365i 0.730379 0.683042i \(-0.239344\pi\)
−0.683042 + 0.730379i \(0.739344\pi\)
\(252\) 1.00253 + 1.04092i 0.0631533 + 0.0655718i
\(253\) 21.1280 + 8.75152i 1.32831 + 0.550203i
\(254\) 12.9984 0.815594
\(255\) 0 0
\(256\) 6.40833 0.400521
\(257\) −18.5997 7.70425i −1.16022 0.480578i −0.282270 0.959335i \(-0.591087\pi\)
−0.877947 + 0.478757i \(0.841087\pi\)
\(258\) −0.425672 4.78198i −0.0265012 0.297713i
\(259\) 0.465876 + 0.465876i 0.0289481 + 0.0289481i
\(260\) 0.000872364 0.00438567i 5.41017e−5 0.000271988i
\(261\) −10.9930 + 4.31334i −0.680449 + 0.266989i
\(262\) 16.7969 + 3.34111i 1.03772 + 0.206415i
\(263\) −2.11297 5.10116i −0.130291 0.314551i 0.845249 0.534373i \(-0.179452\pi\)
−0.975540 + 0.219822i \(0.929452\pi\)
\(264\) −16.5312 9.03675i −1.01742 0.556173i
\(265\) 0.175817 0.883889i 0.0108003 0.0542969i
\(266\) −12.9815 + 8.67397i −0.795948 + 0.531835i
\(267\) −4.55404 + 5.44402i −0.278702 + 0.333169i
\(268\) −1.12027 + 1.12027i −0.0684314 + 0.0684314i
\(269\) −7.59932 5.07770i −0.463339 0.309593i 0.301900 0.953340i \(-0.402379\pi\)
−0.765239 + 0.643747i \(0.777379\pi\)
\(270\) −0.0672099 0.958628i −0.00409026 0.0583403i
\(271\) 2.64822i 0.160868i 0.996760 + 0.0804339i \(0.0256306\pi\)
−0.996760 + 0.0804339i \(0.974369\pi\)
\(272\) 0 0
\(273\) −0.278591 + 0.224288i −0.0168611 + 0.0135745i
\(274\) −1.61210 + 3.89196i −0.0973906 + 0.235122i
\(275\) 10.0764 15.0804i 0.607629 0.909382i
\(276\) 0.317951 2.94442i 0.0191384 0.177233i
\(277\) −20.2921 + 4.03634i −1.21923 + 0.242520i −0.762444 0.647055i \(-0.776001\pi\)
−0.456789 + 0.889575i \(0.651001\pi\)
\(278\) −3.72025 5.56775i −0.223126 0.333931i
\(279\) −10.7439 + 24.6195i −0.643220 + 1.47393i
\(280\) 0.686886 0.284517i 0.0410493 0.0170032i
\(281\) 9.50546 3.93729i 0.567048 0.234879i −0.0806938 0.996739i \(-0.525714\pi\)
0.647742 + 0.761860i \(0.275714\pi\)
\(282\) −3.14811 6.02516i −0.187467 0.358793i
\(283\) −7.13505 10.6783i −0.424134 0.634762i 0.556445 0.830884i \(-0.312165\pi\)
−0.980579 + 0.196122i \(0.937165\pi\)
\(284\) 3.47065 0.690355i 0.205945 0.0409650i
\(285\) −1.62672 0.175660i −0.0963584 0.0104052i
\(286\) 0.310403 0.464551i 0.0183545 0.0274695i
\(287\) 2.97730 7.18785i 0.175745 0.424285i
\(288\) −0.979277 + 4.48146i −0.0577044 + 0.264073i
\(289\) 0 0
\(290\) 0.727985i 0.0427488i
\(291\) 2.23485 + 7.62441i 0.131009 + 0.446951i
\(292\) 1.01147 + 0.675840i 0.0591916 + 0.0395506i
\(293\) 0.797696 0.797696i 0.0466019 0.0466019i −0.683422 0.730024i \(-0.739509\pi\)
0.730024 + 0.683422i \(0.239509\pi\)
\(294\) −6.75790 5.65313i −0.394129 0.329697i
\(295\) 1.11881 0.747562i 0.0651394 0.0435248i
\(296\) −0.216994 + 1.09090i −0.0126125 + 0.0634074i
\(297\) 12.4123 14.2840i 0.720235 0.828842i
\(298\) 11.1781 + 26.9863i 0.647530 + 1.56327i
\(299\) 0.718839 + 0.142986i 0.0415715 + 0.00826909i
\(300\) −2.24112 0.702891i −0.129391 0.0405814i
\(301\) 0.727837 + 3.65908i 0.0419518 + 0.210906i
\(302\) −3.83394 3.83394i −0.220618 0.220618i
\(303\) −8.74223 + 0.778197i −0.502228 + 0.0447062i
\(304\) −20.9733 8.68744i −1.20290 0.498259i
\(305\) −0.559148 −0.0320167
\(306\) 0 0
\(307\) −19.5814 −1.11757 −0.558785 0.829312i \(-0.688732\pi\)
−0.558785 + 0.829312i \(0.688732\pi\)
\(308\) 1.62083 + 0.671371i 0.0923555 + 0.0382549i
\(309\) −27.5622 + 2.45347i −1.56796 + 0.139573i
\(310\) 1.17093 + 1.17093i 0.0665042 + 0.0665042i
\(311\) 5.73078 + 28.8106i 0.324963 + 1.63370i 0.705342 + 0.708867i \(0.250793\pi\)
−0.380380 + 0.924830i \(0.624207\pi\)
\(312\) −0.576128 0.180693i −0.0326168 0.0102297i
\(313\) −17.4779 3.47657i −0.987910 0.196507i −0.325413 0.945572i \(-0.605503\pi\)
−0.662497 + 0.749065i \(0.730503\pi\)
\(314\) 7.02180 + 16.9521i 0.396263 + 0.956664i
\(315\) 0.131905 + 0.735036i 0.00743200 + 0.0414146i
\(316\) −0.129930 + 0.653204i −0.00730915 + 0.0367456i
\(317\) −11.7412 + 7.84523i −0.659452 + 0.440632i −0.839745 0.542981i \(-0.817296\pi\)
0.180293 + 0.983613i \(0.442296\pi\)
\(318\) 11.1848 + 9.35630i 0.627212 + 0.524675i
\(319\) −10.1366 + 10.1366i −0.567542 + 0.567542i
\(320\) 1.02627 + 0.685733i 0.0573704 + 0.0383337i
\(321\) 0.663825 + 2.26470i 0.0370511 + 0.126403i
\(322\) 14.6027i 0.813775i
\(323\) 0 0
\(324\) −2.22724 1.02219i −0.123736 0.0567883i
\(325\) 0.222443 0.537026i 0.0123389 0.0297888i
\(326\) −8.14545 + 12.1905i −0.451135 + 0.675171i
\(327\) 19.7660 + 2.13442i 1.09306 + 0.118034i
\(328\) 12.8820 2.56239i 0.711291 0.141485i
\(329\) 2.93493 + 4.39244i 0.161808 + 0.242163i
\(330\) −0.540232 1.03395i −0.0297388 0.0569169i
\(331\) −6.68245 + 2.76796i −0.367301 + 0.152141i −0.558697 0.829372i \(-0.688698\pi\)
0.191396 + 0.981513i \(0.438698\pi\)
\(332\) 1.39362 0.577254i 0.0764846 0.0316810i
\(333\) −1.02395 0.446851i −0.0561122 0.0244873i
\(334\) 1.53351 + 2.29505i 0.0839097 + 0.125580i
\(335\) −0.802931 + 0.159713i −0.0438688 + 0.00872605i
\(336\) −1.11239 + 10.3014i −0.0606860 + 0.561988i
\(337\) −7.42687 + 11.1151i −0.404568 + 0.605478i −0.976681 0.214696i \(-0.931124\pi\)
0.572113 + 0.820175i \(0.306124\pi\)
\(338\) −6.53226 + 15.7703i −0.355308 + 0.857789i
\(339\) 18.2829 14.7192i 0.992993 0.799438i
\(340\) 0 0
\(341\) 32.6085i 1.76585i
\(342\) 15.1194 21.7326i 0.817561 1.17516i
\(343\) 15.9900 + 10.6842i 0.863378 + 0.576891i
\(344\) −4.45359 + 4.45359i −0.240121 + 0.240121i
\(345\) 0.981895 1.17378i 0.0528634 0.0631944i
\(346\) 13.4585 8.99268i 0.723534 0.483450i
\(347\) 6.53027 32.8299i 0.350563 1.76240i −0.255329 0.966854i \(-0.582184\pi\)
0.605893 0.795546i \(-0.292816\pi\)
\(348\) 1.62894 + 0.890460i 0.0873205 + 0.0477337i
\(349\) −10.6503 25.7122i −0.570099 1.37634i −0.901471 0.432840i \(-0.857511\pi\)
0.331372 0.943500i \(-0.392489\pi\)
\(350\) −11.3587 2.25939i −0.607148 0.120769i
\(351\) 0.300848 0.526598i 0.0160581 0.0281077i
\(352\) 1.08638 + 5.46161i 0.0579043 + 0.291105i
\(353\) 5.10785 + 5.10785i 0.271864 + 0.271864i 0.829850 0.557986i \(-0.188426\pi\)
−0.557986 + 0.829850i \(0.688426\pi\)
\(354\) 1.93046 + 21.6867i 0.102603 + 1.15263i
\(355\) 1.68935 + 0.699750i 0.0896611 + 0.0371389i
\(356\) 1.11580 0.0591371
\(357\) 0 0
\(358\) 24.2996 1.28427
\(359\) 25.4579 + 10.5450i 1.34362 + 0.556544i 0.934508 0.355942i \(-0.115840\pi\)
0.409108 + 0.912486i \(0.365840\pi\)
\(360\) −0.908051 + 0.874559i −0.0478585 + 0.0460933i
\(361\) −18.4383 18.4383i −0.970437 0.970437i
\(362\) 0.545867 + 2.74426i 0.0286901 + 0.144235i
\(363\) 1.17293 3.73982i 0.0615630 0.196290i
\(364\) 0.0551455 + 0.0109691i 0.00289041 + 0.000574939i
\(365\) 0.240553 + 0.580747i 0.0125911 + 0.0303977i
\(366\) 4.33968 7.93870i 0.226839 0.414963i
\(367\) 2.19159 11.0178i 0.114400 0.575127i −0.880482 0.474080i \(-0.842781\pi\)
0.994882 0.101047i \(-0.0322192\pi\)
\(368\) 17.6544 11.7963i 0.920297 0.614923i
\(369\) −0.247822 + 13.1903i −0.0129011 + 0.686661i
\(370\) −0.0487002 + 0.0487002i −0.00253180 + 0.00253180i
\(371\) −9.42204 6.29561i −0.489168 0.326852i
\(372\) 4.05234 1.18781i 0.210104 0.0615853i
\(373\) 5.50325i 0.284948i 0.989799 + 0.142474i \(0.0455057\pi\)
−0.989799 + 0.142474i \(0.954494\pi\)
\(374\) 0 0
\(375\) −1.52524 1.89452i −0.0787630 0.0978326i
\(376\) −3.41292 + 8.23951i −0.176008 + 0.424920i
\(377\) −0.255247 + 0.382005i −0.0131459 + 0.0196742i
\(378\) −11.4597 3.83203i −0.589423 0.197098i
\(379\) −5.16575 + 1.02753i −0.265347 + 0.0527808i −0.325971 0.945380i \(-0.605691\pi\)
0.0606237 + 0.998161i \(0.480691\pi\)
\(380\) 0.142902 + 0.213868i 0.00733073 + 0.0109712i
\(381\) 15.1811 7.93202i 0.777749 0.406370i
\(382\) −21.0557 + 8.72156i −1.07730 + 0.446234i
\(383\) −19.5477 + 8.09691i −0.998840 + 0.413733i −0.821372 0.570394i \(-0.806791\pi\)
−0.177468 + 0.984127i \(0.556791\pi\)
\(384\) −13.0065 + 6.79580i −0.663733 + 0.346797i
\(385\) 0.503649 + 0.753764i 0.0256683 + 0.0384154i
\(386\) −20.9314 + 4.16352i −1.06538 + 0.211918i
\(387\) −3.41525 5.32519i −0.173607 0.270694i
\(388\) 0.693928 1.03854i 0.0352289 0.0527237i
\(389\) 4.78245 11.5459i 0.242480 0.585398i −0.755048 0.655669i \(-0.772387\pi\)
0.997528 + 0.0702713i \(0.0223865\pi\)
\(390\) −0.0234459 0.0291224i −0.00118723 0.00147467i
\(391\) 0 0
\(392\) 11.5587i 0.583804i
\(393\) 21.6562 6.34783i 1.09241 0.320206i
\(394\) −8.58033 5.73319i −0.432271 0.288834i
\(395\) −0.243347 + 0.243347i −0.0122441 + 0.0122441i
\(396\) −2.97437 0.0558828i −0.149468 0.00280822i
\(397\) 32.3438 21.6114i 1.62329 1.08465i 0.691049 0.722808i \(-0.257149\pi\)
0.932240 0.361839i \(-0.117851\pi\)
\(398\) 3.28219 16.5007i 0.164521 0.827105i
\(399\) −9.86819 + 18.0521i −0.494027 + 0.903738i
\(400\) −6.44418 15.5576i −0.322209 0.777881i
\(401\) 26.7045 + 5.31186i 1.33356 + 0.265262i 0.809851 0.586635i \(-0.199548\pi\)
0.523709 + 0.851897i \(0.324548\pi\)
\(402\) 3.96417 12.6395i 0.197715 0.630400i
\(403\) 0.203883 + 1.02499i 0.0101561 + 0.0510583i
\(404\) 0.975645 + 0.975645i 0.0485401 + 0.0485401i
\(405\) −0.663478 1.07858i −0.0329685 0.0535952i
\(406\) 8.45693 + 3.50297i 0.419710 + 0.173850i
\(407\) −1.35623 −0.0672256
\(408\) 0 0
\(409\) 28.2231 1.39554 0.697770 0.716322i \(-0.254176\pi\)
0.697770 + 0.716322i \(0.254176\pi\)
\(410\) 0.751380 + 0.311232i 0.0371080 + 0.0153706i
\(411\) 0.492188 + 5.52922i 0.0242778 + 0.272736i
\(412\) 3.07598 + 3.07598i 0.151543 + 0.151543i
\(413\) −3.30080 16.5942i −0.162422 0.816549i
\(414\) 9.04450 + 23.0508i 0.444513 + 1.13289i
\(415\) 0.764483 + 0.152065i 0.0375270 + 0.00746459i
\(416\) 0.0682967 + 0.164883i 0.00334852 + 0.00808405i
\(417\) −7.74253 4.23245i −0.379154 0.207264i
\(418\) 6.26991 31.5210i 0.306671 1.54174i
\(419\) 7.76628 5.18926i 0.379408 0.253512i −0.351213 0.936295i \(-0.614231\pi\)
0.730621 + 0.682784i \(0.239231\pi\)
\(420\) 0.0753258 0.0900466i 0.00367552 0.00439382i
\(421\) 9.40617 9.40617i 0.458429 0.458429i −0.439711 0.898139i \(-0.644919\pi\)
0.898139 + 0.439711i \(0.144919\pi\)
\(422\) −5.59579 3.73899i −0.272399 0.182011i
\(423\) −7.35345 5.11580i −0.357537 0.248739i
\(424\) 19.1305i 0.929057i
\(425\) 0 0
\(426\) −23.0464 + 18.5542i −1.11660 + 0.898952i
\(427\) −2.69055 + 6.49556i −0.130205 + 0.314342i
\(428\) 0.206119 0.308480i 0.00996316 0.0149109i
\(429\) 0.0790418 0.731973i 0.00381617 0.0353400i
\(430\) −0.382501 + 0.0760842i −0.0184459 + 0.00366911i
\(431\) 8.11718 + 12.1482i 0.390991 + 0.585159i 0.973788 0.227459i \(-0.0730416\pi\)
−0.582797 + 0.812618i \(0.698042\pi\)
\(432\) −4.62446 16.9501i −0.222494 0.815513i
\(433\) −16.4827 + 6.82738i −0.792110 + 0.328103i −0.741792 0.670631i \(-0.766024\pi\)
−0.0503185 + 0.998733i \(0.516024\pi\)
\(434\) 19.2369 7.96819i 0.923401 0.382485i
\(435\) 0.444237 + 0.850224i 0.0212996 + 0.0407651i
\(436\) −1.73639 2.59869i −0.0831578 0.124454i
\(437\) 41.3495 8.22492i 1.97801 0.393451i
\(438\) −10.1124 1.09198i −0.483187 0.0521768i
\(439\) 14.6447 21.9174i 0.698955 1.04606i −0.296882 0.954914i \(-0.595947\pi\)
0.995838 0.0911464i \(-0.0290531\pi\)
\(440\) −0.585674 + 1.41394i −0.0279209 + 0.0674070i
\(441\) −11.3424 2.47850i −0.540112 0.118024i
\(442\) 0 0
\(443\) 9.67036i 0.459453i 0.973255 + 0.229726i \(0.0737831\pi\)
−0.973255 + 0.229726i \(0.926217\pi\)
\(444\) 0.0494025 + 0.168541i 0.00234454 + 0.00799861i
\(445\) 0.479400 + 0.320325i 0.0227257 + 0.0151848i
\(446\) −0.175541 + 0.175541i −0.00831208 + 0.00831208i
\(447\) 29.5229 + 24.6965i 1.39638 + 1.16810i
\(448\) 12.9044 8.62244i 0.609675 0.407372i
\(449\) −0.206155 + 1.03641i −0.00972906 + 0.0489113i −0.985345 0.170574i \(-0.945438\pi\)
0.975616 + 0.219485i \(0.0704378\pi\)
\(450\) 19.3295 3.46875i 0.911202 0.163519i
\(451\) 6.12872 + 14.7960i 0.288590 + 0.696718i
\(452\) −3.61901 0.719865i −0.170224 0.0338596i
\(453\) −6.81729 2.13813i −0.320304 0.100458i
\(454\) −0.546252 2.74620i −0.0256369 0.128885i
\(455\) 0.0205441 + 0.0205441i 0.000963124 + 0.000963124i
\(456\) −34.5953 + 3.07953i −1.62007 + 0.144212i
\(457\) 19.7952 + 8.19942i 0.925978 + 0.383553i 0.794151 0.607720i \(-0.207916\pi\)
0.131827 + 0.991273i \(0.457916\pi\)
\(458\) 22.7184 1.06156
\(459\) 0 0
\(460\) −0.240577 −0.0112169
\(461\) 22.7649 + 9.42954i 1.06027 + 0.439177i 0.843547 0.537056i \(-0.180464\pi\)
0.216721 + 0.976233i \(0.430464\pi\)
\(462\) −14.6108 + 1.30059i −0.679755 + 0.0605090i
\(463\) −13.6466 13.6466i −0.634213 0.634213i 0.314909 0.949122i \(-0.398026\pi\)
−0.949122 + 0.314909i \(0.898026\pi\)
\(464\) 2.59661 + 13.0540i 0.120544 + 0.606018i
\(465\) 2.08208 + 0.653009i 0.0965540 + 0.0302826i
\(466\) −12.6237 2.51101i −0.584781 0.116320i
\(467\) −4.76264 11.4980i −0.220389 0.532066i 0.774554 0.632508i \(-0.217974\pi\)
−0.994943 + 0.100442i \(0.967974\pi\)
\(468\) −0.0938432 + 0.0168405i −0.00433790 + 0.000778452i
\(469\) −2.00824 + 10.0961i −0.0927317 + 0.466194i
\(470\) −0.459162 + 0.306802i −0.0211796 + 0.0141517i
\(471\) 18.5455 + 15.5137i 0.854533 + 0.714835i
\(472\) 20.1974 20.1974i 0.929660 0.929660i
\(473\) −6.38545 4.26662i −0.293603 0.196179i
\(474\) −1.56633 5.34369i −0.0719440 0.245444i
\(475\) 33.4363i 1.53416i
\(476\) 0 0
\(477\) 18.7724 + 4.10208i 0.859527 + 0.187821i
\(478\) 11.2858 27.2464i 0.516202 1.24622i
\(479\) −12.6109 + 18.8736i −0.576208 + 0.862357i −0.999038 0.0438524i \(-0.986037\pi\)
0.422830 + 0.906209i \(0.361037\pi\)
\(480\) 0.370483 + 0.0400064i 0.0169102 + 0.00182604i
\(481\) −0.0426304 + 0.00847972i −0.00194378 + 0.000386642i
\(482\) −0.296115 0.443167i −0.0134877 0.0201857i
\(483\) −8.91097 17.0547i −0.405463 0.776014i
\(484\) −0.569259 + 0.235795i −0.0258754 + 0.0107179i
\(485\) 0.596290 0.246991i 0.0270761 0.0112153i
\(486\) 20.4630 1.04883i 0.928220 0.0475757i
\(487\) −12.7700 19.1116i −0.578662 0.866028i 0.420486 0.907299i \(-0.361859\pi\)
−0.999148 + 0.0412704i \(0.986859\pi\)
\(488\) −11.6413 + 2.31560i −0.526977 + 0.104822i
\(489\) −2.07417 + 19.2081i −0.0937974 + 0.868619i
\(490\) −0.397633 + 0.595100i −0.0179632 + 0.0268839i
\(491\) 7.79649 18.8224i 0.351851 0.849443i −0.644541 0.764570i \(-0.722951\pi\)
0.996392 0.0848732i \(-0.0270485\pi\)
\(492\) 1.61549 1.30060i 0.0728319 0.0586355i
\(493\) 0 0
\(494\) 1.03001i 0.0463421i
\(495\) −1.26189 0.877897i −0.0567177 0.0394585i
\(496\) 25.1733 + 16.8202i 1.13031 + 0.755251i
\(497\) 16.2578 16.2578i 0.729264 0.729264i
\(498\) −8.09235 + 9.67381i −0.362627 + 0.433494i
\(499\) 0.897288 0.599548i 0.0401681 0.0268395i −0.535324 0.844647i \(-0.679811\pi\)
0.575492 + 0.817807i \(0.304811\pi\)
\(500\) −0.0745940 + 0.375010i −0.00333595 + 0.0167709i
\(501\) 3.19151 + 1.74464i 0.142586 + 0.0779446i
\(502\) 0.533486 + 1.28795i 0.0238106 + 0.0574840i
\(503\) −9.20449 1.83089i −0.410408 0.0816353i −0.0144315 0.999896i \(-0.504594\pi\)
−0.395977 + 0.918261i \(0.629594\pi\)
\(504\) 5.79023 + 14.7570i 0.257918 + 0.657329i
\(505\) 0.139094 + 0.699273i 0.00618961 + 0.0311173i
\(506\) 21.2552 + 21.2552i 0.944907 + 0.944907i
\(507\) 1.99435 + 22.4045i 0.0885723 + 0.995018i
\(508\) −2.48772 1.03045i −0.110375 0.0457188i
\(509\) 7.99190 0.354235 0.177117 0.984190i \(-0.443323\pi\)
0.177117 + 0.984190i \(0.443323\pi\)
\(510\) 0 0
\(511\) 7.90399 0.349652
\(512\) 23.4372 + 9.70803i 1.03579 + 0.429038i
\(513\) 4.39627 34.6080i 0.194100 1.52798i
\(514\) −18.7116 18.7116i −0.825334 0.825334i
\(515\) 0.438531 + 2.20465i 0.0193240 + 0.0971483i
\(516\) −0.297623 + 0.948952i −0.0131021 + 0.0417753i
\(517\) −10.6655 2.12149i −0.469066 0.0933031i
\(518\) 0.331406 + 0.800085i 0.0145611 + 0.0351537i
\(519\) 10.2308 18.7154i 0.449081 0.821517i
\(520\) −0.00956898 + 0.0481065i −0.000419627 + 0.00210961i
\(521\) −1.31074 + 0.875810i −0.0574246 + 0.0383699i −0.583951 0.811789i \(-0.698494\pi\)
0.526527 + 0.850159i \(0.323494\pi\)
\(522\) −15.5192 0.291577i −0.679257 0.0127620i
\(523\) −24.2095 + 24.2095i −1.05861 + 1.05861i −0.0604341 + 0.998172i \(0.519249\pi\)
−0.998172 + 0.0604341i \(0.980751\pi\)
\(524\) −2.94984 1.97102i −0.128864 0.0861043i
\(525\) −14.6447 + 4.29264i −0.639149 + 0.187346i
\(526\) 7.25753i 0.316443i
\(527\) 0 0
\(528\) −13.3752 16.6135i −0.582081 0.723011i
\(529\) −6.28827 + 15.1812i −0.273403 + 0.660054i
\(530\) 0.658110 0.984931i 0.0285865 0.0427827i
\(531\) 15.4884 + 24.1502i 0.672141 + 1.04803i
\(532\) 3.17211 0.630973i 0.137529 0.0273561i
\(533\) 0.285156 + 0.426766i 0.0123515 + 0.0184853i
\(534\) −8.26867 + 4.32033i −0.357820 + 0.186959i
\(535\) 0.177118 0.0733645i 0.00765746 0.00317183i
\(536\) −16.0554 + 6.65037i −0.693488 + 0.287252i
\(537\) 28.3798 14.8283i 1.22468 0.639889i
\(538\) −6.67425 9.98873i −0.287747 0.430645i
\(539\) −13.8230 + 2.74957i −0.595401 + 0.118433i
\(540\) −0.0631321 + 0.188797i −0.00271677 + 0.00812451i
\(541\) 1.68432 2.52076i 0.0724146 0.108376i −0.793495 0.608577i \(-0.791741\pi\)
0.865909 + 0.500201i \(0.166741\pi\)
\(542\) −1.33208 + 3.21592i −0.0572176 + 0.138135i
\(543\) 2.31215 + 2.87196i 0.0992239 + 0.123247i
\(544\) 0 0
\(545\) 1.61500i 0.0691792i
\(546\) −0.451131 + 0.132235i −0.0193066 + 0.00565912i
\(547\) −1.44506 0.965555i −0.0617861 0.0412842i 0.524294 0.851538i \(-0.324329\pi\)
−0.586080 + 0.810253i \(0.699329\pi\)
\(548\) 0.617069 0.617069i 0.0263599 0.0263599i
\(549\) 0.223953 11.9199i 0.00955807 0.508730i
\(550\) 19.8220 13.2447i 0.845214 0.564754i
\(551\) −5.15580 + 25.9200i −0.219645 + 1.10423i
\(552\) 15.5818 28.5042i 0.663206 1.21322i
\(553\) 1.65598 + 3.99789i 0.0704195 + 0.170008i
\(554\) −26.6724 5.30547i −1.13320 0.225408i
\(555\) −0.0271594 + 0.0865959i −0.00115285 + 0.00367579i
\(556\) 0.270623 + 1.36051i 0.0114770 + 0.0576986i
\(557\) −29.9311 29.9311i −1.26822 1.26822i −0.947006 0.321217i \(-0.895908\pi\)
−0.321217 0.947006i \(-0.604092\pi\)
\(558\) −25.4309 + 24.4929i −1.07657 + 1.03687i
\(559\) −0.227391 0.0941886i −0.00961763 0.00398375i
\(560\) 0.841688 0.0355678
\(561\) 0 0
\(562\) 13.5236 0.570460
\(563\) −26.2627 10.8784i −1.10684 0.458468i −0.246991 0.969018i \(-0.579442\pi\)
−0.859848 + 0.510550i \(0.829442\pi\)
\(564\) 0.124862 + 1.40270i 0.00525766 + 0.0590643i
\(565\) −1.34824 1.34824i −0.0567208 0.0567208i
\(566\) −3.29328 16.5564i −0.138427 0.695919i
\(567\) −15.7223 + 2.51755i −0.660276 + 0.105727i
\(568\) 38.0696 + 7.57252i 1.59737 + 0.317736i
\(569\) 7.98685 + 19.2820i 0.334826 + 0.808342i 0.998195 + 0.0600499i \(0.0191260\pi\)
−0.663369 + 0.748292i \(0.730874\pi\)
\(570\) −1.88708 1.03157i −0.0790410 0.0432077i
\(571\) 1.22502 6.15858i 0.0512654 0.257728i −0.946650 0.322263i \(-0.895556\pi\)
0.997915 + 0.0645348i \(0.0205564\pi\)
\(572\) −0.0962342 + 0.0643017i −0.00402376 + 0.00268859i
\(573\) −19.2691 + 23.0348i −0.804979 + 0.962294i
\(574\) 7.23109 7.23109i 0.301820 0.301820i
\(575\) 26.0027 + 17.3744i 1.08439 + 0.724564i
\(576\) −15.0295 + 21.6034i −0.626230 + 0.900144i
\(577\) 36.1978i 1.50693i 0.657485 + 0.753467i \(0.271620\pi\)
−0.657485 + 0.753467i \(0.728380\pi\)
\(578\) 0 0
\(579\) −21.9054 + 17.6356i −0.910358 + 0.732911i
\(580\) 0.0577109 0.139326i 0.00239632 0.00578522i
\(581\) 5.44512 8.14920i 0.225902 0.338086i
\(582\) −1.12120 + 10.3830i −0.0464754 + 0.430389i
\(583\) 22.8781 4.55073i 0.947513 0.188472i
\(584\) 7.41331 + 11.0948i 0.306765 + 0.459106i
\(585\) −0.0451541 0.0197052i −0.00186689 0.000814708i
\(586\) 1.36995 0.567450i 0.0565919 0.0234412i
\(587\) 7.20502 2.98442i 0.297383 0.123180i −0.229003 0.973426i \(-0.573547\pi\)
0.526386 + 0.850246i \(0.323547\pi\)
\(588\) 0.845221 + 1.61766i 0.0348563 + 0.0667113i
\(589\) 33.3981 + 49.9838i 1.37615 + 2.05955i
\(590\) 1.73467 0.345048i 0.0714154 0.0142054i
\(591\) −13.5196 1.45991i −0.556124 0.0600528i
\(592\) −0.699572 + 1.04698i −0.0287523 + 0.0430308i
\(593\) −11.6027 + 28.0114i −0.476465 + 1.15029i 0.484790 + 0.874630i \(0.338896\pi\)
−0.961256 + 0.275659i \(0.911104\pi\)
\(594\) 22.2581 11.1026i 0.913261 0.455543i
\(595\) 0 0
\(596\) 6.05095i 0.247857i
\(597\) −6.23588 21.2743i −0.255218 0.870698i
\(598\) 0.801013 + 0.535220i 0.0327558 + 0.0218868i
\(599\) 17.7610 17.7610i 0.725695 0.725695i −0.244064 0.969759i \(-0.578481\pi\)
0.969759 + 0.244064i \(0.0784808\pi\)
\(600\) −19.7611 16.5306i −0.806746 0.674859i
\(601\) −25.3288 + 16.9242i −1.03318 + 0.690351i −0.951922 0.306341i \(-0.900895\pi\)
−0.0812623 + 0.996693i \(0.525895\pi\)
\(602\) −0.956686 + 4.80958i −0.0389916 + 0.196024i
\(603\) −3.08317 17.1809i −0.125556 0.699659i
\(604\) 0.429829 + 1.03770i 0.0174895 + 0.0422233i
\(605\) −0.312273 0.0621150i −0.0126957 0.00252534i
\(606\) −11.0077 3.45240i −0.447159 0.140244i
\(607\) −4.25153 21.3739i −0.172564 0.867539i −0.965932 0.258796i \(-0.916674\pi\)
0.793368 0.608743i \(-0.208326\pi\)
\(608\) 7.25911 + 7.25911i 0.294396 + 0.294396i
\(609\) 12.0146 1.06949i 0.486855 0.0433378i
\(610\) −0.679012 0.281256i −0.0274924 0.0113877i
\(611\) −0.348513 −0.0140993
\(612\) 0 0
\(613\) 17.5623 0.709337 0.354668 0.934992i \(-0.384594\pi\)
0.354668 + 0.934992i \(0.384594\pi\)
\(614\) −23.7791 9.84962i −0.959646 0.397498i
\(615\) 1.06747 0.0950217i 0.0430445 0.00383164i
\(616\) 13.6074 + 13.6074i 0.548258 + 0.548258i
\(617\) 4.61012 + 23.1766i 0.185596 + 0.933056i 0.955521 + 0.294922i \(0.0952935\pi\)
−0.769925 + 0.638134i \(0.779706\pi\)
\(618\) −34.7048 10.8846i −1.39603 0.437843i
\(619\) −39.1709 7.79157i −1.57441 0.313170i −0.670837 0.741605i \(-0.734065\pi\)
−0.903572 + 0.428435i \(0.859065\pi\)
\(620\) −0.131275 0.316925i −0.00527211 0.0127280i
\(621\) 24.6295 + 21.4022i 0.988347 + 0.858840i
\(622\) −7.53267 + 37.8693i −0.302033 + 1.51842i
\(623\) 6.02799 4.02777i 0.241506 0.161369i
\(624\) −0.524300 0.438588i −0.0209888 0.0175576i
\(625\) 17.4680 17.4680i 0.698719 0.698719i
\(626\) −19.4759 13.0134i −0.778413 0.520119i
\(627\) −11.9123 40.6399i −0.475731 1.62300i
\(628\) 3.80106i 0.151679i
\(629\) 0 0
\(630\) −0.209548 + 0.958955i −0.00834859 + 0.0382057i
\(631\) 10.2510 24.7481i 0.408085 0.985205i −0.577556 0.816351i \(-0.695993\pi\)
0.985641 0.168854i \(-0.0540067\pi\)
\(632\) −4.05865 + 6.07420i −0.161444 + 0.241619i
\(633\) −8.81704 0.952104i −0.350446 0.0378428i
\(634\) −18.2044 + 3.62108i −0.722988 + 0.143811i
\(635\) −0.773023 1.15691i −0.0306765 0.0459106i
\(636\) −1.39890 2.67734i −0.0554699 0.106164i
\(637\) −0.417310 + 0.172855i −0.0165344 + 0.00684878i
\(638\) −17.4084 + 7.21080i −0.689206 + 0.285478i
\(639\) −15.5939 + 35.7332i −0.616885 + 1.41358i
\(640\) 0.662291 + 0.991189i 0.0261794 + 0.0391802i
\(641\) −41.7612 + 8.30682i −1.64947 + 0.328100i −0.930318 0.366754i \(-0.880469\pi\)
−0.719151 + 0.694854i \(0.755469\pi\)
\(642\) −0.333034 + 3.08409i −0.0131438 + 0.121719i
\(643\) 14.3260 21.4404i 0.564962 0.845525i −0.433490 0.901159i \(-0.642718\pi\)
0.998451 + 0.0556337i \(0.0177179\pi\)
\(644\) −1.15763 + 2.79475i −0.0456168 + 0.110129i
\(645\) −0.400300 + 0.322273i −0.0157618 + 0.0126895i
\(646\) 0 0
\(647\) 38.1903i 1.50142i −0.660634 0.750709i \(-0.729712\pi\)
0.660634 0.750709i \(-0.270288\pi\)
\(648\) −18.2802 19.7081i −0.718113 0.774209i
\(649\) 28.9585 + 19.3495i 1.13672 + 0.759533i
\(650\) 0.540257 0.540257i 0.0211906 0.0211906i
\(651\) 17.6046 21.0451i 0.689980 0.824821i
\(652\) 2.52533 1.68737i 0.0988996 0.0660826i
\(653\) −6.69257 + 33.6458i −0.261901 + 1.31666i 0.596057 + 0.802942i \(0.296733\pi\)
−0.857957 + 0.513721i \(0.828267\pi\)
\(654\) 22.9296 + 12.5345i 0.896619 + 0.490136i
\(655\) −0.701548 1.69369i −0.0274118 0.0661778i
\(656\) 14.5836 + 2.90087i 0.569396 + 0.113260i
\(657\) −12.4767 + 4.89552i −0.486763 + 0.190992i
\(658\) 1.35466 + 6.81033i 0.0528101 + 0.265494i
\(659\) −24.7106 24.7106i −0.962589 0.962589i 0.0367361 0.999325i \(-0.488304\pi\)
−0.999325 + 0.0367361i \(0.988304\pi\)
\(660\) 0.0214270 + 0.240710i 0.000834046 + 0.00936964i
\(661\) 11.2271 + 4.65040i 0.436682 + 0.180880i 0.590184 0.807269i \(-0.299055\pi\)
−0.153502 + 0.988148i \(0.549055\pi\)
\(662\) −9.50727 −0.369510
\(663\) 0 0
\(664\) 16.5461 0.642113
\(665\) 1.54403 + 0.639559i 0.0598750 + 0.0248011i
\(666\) −1.01869 1.05770i −0.0394733 0.0409850i
\(667\) −17.4783 17.4783i −0.676762 0.676762i
\(668\) −0.111552 0.560811i −0.00431608 0.0216984i
\(669\) −0.0978964 + 0.312136i −0.00378489 + 0.0120679i
\(670\) −1.05539 0.209931i −0.0407734 0.00811032i
\(671\) −5.53844 13.3710i −0.213809 0.516181i
\(672\) 2.24747 4.11136i 0.0866980 0.158599i
\(673\) 7.90952 39.7638i 0.304890 1.53278i −0.459587 0.888133i \(-0.652003\pi\)
0.764477 0.644651i \(-0.222997\pi\)
\(674\) −14.6100 + 9.76206i −0.562755 + 0.376021i
\(675\) 20.4585 15.8466i 0.787447 0.609937i
\(676\) 2.50037 2.50037i 0.0961681 0.0961681i
\(677\) −5.69882 3.80783i −0.219024 0.146347i 0.441219 0.897400i \(-0.354546\pi\)
−0.660242 + 0.751053i \(0.729546\pi\)
\(678\) 29.6061 8.67810i 1.13702 0.333280i
\(679\) 8.11552i 0.311445i
\(680\) 0 0
\(681\) −2.31378 2.87398i −0.0886644 0.110131i
\(682\) −16.4024 + 39.5988i −0.628079 + 1.51632i
\(683\) −5.48609 + 8.21052i −0.209919 + 0.314167i −0.921456 0.388482i \(-0.872999\pi\)
0.711537 + 0.702649i \(0.247999\pi\)
\(684\) −4.61649 + 2.96073i −0.176516 + 0.113206i
\(685\) 0.442271 0.0879732i 0.0168983 0.00336128i
\(686\) 14.0435 + 21.0176i 0.536184 + 0.802457i
\(687\) 26.5332 13.8634i 1.01230 0.528923i
\(688\) −6.58752 + 2.72864i −0.251147 + 0.104028i
\(689\) 0.690676 0.286087i 0.0263127 0.0108991i
\(690\) 1.78281 0.931507i 0.0678703 0.0354619i
\(691\) −7.70668 11.5339i −0.293176 0.438769i 0.655417 0.755267i \(-0.272493\pi\)
−0.948593 + 0.316498i \(0.897493\pi\)
\(692\) −3.28867 + 0.654157i −0.125016 + 0.0248673i
\(693\) −16.2705 + 10.4349i −0.618065 + 0.396389i
\(694\) 24.4439 36.5828i 0.927876 1.38867i
\(695\) −0.274306 + 0.662233i −0.0104050 + 0.0251199i
\(696\) 12.7699 + 15.8617i 0.484044 + 0.601237i
\(697\) 0 0
\(698\) 36.5813i 1.38462i
\(699\) −16.2757 + 4.77070i −0.615602 + 0.180444i
\(700\) 1.99479 + 1.33288i 0.0753960 + 0.0503780i
\(701\) −7.15325 + 7.15325i −0.270175 + 0.270175i −0.829170 0.558996i \(-0.811187\pi\)
0.558996 + 0.829170i \(0.311187\pi\)
\(702\) 0.630224 0.488156i 0.0237863 0.0184242i
\(703\) −2.07888 + 1.38907i −0.0784066 + 0.0523896i
\(704\) −6.23266 + 31.3337i −0.234902 + 1.18093i
\(705\) −0.349042 + 0.638513i −0.0131457 + 0.0240478i
\(706\) 3.63353 + 8.77211i 0.136750 + 0.330143i
\(707\) 8.79269 + 1.74897i 0.330683 + 0.0657770i
\(708\) 1.34974 4.30357i 0.0507265 0.161738i
\(709\) −8.78850 44.1828i −0.330059 1.65932i −0.688102 0.725614i \(-0.741556\pi\)
0.358043 0.933705i \(-0.383444\pi\)
\(710\) 1.69951 + 1.69951i 0.0637814 + 0.0637814i
\(711\) −5.09021 5.28514i −0.190898 0.198208i
\(712\) 11.3075 + 4.68374i 0.423768 + 0.175531i
\(713\) −56.2259 −2.10568
\(714\) 0 0
\(715\) −0.0598067 −0.00223664
\(716\) −4.65061 1.92635i −0.173801 0.0719909i
\(717\) −3.44566 38.7084i −0.128681 1.44559i
\(718\) 25.6111 + 25.6111i 0.955796 + 0.955796i
\(719\) −5.61120 28.2094i −0.209263 1.05203i −0.932427 0.361358i \(-0.882313\pi\)
0.723165 0.690676i \(-0.242687\pi\)
\(720\) −1.32863 + 0.521319i −0.0495153 + 0.0194284i
\(721\) 27.7213 + 5.51411i 1.03240 + 0.205356i
\(722\) −13.1163 31.6655i −0.488138 1.17847i
\(723\) −0.616270 0.336883i −0.0229193 0.0125288i
\(724\) 0.113079 0.568488i 0.00420256 0.0211277i
\(725\) −16.2998 + 10.8912i −0.605360 + 0.404489i
\(726\) 3.30553 3.95153i 0.122680 0.146655i
\(727\) 1.86673 1.86673i 0.0692331 0.0692331i −0.671642 0.740876i \(-0.734411\pi\)
0.740876 + 0.671642i \(0.234411\pi\)
\(728\) 0.512803 + 0.342644i 0.0190058 + 0.0126992i
\(729\) 23.2590 13.7120i 0.861444 0.507853i
\(730\) 0.826242i 0.0305806i
\(731\) 0 0
\(732\) −1.45990 + 1.17533i −0.0539593 + 0.0434415i
\(733\) −11.9956 + 28.9600i −0.443068 + 1.06966i 0.531798 + 0.846871i \(0.321516\pi\)
−0.974866 + 0.222790i \(0.928484\pi\)
\(734\) 8.20346 12.2773i 0.302795 0.453165i
\(735\) −0.101254 + 0.937673i −0.00373482 + 0.0345866i
\(736\) −9.41729 + 1.87322i −0.347126 + 0.0690477i
\(737\) −11.7724 17.6186i −0.433642 0.648991i
\(738\) −6.93579 + 15.8933i −0.255310 + 0.585040i
\(739\) 4.41201 1.82751i 0.162298 0.0672262i −0.300055 0.953922i \(-0.597005\pi\)
0.462354 + 0.886696i \(0.347005\pi\)
\(740\) 0.0131813 0.00545986i 0.000484553 0.000200708i
\(741\) −0.628539 1.20296i −0.0230900 0.0441918i
\(742\) −8.27510 12.3846i −0.303788 0.454651i
\(743\) 20.6527 4.10808i 0.757674 0.150711i 0.198888 0.980022i \(-0.436267\pi\)
0.558787 + 0.829312i \(0.311267\pi\)
\(744\) 46.0526 + 4.97297i 1.68837 + 0.182318i
\(745\) 1.73712 2.59978i 0.0636431 0.0952486i
\(746\) −2.76818 + 6.68298i −0.101350 + 0.244681i
\(747\) −3.54792 + 16.2364i −0.129812 + 0.594058i
\(748\) 0 0
\(749\) 2.41058i 0.0880806i
\(750\) −0.899244 3.06785i −0.0328357 0.112022i
\(751\) −19.2693 12.8753i −0.703145 0.469827i 0.151889 0.988397i \(-0.451464\pi\)
−0.855035 + 0.518571i \(0.826464\pi\)
\(752\) −7.13925 + 7.13925i −0.260342 + 0.260342i
\(753\) 1.40901 + 1.17866i 0.0513471 + 0.0429529i
\(754\) −0.502116 + 0.335503i −0.0182860 + 0.0122183i
\(755\) −0.113229 + 0.569241i −0.00412083 + 0.0207168i
\(756\) 1.88945 + 1.64186i 0.0687185 + 0.0597140i
\(757\) 9.85760 + 23.7983i 0.358280 + 0.864965i 0.995542 + 0.0943180i \(0.0300670\pi\)
−0.637262 + 0.770647i \(0.719933\pi\)
\(758\) −6.78999 1.35061i −0.246623 0.0490564i
\(759\) 37.7947 + 11.8537i 1.37186 + 0.430262i
\(760\) 0.550432 + 2.76721i 0.0199663 + 0.100377i
\(761\) 15.9336 + 15.9336i 0.577594 + 0.577594i 0.934240 0.356646i \(-0.116080\pi\)
−0.356646 + 0.934240i \(0.616080\pi\)
\(762\) 22.4253 1.99620i 0.812382 0.0723149i
\(763\) −18.7613 7.77120i −0.679206 0.281336i
\(764\) 4.72118 0.170806
\(765\) 0 0
\(766\) −27.8109 −1.00485
\(767\) 1.03124 + 0.427153i 0.0372359 + 0.0154236i
\(768\) 11.0558 0.984144i 0.398943 0.0355122i
\(769\) −10.2112 10.2112i −0.368226 0.368226i 0.498604 0.866830i \(-0.333846\pi\)
−0.866830 + 0.498604i \(0.833846\pi\)
\(770\) 0.232466 + 1.16869i 0.00837751 + 0.0421166i
\(771\) −33.2719 10.4352i −1.19826 0.375814i
\(772\) 4.33606 + 0.862495i 0.156058 + 0.0310419i
\(773\) −0.930920 2.24744i −0.0334829 0.0808348i 0.906254 0.422734i \(-0.138930\pi\)
−0.939736 + 0.341900i \(0.888930\pi\)
\(774\) −1.46876 8.18464i −0.0527936 0.294191i
\(775\) −8.69951 + 43.7354i −0.312496 + 1.57102i
\(776\) 11.3917 7.61171i 0.408939 0.273245i
\(777\) 0.875288 + 0.732197i 0.0314008 + 0.0262674i
\(778\) 11.6153 11.6153i 0.416429 0.416429i
\(779\) 24.5487 + 16.4029i 0.879549 + 0.587696i
\(780\) 0.00217855 + 0.00743231i 7.80045e−5 + 0.000266119i
\(781\) 47.3287i 1.69355i
\(782\) 0 0
\(783\) −18.3030 + 9.12973i −0.654097 + 0.326270i
\(784\) −5.00762 + 12.0895i −0.178844 + 0.431766i
\(785\) 1.09121 1.63312i 0.0389471 0.0582885i
\(786\) 29.4916 + 3.18464i 1.05193 + 0.113592i
\(787\) −31.1021 + 6.18658i −1.10867 + 0.220528i −0.715276 0.698843i \(-0.753699\pi\)
−0.393393 + 0.919370i \(0.628699\pi\)
\(788\) 1.18766 + 1.77746i 0.0423086 + 0.0633194i
\(789\) −4.42876 8.47617i −0.157668 0.301760i
\(790\) −0.417919 + 0.173108i −0.0148689 + 0.00615889i
\(791\) −22.1499 + 9.17479i −0.787560 + 0.326218i
\(792\) −29.9078 13.0517i −1.06273 0.463773i
\(793\) −0.257692 0.385663i −0.00915090 0.0136953i
\(794\) 50.1481 9.97507i 1.77969 0.354002i
\(795\) 0.167583 1.55191i 0.00594354 0.0550407i
\(796\) −1.93626 + 2.89781i −0.0686288 + 0.102710i
\(797\) −17.3442 + 41.8726i −0.614363 + 1.48320i 0.243800 + 0.969825i \(0.421606\pi\)
−0.858163 + 0.513377i \(0.828394\pi\)
\(798\) −21.0640 + 16.9582i −0.745658 + 0.600314i
\(799\) 0 0
\(800\) 7.61508i 0.269234i
\(801\) −7.02070 + 10.0916i −0.248064 + 0.356568i
\(802\) 29.7572 + 19.8832i 1.05076 + 0.702099i
\(803\) −11.5048 + 11.5048i −0.405995 + 0.405995i
\(804\) −1.76068 + 2.10477i −0.0620944 + 0.0742294i
\(805\) −1.29969 + 0.868428i −0.0458082 + 0.0306081i
\(806\) −0.267988 + 1.34727i −0.00943949 + 0.0474555i
\(807\) −13.8904 7.59315i −0.488964 0.267292i
\(808\) 5.79181 + 13.9827i 0.203755 + 0.491908i
\(809\) −24.6676 4.90669i −0.867266 0.172510i −0.258646 0.965972i \(-0.583276\pi\)
−0.608620 + 0.793462i \(0.708276\pi\)
\(810\) −0.263172 1.64353i −0.00924691 0.0577478i
\(811\) −4.54032 22.8258i −0.159432 0.801521i −0.974887 0.222700i \(-0.928513\pi\)
0.815455 0.578821i \(-0.196487\pi\)
\(812\) −1.34084 1.34084i −0.0470544 0.0470544i
\(813\) 0.406694 + 4.56878i 0.0142634 + 0.160234i
\(814\) −1.64696 0.682192i −0.0577259 0.0239108i
\(815\) 1.56942 0.0549743
\(816\) 0 0
\(817\) −14.1578 −0.495320
\(818\) 34.2732 + 14.1964i 1.19834 + 0.496367i
\(819\) −0.446189 + 0.429732i −0.0155911 + 0.0150160i
\(820\) −0.119131 0.119131i −0.00416024 0.00416024i
\(821\) 8.43190 + 42.3900i 0.294275 + 1.47942i 0.791162 + 0.611607i \(0.209476\pi\)
−0.496887 + 0.867815i \(0.665524\pi\)
\(822\) −2.18355 + 6.96209i −0.0761599 + 0.242831i
\(823\) −16.5420 3.29041i −0.576617 0.114696i −0.101838 0.994801i \(-0.532472\pi\)
−0.474780 + 0.880105i \(0.657472\pi\)
\(824\) 18.2602 + 44.0841i 0.636125 + 1.53574i
\(825\) 15.0682 27.5646i 0.524606 0.959676i
\(826\) 4.33865 21.8119i 0.150961 0.758931i
\(827\) 18.4337 12.3170i 0.641002 0.428304i −0.192136 0.981368i \(-0.561542\pi\)
0.833139 + 0.553064i \(0.186542\pi\)
\(828\) 0.0963571 5.12862i 0.00334864 0.178232i
\(829\) −19.3451 + 19.3451i −0.671883 + 0.671883i −0.958150 0.286267i \(-0.907585\pi\)
0.286267 + 0.958150i \(0.407585\pi\)
\(830\) 0.851875 + 0.569205i 0.0295690 + 0.0197574i
\(831\) −34.3886 + 10.0799i −1.19293 + 0.349669i
\(832\) 1.02389i 0.0354968i
\(833\) 0 0
\(834\) −7.27334 9.03431i −0.251855 0.312833i
\(835\) 0.113070 0.272976i 0.00391296 0.00944672i
\(836\) −3.69880 + 5.53564i −0.127926 + 0.191454i
\(837\) −14.7548 + 44.1242i −0.510000 + 1.52516i
\(838\) 12.0414 2.39518i 0.415962 0.0827400i
\(839\) −13.7956 20.6465i −0.476276 0.712798i 0.513075 0.858344i \(-0.328506\pi\)
−0.989352 + 0.145546i \(0.953506\pi\)
\(840\) 1.14134 0.596345i 0.0393800 0.0205758i
\(841\) −12.4774 + 5.16832i −0.430256 + 0.178218i
\(842\) 16.1539 6.69119i 0.556702 0.230593i
\(843\) 15.7944 8.25250i 0.543989 0.284231i
\(844\) 0.774551 + 1.15920i 0.0266611 + 0.0399012i
\(845\) 1.79209 0.356469i 0.0616498 0.0122629i
\(846\) −6.35651 9.91131i −0.218541 0.340758i
\(847\) −2.22420 + 3.32876i −0.0764246 + 0.114377i
\(848\) 8.28795 20.0089i 0.284609 0.687107i
\(849\) −13.9495 17.3269i −0.478745 0.594656i
\(850\) 0 0
\(851\) 2.33850i 0.0801628i
\(852\) 5.88164 1.72402i 0.201502 0.0590638i
\(853\) −24.8055 16.5745i −0.849323 0.567499i 0.0529834 0.998595i \(-0.483127\pi\)
−0.902306 + 0.431096i \(0.858127\pi\)
\(854\) −6.53464 + 6.53464i −0.223611 + 0.223611i
\(855\) −2.83344 0.0532349i −0.0969015 0.00182060i
\(856\) 3.38372 2.26093i 0.115653 0.0772770i
\(857\) 6.63871 33.3750i 0.226774 1.14007i −0.684736 0.728791i \(-0.740082\pi\)
0.911510 0.411279i \(-0.134918\pi\)
\(858\) 0.464174 0.849127i 0.0158467 0.0289887i
\(859\) −7.54327 18.2111i −0.257373 0.621354i 0.741390 0.671074i \(-0.234167\pi\)
−0.998763 + 0.0497206i \(0.984167\pi\)
\(860\) 0.0792371 + 0.0157612i 0.00270196 + 0.000537454i
\(861\) 4.03267 12.8579i 0.137433 0.438197i
\(862\) 3.74660 + 18.8354i 0.127610 + 0.641538i
\(863\) 4.36492 + 4.36492i 0.148584 + 0.148584i 0.777485 0.628901i \(-0.216495\pi\)
−0.628901 + 0.777485i \(0.716495\pi\)
\(864\) −1.00125 + 7.88194i −0.0340631 + 0.268149i
\(865\) −1.60077 0.663059i −0.0544277 0.0225447i
\(866\) −23.4504 −0.796876
\(867\) 0 0
\(868\) −4.31336 −0.146405
\(869\) −8.22958 3.40880i −0.279169 0.115636i
\(870\) 0.111799 + 1.25594i 0.00379033 + 0.0425804i
\(871\) −0.480203 0.480203i −0.0162710 0.0162710i
\(872\) −6.68823 33.6240i −0.226492 1.13865i
\(873\) 5.02654 + 12.8106i 0.170122 + 0.433575i
\(874\) 54.3507 + 10.8110i 1.83844 + 0.365689i
\(875\) 0.950712 + 2.29522i 0.0321399 + 0.0775927i
\(876\) 1.84880 + 1.01065i 0.0624652 + 0.0341466i
\(877\) −1.85986 + 9.35016i −0.0628031 + 0.315732i −0.999398 0.0346804i \(-0.988959\pi\)
0.936595 + 0.350413i \(0.113959\pi\)
\(878\) 28.8088 19.2494i 0.972248 0.649636i
\(879\) 1.25370 1.49871i 0.0422864 0.0505503i
\(880\) −1.22513 + 1.22513i −0.0412992 + 0.0412992i
\(881\) 35.7652 + 23.8975i 1.20496 + 0.805128i 0.985364 0.170464i \(-0.0545265\pi\)
0.219595 + 0.975591i \(0.429527\pi\)
\(882\) −12.5271 8.71511i −0.421809 0.293453i
\(883\) 41.3162i 1.39040i 0.718816 + 0.695200i \(0.244684\pi\)
−0.718816 + 0.695200i \(0.755316\pi\)
\(884\) 0 0
\(885\) 1.81539 1.46153i 0.0610237 0.0491289i
\(886\) −4.86427 + 11.7434i −0.163418 + 0.394527i
\(887\) −8.24630 + 12.3415i −0.276884 + 0.414386i −0.943683 0.330852i \(-0.892664\pi\)
0.666799 + 0.745238i \(0.267664\pi\)
\(888\) −0.206831 + 1.91538i −0.00694081 + 0.0642760i
\(889\) −17.1594 + 3.41322i −0.575508 + 0.114476i
\(890\) 0.421042 + 0.630135i 0.0141134 + 0.0211222i
\(891\) 19.2204 26.5494i 0.643909 0.889437i
\(892\) 0.0475120 0.0196801i 0.00159082 0.000658939i
\(893\) −18.5214 + 7.67180i −0.619794 + 0.256727i
\(894\) 23.4291 + 44.8409i 0.783587 + 1.49970i
\(895\) −1.44511 2.16276i −0.0483046 0.0722930i
\(896\) 14.7014 2.92429i 0.491139 0.0976937i
\(897\) 1.26212 + 0.136289i 0.0421410 + 0.00455057i
\(898\) −0.771672 + 1.15489i −0.0257510 + 0.0385391i
\(899\) 13.4878 32.5624i 0.449843 1.08602i
\(900\) −3.97439 0.868473i −0.132480 0.0289491i
\(901\) 0 0
\(902\) 21.0507i 0.700910i
\(903\) 1.81762 + 6.20098i 0.0604866 + 0.206356i
\(904\) −33.6535 22.4865i −1.11930 0.747890i
\(905\) 0.211787 0.211787i 0.00704002 0.00704002i
\(906\) −7.20321 6.02563i −0.239310 0.200188i
\(907\) −14.2246 + 9.50457i −0.472320 + 0.315594i −0.768850 0.639429i \(-0.779171\pi\)
0.296530 + 0.955024i \(0.404171\pi\)
\(908\) −0.113159 + 0.568889i −0.00375531 + 0.0188792i
\(909\) −14.9628 + 2.68514i −0.496286 + 0.0890603i
\(910\) 0.0146143 + 0.0352820i 0.000484459 + 0.00116959i
\(911\) −54.2580 10.7926i −1.79765 0.357574i −0.820751 0.571286i \(-0.806445\pi\)
−0.976897 + 0.213712i \(0.931445\pi\)
\(912\) −37.5180 11.7669i −1.24234 0.389641i
\(913\) 3.93596 + 19.7874i 0.130261 + 0.654868i
\(914\) 19.9143 + 19.9143i 0.658705 + 0.658705i
\(915\) −0.964658 + 0.0858698i −0.0318906 + 0.00283877i
\(916\) −4.34800 1.80100i −0.143662 0.0595067i
\(917\) −23.0511 −0.761216
\(918\) 0 0
\(919\) −57.0283 −1.88119 −0.940595 0.339530i \(-0.889732\pi\)
−0.940595 + 0.339530i \(0.889732\pi\)
\(920\) −2.43802 1.00986i −0.0803791 0.0332941i
\(921\) −33.7824 + 3.00717i −1.11317 + 0.0990897i
\(922\) 22.9019 + 22.9019i 0.754233 + 0.754233i
\(923\) 0.295920 + 1.48769i 0.00974032 + 0.0489679i
\(924\) 2.89941 + 0.909353i 0.0953836 + 0.0299155i
\(925\) −1.81900 0.361822i −0.0598085 0.0118966i
\(926\) −9.70769 23.4364i −0.319014 0.770169i
\(927\) −47.1743 + 8.46561i −1.54941 + 0.278047i
\(928\) 1.17423 5.90324i 0.0385459 0.193783i
\(929\) −29.7790 + 19.8977i −0.977016 + 0.652822i −0.938079 0.346420i \(-0.887397\pi\)
−0.0389370 + 0.999242i \(0.512397\pi\)
\(930\) 2.19994 + 1.84030i 0.0721389 + 0.0603457i
\(931\) −18.3724 + 18.3724i −0.602132 + 0.602132i
\(932\) 2.21694 + 1.48131i 0.0726184 + 0.0485220i
\(933\) 14.3114 + 48.8247i 0.468535 + 1.59845i
\(934\) 16.3585i 0.535267i
\(935\) 0 0
\(936\) −1.02170 0.223259i −0.0333954 0.00729746i
\(937\) 7.73785 18.6808i 0.252785 0.610276i −0.745642 0.666347i \(-0.767857\pi\)
0.998427 + 0.0560704i \(0.0178571\pi\)
\(938\) −7.51715 + 11.2502i −0.245444 + 0.367333i
\(939\) −30.6873 3.31375i −1.00144 0.108140i
\(940\) 0.112199 0.0223178i 0.00365953 0.000727926i
\(941\) 4.31354 + 6.45567i 0.140618 + 0.210449i 0.895093 0.445879i \(-0.147109\pi\)
−0.754476 + 0.656328i \(0.772109\pi\)
\(942\) 14.7176 + 28.1679i 0.479525 + 0.917761i
\(943\) −25.5124 + 10.5676i −0.830798 + 0.344128i
\(944\) 29.8749 12.3746i 0.972347 0.402759i
\(945\) 0.340448 + 1.24785i 0.0110748 + 0.0405925i
\(946\) −5.60815 8.39318i −0.182337 0.272886i
\(947\) 3.53370 0.702897i 0.114830 0.0228411i −0.137341 0.990524i \(-0.543856\pi\)
0.252171 + 0.967683i \(0.418856\pi\)
\(948\) −0.123845 + 1.14688i −0.00402231 + 0.0372489i
\(949\) −0.289698 + 0.433564i −0.00940400 + 0.0140741i
\(950\) 16.8187 40.6040i 0.545672 1.31737i
\(951\) −19.0515 + 15.3379i −0.617786 + 0.497367i
\(952\) 0 0
\(953\) 22.5397i 0.730132i 0.930982 + 0.365066i \(0.118954\pi\)
−0.930982 + 0.365066i \(0.881046\pi\)
\(954\) 20.7332 + 14.4241i 0.671262 + 0.466997i
\(955\) 2.02845 + 1.35536i 0.0656389 + 0.0438585i
\(956\) −4.31991 + 4.31991i −0.139716 + 0.139716i
\(957\) −15.9313 + 19.0447i −0.514986 + 0.615628i
\(958\) −24.8079 + 16.5761i −0.801507 + 0.535550i
\(959\) 1.10618 5.56114i 0.0357204 0.179578i
\(960\) 1.87587 + 1.02544i 0.0605433 + 0.0330959i
\(961\) −18.8174 45.4292i −0.607013 1.46546i
\(962\) −0.0560344 0.0111459i −0.00180662 0.000359360i
\(963\) 1.49305 + 3.80518i 0.0481128 + 0.122620i
\(964\) 0.0215404 + 0.108291i 0.000693768 + 0.00348781i
\(965\) 1.61537 + 1.61537i 0.0520007 + 0.0520007i
\(966\) −2.24257 25.1930i −0.0721536 0.810570i
\(967\) 20.7527 + 8.59605i 0.667362 + 0.276430i 0.690533 0.723301i \(-0.257376\pi\)
−0.0231709 + 0.999732i \(0.507376\pi\)
\(968\) −6.75869 −0.217233
\(969\) 0 0
\(970\) 0.848355 0.0272390
\(971\) −31.6660 13.1165i −1.01621 0.420928i −0.188493 0.982075i \(-0.560360\pi\)
−0.827716 + 0.561147i \(0.810360\pi\)
\(972\) −3.99948 1.42147i −0.128283 0.0455936i
\(973\) 6.37317 + 6.37317i 0.204314 + 0.204314i
\(974\) −5.89415 29.6319i −0.188861 0.949468i
\(975\) 0.301293 0.960654i 0.00964911 0.0307655i
\(976\) −13.1790 2.62147i −0.421851 0.0839113i
\(977\) 10.7764 + 26.0166i 0.344769 + 0.832345i 0.997220 + 0.0745143i \(0.0237406\pi\)
−0.652451 + 0.757831i \(0.726259\pi\)
\(978\) −12.1806 + 22.2824i −0.389494 + 0.712512i
\(979\) −2.91144 + 14.6368i −0.0930502 + 0.467795i
\(980\) 0.123278 0.0823718i 0.00393798 0.00263127i
\(981\) 34.4287 + 0.646850i 1.09922 + 0.0206523i
\(982\) 18.9356 18.9356i 0.604261 0.604261i
\(983\) −34.6933 23.1813i −1.10654 0.739370i −0.138554 0.990355i \(-0.544245\pi\)
−0.967991 + 0.250985i \(0.919245\pi\)
\(984\) 21.8309 6.39905i 0.695945 0.203994i
\(985\) 1.10464i 0.0351967i
\(986\) 0 0
\(987\) 5.73799 + 7.12723i 0.182642 + 0.226862i
\(988\) −0.0816535 + 0.197129i −0.00259774 + 0.00627151i
\(989\) 7.35681 11.0102i 0.233933 0.350105i
\(990\) −1.09081 1.70083i −0.0346682 0.0540560i
\(991\) 9.95379 1.97993i 0.316193 0.0628946i −0.0344428 0.999407i \(-0.510966\pi\)
0.350635 + 0.936512i \(0.385966\pi\)
\(992\) −7.60639 11.3838i −0.241503 0.361435i
\(993\) −11.1037 + 5.80161i −0.352364 + 0.184108i
\(994\) 27.9208 11.5652i 0.885595 0.366826i
\(995\) −1.66382 + 0.689176i −0.0527466 + 0.0218483i
\(996\) 2.31566 1.20992i 0.0733743 0.0383377i
\(997\) 22.1815 + 33.1970i 0.702496 + 1.05136i 0.995455 + 0.0952350i \(0.0303602\pi\)
−0.292958 + 0.956125i \(0.594640\pi\)
\(998\) 1.39122 0.276730i 0.0440382 0.00875974i
\(999\) −1.83518 0.613668i −0.0580624 0.0194156i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 867.2.i.g.503.3 32
3.2 odd 2 inner 867.2.i.g.503.2 32
17.2 even 8 867.2.i.d.329.2 32
17.3 odd 16 867.2.i.b.158.3 32
17.4 even 4 867.2.i.b.653.2 32
17.5 odd 16 867.2.i.f.131.2 32
17.6 odd 16 867.2.i.d.224.3 32
17.7 odd 16 867.2.i.h.65.2 32
17.8 even 8 51.2.i.a.11.3 yes 32
17.9 even 8 867.2.i.h.827.3 32
17.10 odd 16 51.2.i.a.14.2 yes 32
17.11 odd 16 867.2.i.c.224.3 32
17.12 odd 16 inner 867.2.i.g.131.2 32
17.13 even 4 867.2.i.i.653.2 32
17.14 odd 16 867.2.i.i.158.3 32
17.15 even 8 867.2.i.c.329.2 32
17.16 even 2 867.2.i.f.503.3 32
51.2 odd 8 867.2.i.d.329.3 32
51.5 even 16 867.2.i.f.131.3 32
51.8 odd 8 51.2.i.a.11.2 32
51.11 even 16 867.2.i.c.224.2 32
51.14 even 16 867.2.i.i.158.2 32
51.20 even 16 867.2.i.b.158.2 32
51.23 even 16 867.2.i.d.224.2 32
51.26 odd 8 867.2.i.h.827.2 32
51.29 even 16 inner 867.2.i.g.131.3 32
51.32 odd 8 867.2.i.c.329.3 32
51.38 odd 4 867.2.i.b.653.3 32
51.41 even 16 867.2.i.h.65.3 32
51.44 even 16 51.2.i.a.14.3 yes 32
51.47 odd 4 867.2.i.i.653.3 32
51.50 odd 2 867.2.i.f.503.2 32
68.27 even 16 816.2.cj.c.65.1 32
68.59 odd 8 816.2.cj.c.113.4 32
204.59 even 8 816.2.cj.c.113.1 32
204.95 odd 16 816.2.cj.c.65.4 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.2.i.a.11.2 32 51.8 odd 8
51.2.i.a.11.3 yes 32 17.8 even 8
51.2.i.a.14.2 yes 32 17.10 odd 16
51.2.i.a.14.3 yes 32 51.44 even 16
816.2.cj.c.65.1 32 68.27 even 16
816.2.cj.c.65.4 32 204.95 odd 16
816.2.cj.c.113.1 32 204.59 even 8
816.2.cj.c.113.4 32 68.59 odd 8
867.2.i.b.158.2 32 51.20 even 16
867.2.i.b.158.3 32 17.3 odd 16
867.2.i.b.653.2 32 17.4 even 4
867.2.i.b.653.3 32 51.38 odd 4
867.2.i.c.224.2 32 51.11 even 16
867.2.i.c.224.3 32 17.11 odd 16
867.2.i.c.329.2 32 17.15 even 8
867.2.i.c.329.3 32 51.32 odd 8
867.2.i.d.224.2 32 51.23 even 16
867.2.i.d.224.3 32 17.6 odd 16
867.2.i.d.329.2 32 17.2 even 8
867.2.i.d.329.3 32 51.2 odd 8
867.2.i.f.131.2 32 17.5 odd 16
867.2.i.f.131.3 32 51.5 even 16
867.2.i.f.503.2 32 51.50 odd 2
867.2.i.f.503.3 32 17.16 even 2
867.2.i.g.131.2 32 17.12 odd 16 inner
867.2.i.g.131.3 32 51.29 even 16 inner
867.2.i.g.503.2 32 3.2 odd 2 inner
867.2.i.g.503.3 32 1.1 even 1 trivial
867.2.i.h.65.2 32 17.7 odd 16
867.2.i.h.65.3 32 51.41 even 16
867.2.i.h.827.2 32 51.26 odd 8
867.2.i.h.827.3 32 17.9 even 8
867.2.i.i.158.2 32 51.14 even 16
867.2.i.i.158.3 32 17.14 odd 16
867.2.i.i.653.2 32 17.13 even 4
867.2.i.i.653.3 32 51.47 odd 4