Properties

Label 867.2.i.i.653.3
Level $867$
Weight $2$
Character 867.653
Analytic conductor $6.923$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [867,2,Mod(65,867)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(867, base_ring=CyclotomicField(16))
 
chi = DirichletCharacter(H, H._module([8, 9]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("867.65");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 867 = 3 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 867.i (of order \(16\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.92302985525\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(4\) over \(\Q(\zeta_{16})\)
Twist minimal: no (minimal twist has level 51)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 653.3
Character \(\chi\) \(=\) 867.653
Dual form 867.2.i.i.158.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.21437 + 0.503008i) q^{2} +(-1.65267 + 0.518334i) q^{3} +(-0.192538 - 0.192538i) q^{4} +(-0.137998 + 0.0274494i) q^{5} +(-2.26768 - 0.201860i) q^{6} +(-0.345150 + 1.73519i) q^{7} +(-1.14298 - 2.75940i) q^{8} +(2.46266 - 1.71327i) q^{9} +(-0.181387 - 0.0360802i) q^{10} +(2.02329 + 3.02807i) q^{11} +(0.418001 + 0.218403i) q^{12} +(0.0825311 - 0.0825311i) q^{13} +(-1.29195 + 1.93354i) q^{14} +(0.213837 - 0.116894i) q^{15} -3.38128i q^{16} +(3.85237 - 0.841809i) q^{18} +(-2.56928 + 6.20278i) q^{19} +(0.0318548 + 0.0212847i) q^{20} +(-0.328986 - 3.04660i) q^{21} +(0.933878 + 4.69492i) q^{22} +(-5.22121 + 3.48870i) q^{23} +(3.31926 + 3.96794i) q^{24} +(-4.60111 + 1.90584i) q^{25} +(0.141737 - 0.0587094i) q^{26} +(-3.18193 + 4.10796i) q^{27} +(0.400544 - 0.267635i) q^{28} +(0.767936 + 3.86068i) q^{29} +(0.318476 - 0.0343905i) q^{30} +(-7.44489 - 4.97452i) q^{31} +(-0.585150 + 1.41268i) q^{32} +(-4.91339 - 3.95567i) q^{33} -0.248926i q^{35} +(-0.804026 - 0.144285i) q^{36} +(0.206896 - 0.309641i) q^{37} +(-6.24010 + 6.24010i) q^{38} +(-0.0936183 + 0.179176i) q^{39} +(0.233473 + 0.349416i) q^{40} +(-4.31306 - 0.857920i) q^{41} +(1.13296 - 3.86518i) q^{42} +(0.806985 + 1.94823i) q^{43} +(0.193458 - 0.972578i) q^{44} +(-0.292813 + 0.304026i) q^{45} +(-8.09532 + 1.61026i) q^{46} +(2.11141 + 2.11141i) q^{47} +(1.75263 + 5.58815i) q^{48} +(3.57541 + 1.48098i) q^{49} -6.54610 q^{50} -0.0317807 q^{52} +(5.91755 + 2.45113i) q^{53} +(-5.93037 + 3.38805i) q^{54} +(-0.362328 - 0.362328i) q^{55} +(5.18257 - 1.03088i) q^{56} +(1.03106 - 11.5829i) q^{57} +(-1.00939 + 5.07456i) q^{58} +(3.65974 + 8.83540i) q^{59} +(-0.0636782 - 0.0186653i) q^{60} +(-3.89765 - 0.775290i) q^{61} +(-6.53863 - 9.78574i) q^{62} +(2.12286 + 4.86451i) q^{63} +(-6.20303 + 6.20303i) q^{64} +(-0.00912367 + 0.0136545i) q^{65} +(-3.97693 - 7.27511i) q^{66} -5.81844i q^{67} +(6.82064 - 8.47201i) q^{69} +(0.125212 - 0.302288i) q^{70} +(10.8057 + 7.22012i) q^{71} +(-7.54238 - 4.83722i) q^{72} +(-0.871585 - 4.38175i) q^{73} +(0.407000 - 0.271949i) q^{74} +(6.61627 - 5.53464i) q^{75} +(1.68895 - 0.699588i) q^{76} +(-5.95260 + 2.46565i) q^{77} +(-0.203814 + 0.170495i) q^{78} +(-2.03371 + 1.35888i) q^{79} +(0.0928142 + 0.466609i) q^{80} +(3.12939 - 8.43842i) q^{81} +(-4.80610 - 3.21133i) q^{82} +(-2.12000 + 5.11813i) q^{83} +(-0.523244 + 0.649928i) q^{84} +2.77180i q^{86} +(-3.27027 - 5.98239i) q^{87} +(6.04306 - 9.04408i) q^{88} +(2.89760 - 2.89760i) q^{89} +(-0.508511 + 0.221913i) q^{90} +(0.114721 + 0.171693i) q^{91} +(1.67699 + 0.333574i) q^{92} +(14.8824 + 4.36231i) q^{93} +(1.50197 + 3.62608i) q^{94} +(0.184291 - 0.926494i) q^{95} +(0.234823 - 2.63800i) q^{96} +(-4.49902 + 0.894911i) q^{97} +(3.59692 + 3.59692i) q^{98} +(10.1706 + 3.99065i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 8 q^{3} + 16 q^{4} - 16 q^{6} - 24 q^{9} + 32 q^{10} + 40 q^{12} + 16 q^{13} - 16 q^{15} + 16 q^{18} - 32 q^{19} - 16 q^{21} - 32 q^{22} + 16 q^{24} - 16 q^{27} + 32 q^{28} + 8 q^{30} + 24 q^{36}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/867\mathbb{Z}\right)^\times\).

\(n\) \(290\) \(292\)
\(\chi(n)\) \(-1\) \(e\left(\frac{11}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.21437 + 0.503008i 0.858689 + 0.355681i 0.768195 0.640216i \(-0.221155\pi\)
0.0904942 + 0.995897i \(0.471155\pi\)
\(3\) −1.65267 + 0.518334i −0.954172 + 0.299260i
\(4\) −0.192538 0.192538i −0.0962690 0.0962690i
\(5\) −0.137998 + 0.0274494i −0.0617144 + 0.0122758i −0.225851 0.974162i \(-0.572516\pi\)
0.164137 + 0.986438i \(0.447516\pi\)
\(6\) −2.26768 0.201860i −0.925777 0.0824088i
\(7\) −0.345150 + 1.73519i −0.130455 + 0.655839i 0.859115 + 0.511783i \(0.171015\pi\)
−0.989569 + 0.144056i \(0.953985\pi\)
\(8\) −1.14298 2.75940i −0.404105 0.975595i
\(9\) 2.46266 1.71327i 0.820887 0.571091i
\(10\) −0.181387 0.0360802i −0.0573597 0.0114096i
\(11\) 2.02329 + 3.02807i 0.610045 + 0.912997i 0.999969 0.00785036i \(-0.00249887\pi\)
−0.389924 + 0.920847i \(0.627499\pi\)
\(12\) 0.418001 + 0.218403i 0.120667 + 0.0630476i
\(13\) 0.0825311 0.0825311i 0.0228900 0.0228900i −0.695569 0.718459i \(-0.744848\pi\)
0.718459 + 0.695569i \(0.244848\pi\)
\(14\) −1.29195 + 1.93354i −0.345289 + 0.516762i
\(15\) 0.213837 0.116894i 0.0552125 0.0301819i
\(16\) 3.38128i 0.845320i
\(17\) 0 0
\(18\) 3.85237 0.841809i 0.908012 0.198416i
\(19\) −2.56928 + 6.20278i −0.589432 + 1.42302i 0.294614 + 0.955616i \(0.404809\pi\)
−0.884046 + 0.467399i \(0.845191\pi\)
\(20\) 0.0318548 + 0.0212847i 0.00712296 + 0.00475941i
\(21\) −0.328986 3.04660i −0.0717906 0.664823i
\(22\) 0.933878 + 4.69492i 0.199104 + 1.00096i
\(23\) −5.22121 + 3.48870i −1.08870 + 0.727444i −0.964306 0.264789i \(-0.914698\pi\)
−0.124391 + 0.992233i \(0.539698\pi\)
\(24\) 3.31926 + 3.96794i 0.677542 + 0.809952i
\(25\) −4.60111 + 1.90584i −0.920222 + 0.381168i
\(26\) 0.141737 0.0587094i 0.0277969 0.0115139i
\(27\) −3.18193 + 4.10796i −0.612362 + 0.790578i
\(28\) 0.400544 0.267635i 0.0756957 0.0505782i
\(29\) 0.767936 + 3.86068i 0.142602 + 0.716909i 0.984236 + 0.176861i \(0.0565942\pi\)
−0.841634 + 0.540049i \(0.818406\pi\)
\(30\) 0.318476 0.0343905i 0.0581455 0.00627881i
\(31\) −7.44489 4.97452i −1.33714 0.893450i −0.338275 0.941047i \(-0.609844\pi\)
−0.998867 + 0.0475974i \(0.984844\pi\)
\(32\) −0.585150 + 1.41268i −0.103441 + 0.249728i
\(33\) −4.91339 3.95567i −0.855311 0.688593i
\(34\) 0 0
\(35\) 0.248926i 0.0420762i
\(36\) −0.804026 0.144285i −0.134004 0.0240475i
\(37\) 0.206896 0.309641i 0.0340135 0.0509047i −0.814073 0.580762i \(-0.802755\pi\)
0.848087 + 0.529858i \(0.177755\pi\)
\(38\) −6.24010 + 6.24010i −1.01228 + 1.01228i
\(39\) −0.0936183 + 0.179176i −0.0149909 + 0.0286911i
\(40\) 0.233473 + 0.349416i 0.0369153 + 0.0552476i
\(41\) −4.31306 0.857920i −0.673586 0.133985i −0.153566 0.988138i \(-0.549076\pi\)
−0.520020 + 0.854154i \(0.674076\pi\)
\(42\) 1.13296 3.86518i 0.174819 0.596410i
\(43\) 0.806985 + 1.94823i 0.123064 + 0.297103i 0.973390 0.229153i \(-0.0735955\pi\)
−0.850326 + 0.526256i \(0.823596\pi\)
\(44\) 0.193458 0.972578i 0.0291648 0.146622i
\(45\) −0.292813 + 0.304026i −0.0436500 + 0.0453216i
\(46\) −8.09532 + 1.61026i −1.19359 + 0.237420i
\(47\) 2.11141 + 2.11141i 0.307980 + 0.307980i 0.844126 0.536145i \(-0.180120\pi\)
−0.536145 + 0.844126i \(0.680120\pi\)
\(48\) 1.75263 + 5.58815i 0.252971 + 0.806580i
\(49\) 3.57541 + 1.48098i 0.510773 + 0.211569i
\(50\) −6.54610 −0.925758
\(51\) 0 0
\(52\) −0.0317807 −0.00440720
\(53\) 5.91755 + 2.45113i 0.812837 + 0.336688i 0.750085 0.661341i \(-0.230012\pi\)
0.0627519 + 0.998029i \(0.480012\pi\)
\(54\) −5.93037 + 3.38805i −0.807021 + 0.461055i
\(55\) −0.362328 0.362328i −0.0488563 0.0488563i
\(56\) 5.18257 1.03088i 0.692551 0.137757i
\(57\) 1.03106 11.5829i 0.136568 1.53419i
\(58\) −1.00939 + 5.07456i −0.132540 + 0.666323i
\(59\) 3.65974 + 8.83540i 0.476458 + 1.15027i 0.961259 + 0.275647i \(0.0888919\pi\)
−0.484801 + 0.874624i \(0.661108\pi\)
\(60\) −0.0636782 0.0186653i −0.00822083 0.00240967i
\(61\) −3.89765 0.775290i −0.499043 0.0992658i −0.0608502 0.998147i \(-0.519381\pi\)
−0.438193 + 0.898881i \(0.644381\pi\)
\(62\) −6.53863 9.78574i −0.830406 1.24279i
\(63\) 2.12286 + 4.86451i 0.267456 + 0.612871i
\(64\) −6.20303 + 6.20303i −0.775378 + 0.775378i
\(65\) −0.00912367 + 0.0136545i −0.00113165 + 0.00169364i
\(66\) −3.97693 7.27511i −0.489527 0.895505i
\(67\) 5.81844i 0.710836i −0.934707 0.355418i \(-0.884339\pi\)
0.934707 0.355418i \(-0.115661\pi\)
\(68\) 0 0
\(69\) 6.82064 8.47201i 0.821109 1.01991i
\(70\) 0.125212 0.302288i 0.0149657 0.0361303i
\(71\) 10.8057 + 7.22012i 1.28240 + 0.856870i 0.994896 0.100910i \(-0.0321754\pi\)
0.287502 + 0.957780i \(0.407175\pi\)
\(72\) −7.54238 4.83722i −0.888878 0.570072i
\(73\) −0.871585 4.38175i −0.102011 0.512845i −0.997677 0.0681180i \(-0.978301\pi\)
0.895666 0.444727i \(-0.146699\pi\)
\(74\) 0.407000 0.271949i 0.0473128 0.0316134i
\(75\) 6.61627 5.53464i 0.763981 0.639086i
\(76\) 1.68895 0.699588i 0.193736 0.0802482i
\(77\) −5.95260 + 2.46565i −0.678362 + 0.280987i
\(78\) −0.203814 + 0.170495i −0.0230774 + 0.0193047i
\(79\) −2.03371 + 1.35888i −0.228811 + 0.152886i −0.664691 0.747118i \(-0.731437\pi\)
0.435881 + 0.900004i \(0.356437\pi\)
\(80\) 0.0928142 + 0.466609i 0.0103769 + 0.0521684i
\(81\) 3.12939 8.43842i 0.347710 0.937602i
\(82\) −4.80610 3.21133i −0.530745 0.354633i
\(83\) −2.12000 + 5.11813i −0.232700 + 0.561788i −0.996493 0.0836731i \(-0.973335\pi\)
0.763793 + 0.645461i \(0.223335\pi\)
\(84\) −0.523244 + 0.649928i −0.0570906 + 0.0709130i
\(85\) 0 0
\(86\) 2.77180i 0.298890i
\(87\) −3.27027 5.98239i −0.350609 0.641379i
\(88\) 6.04306 9.04408i 0.644193 0.964103i
\(89\) 2.89760 2.89760i 0.307145 0.307145i −0.536656 0.843801i \(-0.680313\pi\)
0.843801 + 0.536656i \(0.180313\pi\)
\(90\) −0.508511 + 0.221913i −0.0536017 + 0.0233917i
\(91\) 0.114721 + 0.171693i 0.0120261 + 0.0179983i
\(92\) 1.67699 + 0.333574i 0.174838 + 0.0347775i
\(93\) 14.8824 + 4.36231i 1.54324 + 0.452351i
\(94\) 1.50197 + 3.62608i 0.154917 + 0.374002i
\(95\) 0.184291 0.926494i 0.0189079 0.0950563i
\(96\) 0.234823 2.63800i 0.0239666 0.269239i
\(97\) −4.49902 + 0.894911i −0.456807 + 0.0908645i −0.418130 0.908387i \(-0.637314\pi\)
−0.0386768 + 0.999252i \(0.512314\pi\)
\(98\) 3.59692 + 3.59692i 0.363344 + 0.363344i
\(99\) 10.1706 + 3.99065i 1.02218 + 0.401075i
\(100\) 1.25283 + 0.518941i 0.125283 + 0.0518941i
\(101\) 5.06729 0.504214 0.252107 0.967699i \(-0.418877\pi\)
0.252107 + 0.967699i \(0.418877\pi\)
\(102\) 0 0
\(103\) −15.9760 −1.57416 −0.787080 0.616851i \(-0.788408\pi\)
−0.787080 + 0.616851i \(0.788408\pi\)
\(104\) −0.322068 0.133405i −0.0315813 0.0130814i
\(105\) 0.129027 + 0.411393i 0.0125917 + 0.0401479i
\(106\) 5.95315 + 5.95315i 0.578221 + 0.578221i
\(107\) 1.33636 0.265818i 0.129191 0.0256976i −0.130071 0.991505i \(-0.541521\pi\)
0.259262 + 0.965807i \(0.416521\pi\)
\(108\) 1.40358 0.178297i 0.135060 0.0171567i
\(109\) 2.23930 11.2577i 0.214486 1.07829i −0.712062 0.702116i \(-0.752239\pi\)
0.926548 0.376176i \(-0.122761\pi\)
\(110\) −0.257746 0.622254i −0.0245751 0.0593296i
\(111\) −0.181434 + 0.618977i −0.0172209 + 0.0587507i
\(112\) 5.86715 + 1.16705i 0.554394 + 0.110276i
\(113\) 7.52875 + 11.2676i 0.708245 + 1.05996i 0.994795 + 0.101899i \(0.0324918\pi\)
−0.286549 + 0.958066i \(0.592508\pi\)
\(114\) 7.07839 13.5473i 0.662952 1.26882i
\(115\) 0.624752 0.624752i 0.0582584 0.0582584i
\(116\) 0.595470 0.891183i 0.0552880 0.0827443i
\(117\) 0.0618477 0.344645i 0.00571782 0.0318624i
\(118\) 12.5703i 1.15719i
\(119\) 0 0
\(120\) −0.566968 0.456454i −0.0517569 0.0416684i
\(121\) −0.865970 + 2.09064i −0.0787246 + 0.190058i
\(122\) −4.34321 2.90204i −0.393215 0.262738i
\(123\) 7.57276 0.817741i 0.682813 0.0737332i
\(124\) 0.475641 + 2.39121i 0.0427138 + 0.214737i
\(125\) 1.16757 0.780146i 0.104431 0.0697784i
\(126\) 0.131050 + 6.97513i 0.0116748 + 0.621394i
\(127\) −9.13631 + 3.78439i −0.810717 + 0.335810i −0.749240 0.662299i \(-0.769581\pi\)
−0.0614768 + 0.998109i \(0.519581\pi\)
\(128\) −7.82759 + 3.24229i −0.691867 + 0.286581i
\(129\) −2.34352 2.80151i −0.206335 0.246659i
\(130\) −0.0179478 + 0.0119924i −0.00157413 + 0.00105180i
\(131\) −2.54189 12.7789i −0.222086 1.11650i −0.917453 0.397845i \(-0.869758\pi\)
0.695367 0.718655i \(-0.255242\pi\)
\(132\) 0.184398 + 1.70763i 0.0160497 + 0.148630i
\(133\) −9.87620 6.59907i −0.856375 0.572212i
\(134\) 2.92672 7.06574i 0.252830 0.610387i
\(135\) 0.326337 0.654231i 0.0280866 0.0563073i
\(136\) 0 0
\(137\) 3.20492i 0.273815i −0.990584 0.136907i \(-0.956284\pi\)
0.990584 0.136907i \(-0.0437163\pi\)
\(138\) 12.5443 6.85731i 1.06784 0.583733i
\(139\) 2.83033 4.23589i 0.240065 0.359283i −0.691799 0.722090i \(-0.743182\pi\)
0.931864 + 0.362807i \(0.118182\pi\)
\(140\) −0.0479277 + 0.0479277i −0.00405063 + 0.00405063i
\(141\) −4.58388 2.39505i −0.386032 0.201700i
\(142\) 9.49030 + 14.2032i 0.796408 + 1.19191i
\(143\) 0.416894 + 0.0829254i 0.0348624 + 0.00693457i
\(144\) −5.79306 8.32694i −0.482755 0.693912i
\(145\) −0.211947 0.511685i −0.0176012 0.0424931i
\(146\) 1.14563 5.75948i 0.0948132 0.476658i
\(147\) −6.67663 0.594326i −0.550679 0.0490192i
\(148\) −0.0994530 + 0.0197824i −0.00817499 + 0.00162611i
\(149\) −15.7137 15.7137i −1.28731 1.28731i −0.936412 0.350902i \(-0.885875\pi\)
−0.350902 0.936412i \(-0.614125\pi\)
\(150\) 10.8186 3.39306i 0.883332 0.277043i
\(151\) 3.81101 + 1.57857i 0.310135 + 0.128462i 0.532322 0.846542i \(-0.321319\pi\)
−0.222187 + 0.975004i \(0.571319\pi\)
\(152\) 20.0526 1.62648
\(153\) 0 0
\(154\) −8.46890 −0.682443
\(155\) 1.16393 + 0.482114i 0.0934887 + 0.0387243i
\(156\) 0.0525232 0.0164730i 0.00420522 0.00131890i
\(157\) 9.87094 + 9.87094i 0.787787 + 0.787787i 0.981131 0.193344i \(-0.0619335\pi\)
−0.193344 + 0.981131i \(0.561933\pi\)
\(158\) −3.15321 + 0.627212i −0.250856 + 0.0498983i
\(159\) −11.0503 0.983649i −0.876344 0.0780085i
\(160\) 0.0419721 0.211008i 0.00331819 0.0166817i
\(161\) −4.25145 10.2639i −0.335061 0.808909i
\(162\) 8.04483 8.67325i 0.632061 0.681435i
\(163\) 10.9399 + 2.17609i 0.856881 + 0.170444i 0.603933 0.797035i \(-0.293600\pi\)
0.252949 + 0.967480i \(0.418600\pi\)
\(164\) 0.665245 + 0.995609i 0.0519469 + 0.0777440i
\(165\) 0.786617 + 0.411003i 0.0612380 + 0.0319965i
\(166\) −5.14893 + 5.14893i −0.399634 + 0.399634i
\(167\) 1.16668 1.74605i 0.0902801 0.135114i −0.783581 0.621290i \(-0.786609\pi\)
0.873861 + 0.486177i \(0.161609\pi\)
\(168\) −8.03076 + 4.39001i −0.619587 + 0.338697i
\(169\) 12.9864i 0.998952i
\(170\) 0 0
\(171\) 4.29981 + 19.6772i 0.328815 + 1.50475i
\(172\) 0.219734 0.530484i 0.0167545 0.0404490i
\(173\) −10.2391 6.84154i −0.778463 0.520153i 0.101705 0.994815i \(-0.467570\pi\)
−0.880168 + 0.474662i \(0.842570\pi\)
\(174\) −0.962121 8.90980i −0.0729382 0.675450i
\(175\) −1.71892 8.64158i −0.129938 0.653242i
\(176\) 10.2387 6.84131i 0.771774 0.515683i
\(177\) −10.6280 12.7051i −0.798853 0.954971i
\(178\) 4.97628 2.06124i 0.372988 0.154497i
\(179\) 17.0796 7.07462i 1.27659 0.528782i 0.361630 0.932322i \(-0.382220\pi\)
0.914962 + 0.403540i \(0.132220\pi\)
\(180\) 0.114914 0.00215902i 0.00856520 0.000160924i
\(181\) 1.76995 1.18265i 0.131560 0.0879054i −0.488049 0.872816i \(-0.662291\pi\)
0.619609 + 0.784911i \(0.287291\pi\)
\(182\) 0.0529513 + 0.266204i 0.00392501 + 0.0197324i
\(183\) 6.84340 0.738981i 0.505879 0.0546271i
\(184\) 15.5945 + 10.4199i 1.14964 + 0.768164i
\(185\) −0.0200517 + 0.0484090i −0.00147423 + 0.00355910i
\(186\) 15.8785 + 12.7834i 1.16427 + 0.937328i
\(187\) 0 0
\(188\) 0.813051i 0.0592979i
\(189\) −6.02984 6.93910i −0.438606 0.504745i
\(190\) 0.689832 1.03241i 0.0500457 0.0748986i
\(191\) 12.2604 12.2604i 0.887130 0.887130i −0.107116 0.994247i \(-0.534162\pi\)
0.994247 + 0.107116i \(0.0341617\pi\)
\(192\) 7.03634 13.4668i 0.507804 0.971884i
\(193\) 9.02046 + 13.5001i 0.649307 + 0.971757i 0.999386 + 0.0350364i \(0.0111547\pi\)
−0.350079 + 0.936720i \(0.613845\pi\)
\(194\) −5.91362 1.17629i −0.424573 0.0844529i
\(195\) 0.00800084 0.0272956i 0.000572952 0.00195468i
\(196\) −0.403257 0.973548i −0.0288040 0.0695391i
\(197\) 1.53164 7.70009i 0.109125 0.548609i −0.887083 0.461609i \(-0.847272\pi\)
0.996208 0.0869994i \(-0.0277278\pi\)
\(198\) 10.3435 + 9.96201i 0.735081 + 0.707969i
\(199\) 12.5536 2.49706i 0.889898 0.177012i 0.271090 0.962554i \(-0.412616\pi\)
0.618808 + 0.785542i \(0.287616\pi\)
\(200\) 10.5180 + 10.5180i 0.743732 + 0.743732i
\(201\) 3.01590 + 9.61599i 0.212725 + 0.678259i
\(202\) 6.15356 + 2.54889i 0.432963 + 0.179339i
\(203\) −6.96405 −0.488780
\(204\) 0 0
\(205\) 0.618741 0.0432147
\(206\) −19.4007 8.03605i −1.35171 0.559898i
\(207\) −6.88096 + 17.5368i −0.478260 + 1.21889i
\(208\) −0.279061 0.279061i −0.0193494 0.0193494i
\(209\) −23.9808 + 4.77008i −1.65879 + 0.329954i
\(210\) −0.0502481 + 0.564485i −0.00346745 + 0.0389532i
\(211\) −0.998885 + 5.02173i −0.0687661 + 0.345710i −0.999816 0.0191813i \(-0.993894\pi\)
0.931050 + 0.364892i \(0.118894\pi\)
\(212\) −0.667417 1.61129i −0.0458384 0.110664i
\(213\) −21.6007 6.33155i −1.48005 0.433831i
\(214\) 1.75654 + 0.349398i 0.120075 + 0.0238843i
\(215\) −0.164840 0.246700i −0.0112420 0.0168248i
\(216\) 14.9724 + 4.08488i 1.01874 + 0.277941i
\(217\) 11.2013 11.2013i 0.760395 0.760395i
\(218\) 8.38205 12.5446i 0.567704 0.849630i
\(219\) 3.71166 + 6.78984i 0.250810 + 0.458815i
\(220\) 0.139524i 0.00940669i
\(221\) 0 0
\(222\) −0.531678 + 0.660405i −0.0356839 + 0.0443235i
\(223\) 0.0722764 0.174491i 0.00483999 0.0116848i −0.921441 0.388518i \(-0.872987\pi\)
0.926281 + 0.376833i \(0.122987\pi\)
\(224\) −2.24929 1.50293i −0.150287 0.100419i
\(225\) −8.06574 + 12.5764i −0.537716 + 0.838426i
\(226\) 3.47500 + 17.4700i 0.231154 + 1.16209i
\(227\) 1.77120 1.18348i 0.117559 0.0785504i −0.495401 0.868665i \(-0.664979\pi\)
0.612960 + 0.790114i \(0.289979\pi\)
\(228\) −2.42867 + 2.03163i −0.160843 + 0.134548i
\(229\) −15.9683 + 6.61427i −1.05521 + 0.437084i −0.841750 0.539868i \(-0.818474\pi\)
−0.213463 + 0.976951i \(0.568474\pi\)
\(230\) 1.07293 0.444424i 0.0707472 0.0293045i
\(231\) 8.55968 7.16035i 0.563185 0.471116i
\(232\) 9.77541 6.53172i 0.641787 0.428828i
\(233\) 1.91035 + 9.60397i 0.125151 + 0.629177i 0.991539 + 0.129806i \(0.0414355\pi\)
−0.866388 + 0.499371i \(0.833565\pi\)
\(234\) 0.248465 0.387416i 0.0162427 0.0253262i
\(235\) −0.349326 0.233412i −0.0227875 0.0152261i
\(236\) 0.996510 2.40579i 0.0648673 0.156603i
\(237\) 2.65671 3.29993i 0.172572 0.214354i
\(238\) 0 0
\(239\) 22.4367i 1.45131i 0.688059 + 0.725654i \(0.258463\pi\)
−0.688059 + 0.725654i \(0.741537\pi\)
\(240\) −0.395251 0.723043i −0.0255133 0.0466722i
\(241\) 0.225281 0.337157i 0.0145116 0.0217182i −0.824143 0.566382i \(-0.808343\pi\)
0.838655 + 0.544664i \(0.183343\pi\)
\(242\) −2.10322 + 2.10322i −0.135200 + 0.135200i
\(243\) −0.797936 + 15.5680i −0.0511876 + 0.998689i
\(244\) 0.601172 + 0.899718i 0.0384861 + 0.0575985i
\(245\) −0.534050 0.106229i −0.0341192 0.00678674i
\(246\) 9.60746 + 2.81612i 0.612549 + 0.179549i
\(247\) 0.299877 + 0.723968i 0.0190807 + 0.0460650i
\(248\) −5.21731 + 26.2292i −0.331300 + 1.66556i
\(249\) 0.850766 9.55747i 0.0539151 0.605680i
\(250\) 1.81028 0.360088i 0.114492 0.0227739i
\(251\) −0.749951 0.749951i −0.0473365 0.0473365i 0.683042 0.730379i \(-0.260656\pi\)
−0.730379 + 0.683042i \(0.760656\pi\)
\(252\) 0.527872 1.34533i 0.0332528 0.0847481i
\(253\) −21.1280 8.75152i −1.32831 0.550203i
\(254\) −12.9984 −0.815594
\(255\) 0 0
\(256\) 6.40833 0.400521
\(257\) −18.5997 7.70425i −1.16022 0.480578i −0.282270 0.959335i \(-0.591087\pi\)
−0.877947 + 0.478757i \(0.841087\pi\)
\(258\) −1.43672 4.58087i −0.0894460 0.285193i
\(259\) 0.465876 + 0.465876i 0.0289481 + 0.0289481i
\(260\) 0.00438567 0.000872364i 0.000271988 5.41017e-5i
\(261\) 8.50556 + 8.19185i 0.526481 + 0.507063i
\(262\) 3.34111 16.7969i 0.206415 1.03772i
\(263\) −2.11297 5.10116i −0.130291 0.314551i 0.845249 0.534373i \(-0.179452\pi\)
−0.975540 + 0.219822i \(0.929452\pi\)
\(264\) −5.29936 + 18.0792i −0.326153 + 1.11270i
\(265\) −0.883889 0.175817i −0.0542969 0.0108003i
\(266\) −8.67397 12.9815i −0.531835 0.795948i
\(267\) −3.28687 + 6.29072i −0.201153 + 0.384986i
\(268\) −1.12027 + 1.12027i −0.0684314 + 0.0684314i
\(269\) −5.07770 + 7.59932i −0.309593 + 0.463339i −0.953340 0.301900i \(-0.902379\pi\)
0.643747 + 0.765239i \(0.277379\pi\)
\(270\) 0.725377 0.630328i 0.0441451 0.0383605i
\(271\) 2.64822i 0.160868i 0.996760 + 0.0804339i \(0.0256306\pi\)
−0.996760 + 0.0804339i \(0.974369\pi\)
\(272\) 0 0
\(273\) −0.278591 0.224288i −0.0168611 0.0135745i
\(274\) 1.61210 3.89196i 0.0973906 0.235122i
\(275\) −15.0804 10.0764i −0.909382 0.607629i
\(276\) −2.94442 + 0.317951i −0.177233 + 0.0191384i
\(277\) −4.03634 20.2921i −0.242520 1.21923i −0.889575 0.456789i \(-0.848999\pi\)
0.647055 0.762444i \(-0.276001\pi\)
\(278\) 5.56775 3.72025i 0.333931 0.223126i
\(279\) −26.8569 + 0.504591i −1.60788 + 0.0302091i
\(280\) −0.686886 + 0.284517i −0.0410493 + 0.0170032i
\(281\) 9.50546 3.93729i 0.567048 0.234879i −0.0806938 0.996739i \(-0.525714\pi\)
0.647742 + 0.761860i \(0.275714\pi\)
\(282\) −4.36179 5.21420i −0.259741 0.310501i
\(283\) −10.6783 + 7.13505i −0.634762 + 0.424134i −0.830884 0.556445i \(-0.812165\pi\)
0.196122 + 0.980579i \(0.437165\pi\)
\(284\) −0.690355 3.47065i −0.0409650 0.205945i
\(285\) 0.175660 + 1.62672i 0.0104052 + 0.0963584i
\(286\) 0.464551 + 0.310403i 0.0274695 + 0.0183545i
\(287\) 2.97730 7.18785i 0.175745 0.424285i
\(288\) 0.979277 + 4.48146i 0.0577044 + 0.264073i
\(289\) 0 0
\(290\) 0.727985i 0.0427488i
\(291\) 6.97155 3.81099i 0.408680 0.223404i
\(292\) −0.675840 + 1.01147i −0.0395506 + 0.0591916i
\(293\) −0.797696 + 0.797696i −0.0466019 + 0.0466019i −0.730024 0.683422i \(-0.760491\pi\)
0.683422 + 0.730024i \(0.260491\pi\)
\(294\) −7.80895 4.08013i −0.455427 0.237958i
\(295\) −0.747562 1.11881i −0.0435248 0.0651394i
\(296\) −1.09090 0.216994i −0.0634074 0.0126125i
\(297\) −18.8771 1.32348i −1.09536 0.0767964i
\(298\) −11.1781 26.9863i −0.647530 1.56327i
\(299\) −0.142986 + 0.718839i −0.00826909 + 0.0415715i
\(300\) −2.33951 0.208254i −0.135072 0.0120235i
\(301\) −3.65908 + 0.727837i −0.210906 + 0.0419518i
\(302\) 3.83394 + 3.83394i 0.220618 + 0.220618i
\(303\) −8.37457 + 2.62655i −0.481106 + 0.150891i
\(304\) 20.9733 + 8.68744i 1.20290 + 0.498259i
\(305\) 0.559148 0.0320167
\(306\) 0 0
\(307\) −19.5814 −1.11757 −0.558785 0.829312i \(-0.688732\pi\)
−0.558785 + 0.829312i \(0.688732\pi\)
\(308\) 1.62083 + 0.671371i 0.0923555 + 0.0382549i
\(309\) 26.4031 8.28089i 1.50202 0.471083i
\(310\) 1.17093 + 1.17093i 0.0665042 + 0.0665042i
\(311\) 28.8106 5.73078i 1.63370 0.324963i 0.708867 0.705342i \(-0.249207\pi\)
0.924830 + 0.380380i \(0.124207\pi\)
\(312\) 0.601421 + 0.0535360i 0.0340488 + 0.00303088i
\(313\) −3.47657 + 17.4779i −0.196507 + 0.987910i 0.749065 + 0.662497i \(0.230503\pi\)
−0.945572 + 0.325413i \(0.894497\pi\)
\(314\) 7.02180 + 16.9521i 0.396263 + 0.956664i
\(315\) −0.426478 0.613020i −0.0240293 0.0345398i
\(316\) 0.653204 + 0.129930i 0.0367456 + 0.00730915i
\(317\) −7.84523 11.7412i −0.440632 0.659452i 0.542981 0.839745i \(-0.317296\pi\)
−0.983613 + 0.180293i \(0.942296\pi\)
\(318\) −12.9243 6.75289i −0.724760 0.378683i
\(319\) −10.1366 + 10.1366i −0.567542 + 0.567542i
\(320\) 0.685733 1.02627i 0.0383337 0.0573704i
\(321\) −2.07078 + 1.13199i −0.115580 + 0.0631815i
\(322\) 14.6027i 0.813775i
\(323\) 0 0
\(324\) −2.22724 + 1.02219i −0.123736 + 0.0567883i
\(325\) −0.222443 + 0.537026i −0.0123389 + 0.0297888i
\(326\) 12.1905 + 8.14545i 0.675171 + 0.451135i
\(327\) 2.13442 + 19.7660i 0.118034 + 1.09306i
\(328\) 2.56239 + 12.8820i 0.141485 + 0.711291i
\(329\) −4.39244 + 2.93493i −0.242163 + 0.161808i
\(330\) 0.748505 + 0.894784i 0.0412039 + 0.0492562i
\(331\) 6.68245 2.76796i 0.367301 0.152141i −0.191396 0.981513i \(-0.561302\pi\)
0.558697 + 0.829372i \(0.311302\pi\)
\(332\) 1.39362 0.577254i 0.0764846 0.0316810i
\(333\) −0.0209865 1.11701i −0.00115005 0.0612118i
\(334\) 2.29505 1.53351i 0.125580 0.0839097i
\(335\) 0.159713 + 0.802931i 0.00872605 + 0.0438688i
\(336\) −10.3014 + 1.11239i −0.561988 + 0.0606860i
\(337\) −11.1151 7.42687i −0.605478 0.404568i 0.214696 0.976681i \(-0.431124\pi\)
−0.820175 + 0.572113i \(0.806124\pi\)
\(338\) −6.53226 + 15.7703i −0.355308 + 0.857789i
\(339\) −18.2829 14.7192i −0.992993 0.799438i
\(340\) 0 0
\(341\) 32.6085i 1.76585i
\(342\) −4.67625 + 26.0582i −0.252862 + 1.40907i
\(343\) −10.6842 + 15.9900i −0.576891 + 0.863378i
\(344\) 4.45359 4.45359i 0.240121 0.240121i
\(345\) −0.708681 + 1.35634i −0.0381541 + 0.0730229i
\(346\) −8.99268 13.4585i −0.483450 0.723534i
\(347\) 32.8299 + 6.53027i 1.76240 + 0.350563i 0.966854 0.255329i \(-0.0821839\pi\)
0.795546 + 0.605893i \(0.207184\pi\)
\(348\) −0.522186 + 1.78149i −0.0279921 + 0.0954977i
\(349\) 10.6503 + 25.7122i 0.570099 + 1.37634i 0.901471 + 0.432840i \(0.142489\pi\)
−0.331372 + 0.943500i \(0.607511\pi\)
\(350\) 2.25939 11.3587i 0.120769 0.607148i
\(351\) 0.0764269 + 0.601643i 0.00407937 + 0.0321133i
\(352\) −5.46161 + 1.08638i −0.291105 + 0.0579043i
\(353\) −5.10785 5.10785i −0.271864 0.271864i 0.557986 0.829850i \(-0.311574\pi\)
−0.829850 + 0.557986i \(0.811574\pi\)
\(354\) −6.51562 20.7746i −0.346301 1.10416i
\(355\) −1.68935 0.699750i −0.0896611 0.0371389i
\(356\) −1.11580 −0.0591371
\(357\) 0 0
\(358\) 24.2996 1.28427
\(359\) 25.4579 + 10.5450i 1.34362 + 0.556544i 0.934508 0.355942i \(-0.115840\pi\)
0.409108 + 0.912486i \(0.365840\pi\)
\(360\) 1.17361 + 0.460491i 0.0618546 + 0.0242700i
\(361\) −18.4383 18.4383i −0.970437 0.970437i
\(362\) 2.74426 0.545867i 0.144235 0.0286901i
\(363\) 0.347518 3.90400i 0.0182400 0.204907i
\(364\) 0.0109691 0.0551455i 0.000574939 0.00289041i
\(365\) 0.240553 + 0.580747i 0.0125911 + 0.0303977i
\(366\) 8.68213 + 2.54489i 0.453822 + 0.133024i
\(367\) −11.0178 2.19159i −0.575127 0.114400i −0.101047 0.994882i \(-0.532219\pi\)
−0.474080 + 0.880482i \(0.657219\pi\)
\(368\) 11.7963 + 17.6544i 0.614923 + 0.920297i
\(369\) −12.0914 + 5.27668i −0.629455 + 0.274693i
\(370\) −0.0487002 + 0.0487002i −0.00253180 + 0.00253180i
\(371\) −6.29561 + 9.42204i −0.326852 + 0.489168i
\(372\) −2.02552 3.70534i −0.105018 0.192113i
\(373\) 5.50325i 0.284948i 0.989799 + 0.142474i \(0.0455057\pi\)
−0.989799 + 0.142474i \(0.954494\pi\)
\(374\) 0 0
\(375\) −1.52524 + 1.89452i −0.0787630 + 0.0978326i
\(376\) 3.41292 8.23951i 0.176008 0.424920i
\(377\) 0.382005 + 0.255247i 0.0196742 + 0.0131459i
\(378\) −3.83203 11.4597i −0.197098 0.589423i
\(379\) −1.02753 5.16575i −0.0527808 0.265347i 0.945380 0.325971i \(-0.105691\pi\)
−0.998161 + 0.0606237i \(0.980691\pi\)
\(380\) −0.213868 + 0.142902i −0.0109712 + 0.00733073i
\(381\) 13.1378 10.9900i 0.673068 0.563036i
\(382\) 21.0557 8.72156i 1.07730 0.446234i
\(383\) −19.5477 + 8.09691i −0.998840 + 0.413733i −0.821372 0.570394i \(-0.806791\pi\)
−0.177468 + 0.984127i \(0.556791\pi\)
\(384\) 11.2559 9.41575i 0.574398 0.480496i
\(385\) 0.753764 0.503649i 0.0384154 0.0256683i
\(386\) 4.16352 + 20.9314i 0.211918 + 1.06538i
\(387\) 5.32519 + 3.41525i 0.270694 + 0.173607i
\(388\) 1.03854 + 0.693928i 0.0527237 + 0.0352289i
\(389\) 4.78245 11.5459i 0.242480 0.585398i −0.755048 0.655669i \(-0.772387\pi\)
0.997528 + 0.0702713i \(0.0223865\pi\)
\(390\) 0.0234459 0.0291224i 0.00118723 0.00147467i
\(391\) 0 0
\(392\) 11.5587i 0.583804i
\(393\) 10.8247 + 19.8018i 0.546032 + 0.998871i
\(394\) 5.73319 8.58033i 0.288834 0.432271i
\(395\) 0.243347 0.243347i 0.0122441 0.0122441i
\(396\) −1.18987 2.72657i −0.0597933 0.137015i
\(397\) −21.6114 32.3438i −1.08465 1.62329i −0.722808 0.691049i \(-0.757149\pi\)
−0.361839 0.932240i \(-0.617851\pi\)
\(398\) 16.5007 + 3.28219i 0.827105 + 0.164521i
\(399\) 19.7427 + 5.78693i 0.988369 + 0.289709i
\(400\) 6.44418 + 15.5576i 0.322209 + 0.777881i
\(401\) −5.31186 + 26.7045i −0.265262 + 1.33356i 0.586635 + 0.809851i \(0.300452\pi\)
−0.851897 + 0.523709i \(0.824548\pi\)
\(402\) −1.17451 + 13.1944i −0.0585792 + 0.658076i
\(403\) −1.02499 + 0.203883i −0.0510583 + 0.0101561i
\(404\) −0.975645 0.975645i −0.0485401 0.0485401i
\(405\) −0.200218 + 1.25038i −0.00994892 + 0.0621320i
\(406\) −8.45693 3.50297i −0.419710 0.173850i
\(407\) 1.35623 0.0672256
\(408\) 0 0
\(409\) 28.2231 1.39554 0.697770 0.716322i \(-0.254176\pi\)
0.697770 + 0.716322i \(0.254176\pi\)
\(410\) 0.751380 + 0.311232i 0.0371080 + 0.0153706i
\(411\) 1.66122 + 5.29669i 0.0819419 + 0.261266i
\(412\) 3.07598 + 3.07598i 0.151543 + 0.151543i
\(413\) −16.5942 + 3.30080i −0.816549 + 0.162422i
\(414\) −17.1772 + 17.8350i −0.844214 + 0.876543i
\(415\) 0.152065 0.764483i 0.00746459 0.0375270i
\(416\) 0.0682967 + 0.164883i 0.00334852 + 0.00808405i
\(417\) −2.48201 + 8.46759i −0.121544 + 0.414660i
\(418\) −31.5210 6.26991i −1.54174 0.306671i
\(419\) 5.18926 + 7.76628i 0.253512 + 0.379408i 0.936295 0.351213i \(-0.114231\pi\)
−0.682784 + 0.730621i \(0.739231\pi\)
\(420\) 0.0543663 0.104051i 0.00265280 0.00507719i
\(421\) 9.40617 9.40617i 0.458429 0.458429i −0.439711 0.898139i \(-0.644919\pi\)
0.898139 + 0.439711i \(0.144919\pi\)
\(422\) −3.73899 + 5.59579i −0.182011 + 0.272399i
\(423\) 8.81709 + 1.58226i 0.428702 + 0.0769320i
\(424\) 19.1305i 0.929057i
\(425\) 0 0
\(426\) −23.0464 18.5542i −1.11660 0.898952i
\(427\) 2.69055 6.49556i 0.130205 0.314342i
\(428\) −0.308480 0.206119i −0.0149109 0.00996316i
\(429\) −0.731973 + 0.0790418i −0.0353400 + 0.00381617i
\(430\) −0.0760842 0.382501i −0.00366911 0.0184459i
\(431\) −12.1482 + 8.11718i −0.585159 + 0.390991i −0.812618 0.582797i \(-0.801958\pi\)
0.227459 + 0.973788i \(0.426958\pi\)
\(432\) 13.8902 + 10.7590i 0.668291 + 0.517641i
\(433\) 16.4827 6.82738i 0.792110 0.328103i 0.0503185 0.998733i \(-0.483976\pi\)
0.741792 + 0.670631i \(0.233976\pi\)
\(434\) 19.2369 7.96819i 0.923401 0.382485i
\(435\) 0.615502 + 0.735789i 0.0295111 + 0.0352784i
\(436\) −2.59869 + 1.73639i −0.124454 + 0.0831578i
\(437\) −8.22492 41.3495i −0.393451 1.97801i
\(438\) 1.09198 + 10.1124i 0.0521768 + 0.483187i
\(439\) 21.9174 + 14.6447i 1.04606 + 0.698955i 0.954914 0.296882i \(-0.0959469\pi\)
0.0911464 + 0.995838i \(0.470947\pi\)
\(440\) −0.585674 + 1.41394i −0.0279209 + 0.0674070i
\(441\) 11.3424 2.47850i 0.540112 0.118024i
\(442\) 0 0
\(443\) 9.67036i 0.459453i −0.973255 0.229726i \(-0.926217\pi\)
0.973255 0.229726i \(-0.0737831\pi\)
\(444\) 0.154109 0.0842438i 0.00731371 0.00399803i
\(445\) −0.320325 + 0.479400i −0.0151848 + 0.0227257i
\(446\) 0.175541 0.175541i 0.00831208 0.00831208i
\(447\) 34.1145 + 17.8246i 1.61356 + 0.843076i
\(448\) −8.62244 12.9044i −0.407372 0.609675i
\(449\) −1.03641 0.206155i −0.0489113 0.00972906i 0.170574 0.985345i \(-0.445438\pi\)
−0.219485 + 0.975616i \(0.570438\pi\)
\(450\) −16.1208 + 11.2153i −0.759942 + 0.528692i
\(451\) −6.12872 14.7960i −0.288590 0.696718i
\(452\) 0.719865 3.61901i 0.0338596 0.170224i
\(453\) −7.11658 0.633488i −0.334366 0.0297639i
\(454\) 2.74620 0.546252i 0.128885 0.0256369i
\(455\) −0.0205441 0.0205441i −0.000963124 0.000963124i
\(456\) −33.1404 + 10.3939i −1.55194 + 0.486741i
\(457\) −19.7952 8.19942i −0.925978 0.383553i −0.131827 0.991273i \(-0.542084\pi\)
−0.794151 + 0.607720i \(0.792084\pi\)
\(458\) −22.7184 −1.06156
\(459\) 0 0
\(460\) −0.240577 −0.0112169
\(461\) 22.7649 + 9.42954i 1.06027 + 0.439177i 0.843547 0.537056i \(-0.180464\pi\)
0.216721 + 0.976233i \(0.430464\pi\)
\(462\) 13.9963 4.38972i 0.651168 0.204228i
\(463\) −13.6466 13.6466i −0.634213 0.634213i 0.314909 0.949122i \(-0.398026\pi\)
−0.949122 + 0.314909i \(0.898026\pi\)
\(464\) 13.0540 2.59661i 0.606018 0.120544i
\(465\) −2.17348 0.193474i −0.100793 0.00897216i
\(466\) −2.51101 + 12.6237i −0.116320 + 0.584781i
\(467\) −4.76264 11.4980i −0.220389 0.532066i 0.774554 0.632508i \(-0.217974\pi\)
−0.994943 + 0.100442i \(0.967974\pi\)
\(468\) −0.0782652 + 0.0544491i −0.00361781 + 0.00251691i
\(469\) 10.0961 + 2.00824i 0.466194 + 0.0927317i
\(470\) −0.306802 0.459162i −0.0141517 0.0211796i
\(471\) −21.4299 11.1970i −0.987437 0.515930i
\(472\) 20.1974 20.1974i 0.929660 0.929660i
\(473\) −4.26662 + 6.38545i −0.196179 + 0.293603i
\(474\) 4.88612 2.67099i 0.224427 0.122683i
\(475\) 33.4363i 1.53416i
\(476\) 0 0
\(477\) 18.7724 4.10208i 0.859527 0.187821i
\(478\) −11.2858 + 27.2464i −0.516202 + 1.24622i
\(479\) 18.8736 + 12.6109i 0.862357 + 0.576208i 0.906209 0.422830i \(-0.138963\pi\)
−0.0438524 + 0.999038i \(0.513963\pi\)
\(480\) 0.0400064 + 0.370483i 0.00182604 + 0.0169102i
\(481\) −0.00847972 0.0426304i −0.000386642 0.00194378i
\(482\) 0.443167 0.296115i 0.0201857 0.0134877i
\(483\) 12.3464 + 14.7592i 0.561780 + 0.671567i
\(484\) 0.569259 0.235795i 0.0258754 0.0107179i
\(485\) 0.596290 0.246991i 0.0270761 0.0112153i
\(486\) −8.79983 + 18.5040i −0.399169 + 0.839357i
\(487\) −19.1116 + 12.7700i −0.866028 + 0.578662i −0.907299 0.420486i \(-0.861859\pi\)
0.0412704 + 0.999148i \(0.486859\pi\)
\(488\) 2.31560 + 11.6413i 0.104822 + 0.526977i
\(489\) −19.2081 + 2.07417i −0.868619 + 0.0937974i
\(490\) −0.595100 0.397633i −0.0268839 0.0179632i
\(491\) 7.79649 18.8224i 0.351851 0.849443i −0.644541 0.764570i \(-0.722951\pi\)
0.996392 0.0848732i \(-0.0270485\pi\)
\(492\) −1.61549 1.30060i −0.0728319 0.0586355i
\(493\) 0 0
\(494\) 1.03001i 0.0463421i
\(495\) −1.51306 0.271524i −0.0680069 0.0122041i
\(496\) −16.8202 + 25.1733i −0.755251 + 1.13031i
\(497\) −16.2578 + 16.2578i −0.729264 + 0.729264i
\(498\) 5.84063 11.1784i 0.261725 0.500914i
\(499\) −0.599548 0.897288i −0.0268395 0.0401681i 0.817807 0.575492i \(-0.195189\pi\)
−0.844647 + 0.535324i \(0.820189\pi\)
\(500\) −0.375010 0.0745940i −0.0167709 0.00333595i
\(501\) −1.02309 + 3.49038i −0.0457085 + 0.155939i
\(502\) −0.533486 1.28795i −0.0238106 0.0574840i
\(503\) 1.83089 9.20449i 0.0816353 0.410408i −0.918261 0.395977i \(-0.870406\pi\)
0.999896 0.0144315i \(-0.00459386\pi\)
\(504\) 10.9967 11.4179i 0.489834 0.508592i
\(505\) −0.699273 + 0.139094i −0.0311173 + 0.00618961i
\(506\) −21.2552 21.2552i −0.944907 0.944907i
\(507\) −6.73128 21.4622i −0.298947 0.953172i
\(508\) 2.48772 + 1.03045i 0.110375 + 0.0457188i
\(509\) −7.99190 −0.354235 −0.177117 0.984190i \(-0.556677\pi\)
−0.177117 + 0.984190i \(0.556677\pi\)
\(510\) 0 0
\(511\) 7.90399 0.349652
\(512\) 23.4372 + 9.70803i 1.03579 + 0.429038i
\(513\) −17.3055 30.2913i −0.764059 1.33739i
\(514\) −18.7116 18.7116i −0.825334 0.825334i
\(515\) 2.20465 0.438531i 0.0971483 0.0193240i
\(516\) −0.0881802 + 0.990613i −0.00388192 + 0.0436093i
\(517\) −2.12149 + 10.6655i −0.0933031 + 0.469066i
\(518\) 0.331406 + 0.800085i 0.0145611 + 0.0351537i
\(519\) 20.4681 + 5.99957i 0.898449 + 0.263352i
\(520\) 0.0481065 + 0.00956898i 0.00210961 + 0.000419627i
\(521\) −0.875810 1.31074i −0.0383699 0.0574246i 0.811789 0.583951i \(-0.198494\pi\)
−0.850159 + 0.526527i \(0.823494\pi\)
\(522\) 6.20832 + 14.2263i 0.271731 + 0.622668i
\(523\) −24.2095 + 24.2095i −1.05861 + 1.05861i −0.0604341 + 0.998172i \(0.519249\pi\)
−0.998172 + 0.0604341i \(0.980751\pi\)
\(524\) −1.97102 + 2.94984i −0.0861043 + 0.128864i
\(525\) 7.32004 + 13.3907i 0.319473 + 0.584420i
\(526\) 7.25753i 0.316443i
\(527\) 0 0
\(528\) −13.3752 + 16.6135i −0.582081 + 0.723011i
\(529\) 6.28827 15.1812i 0.273403 0.660054i
\(530\) −0.984931 0.658110i −0.0427827 0.0285865i
\(531\) 24.1502 + 15.4884i 1.04803 + 0.672141i
\(532\) 0.630973 + 3.17211i 0.0273561 + 0.137529i
\(533\) −0.426766 + 0.285156i −0.0184853 + 0.0123515i
\(534\) −7.15575 + 5.98593i −0.309660 + 0.259037i
\(535\) −0.177118 + 0.0733645i −0.00765746 + 0.00317183i
\(536\) −16.0554 + 6.65037i −0.693488 + 0.287252i
\(537\) −24.5601 + 20.5450i −1.05984 + 0.886582i
\(538\) −9.98873 + 6.67425i −0.430645 + 0.287747i
\(539\) 2.74957 + 13.8230i 0.118433 + 0.595401i
\(540\) −0.188797 + 0.0631321i −0.00812451 + 0.00271677i
\(541\) 2.52076 + 1.68432i 0.108376 + 0.0724146i 0.608577 0.793495i \(-0.291741\pi\)
−0.500201 + 0.865909i \(0.666741\pi\)
\(542\) −1.33208 + 3.21592i −0.0572176 + 0.138135i
\(543\) −2.31215 + 2.87196i −0.0992239 + 0.123247i
\(544\) 0 0
\(545\) 1.61500i 0.0691792i
\(546\) −0.225494 0.412502i −0.00965024 0.0176535i
\(547\) 0.965555 1.44506i 0.0412842 0.0617861i −0.810253 0.586080i \(-0.800671\pi\)
0.851538 + 0.524294i \(0.175671\pi\)
\(548\) −0.617069 + 0.617069i −0.0263599 + 0.0263599i
\(549\) −10.9269 + 4.76846i −0.466347 + 0.203513i
\(550\) −13.2447 19.8220i −0.564754 0.845214i
\(551\) −25.9200 5.15580i −1.10423 0.219645i
\(552\) −31.1735 9.13753i −1.32683 0.388919i
\(553\) −1.65598 3.99789i −0.0704195 0.170008i
\(554\) 5.30547 26.6724i 0.225408 1.13320i
\(555\) 0.00804682 0.0903977i 0.000341569 0.00383717i
\(556\) −1.36051 + 0.270623i −0.0576986 + 0.0114770i
\(557\) 29.9311 + 29.9311i 1.26822 + 1.26822i 0.947006 + 0.321217i \(0.104092\pi\)
0.321217 + 0.947006i \(0.395908\pi\)
\(558\) −32.8681 12.8965i −1.39142 0.545953i
\(559\) 0.227391 + 0.0941886i 0.00961763 + 0.00398375i
\(560\) −0.841688 −0.0355678
\(561\) 0 0
\(562\) 13.5236 0.570460
\(563\) −26.2627 10.8784i −1.10684 0.458468i −0.246991 0.969018i \(-0.579442\pi\)
−0.859848 + 0.510550i \(0.829442\pi\)
\(564\) 0.421432 + 1.34371i 0.0177455 + 0.0565803i
\(565\) −1.34824 1.34824i −0.0567208 0.0567208i
\(566\) −16.5564 + 3.29328i −0.695919 + 0.138427i
\(567\) 13.5621 + 8.34259i 0.569556 + 0.350356i
\(568\) 7.57252 38.0696i 0.317736 1.59737i
\(569\) 7.98685 + 19.2820i 0.334826 + 0.808342i 0.998195 + 0.0600499i \(0.0191260\pi\)
−0.663369 + 0.748292i \(0.730874\pi\)
\(570\) −0.604936 + 2.06379i −0.0253380 + 0.0864428i
\(571\) −6.15858 1.22502i −0.257728 0.0512654i 0.0645348 0.997915i \(-0.479444\pi\)
−0.322263 + 0.946650i \(0.604444\pi\)
\(572\) −0.0643017 0.0962342i −0.00268859 0.00402376i
\(573\) −13.9074 + 26.6174i −0.580992 + 1.11196i
\(574\) 7.23109 7.23109i 0.301820 0.301820i
\(575\) 17.3744 26.0027i 0.724564 1.08439i
\(576\) −4.64846 + 25.9034i −0.193686 + 1.07931i
\(577\) 36.1978i 1.50693i 0.657485 + 0.753467i \(0.271620\pi\)
−0.657485 + 0.753467i \(0.728380\pi\)
\(578\) 0 0
\(579\) −21.9054 17.6356i −0.910358 0.732911i
\(580\) −0.0577109 + 0.139326i −0.00239632 + 0.00578522i
\(581\) −8.14920 5.44512i −0.338086 0.225902i
\(582\) 10.3830 1.12120i 0.430389 0.0464754i
\(583\) 4.55073 + 22.8781i 0.188472 + 0.947513i
\(584\) −11.0948 + 7.41331i −0.459106 + 0.306765i
\(585\) 0.000925462 0.0492578i 3.82631e−5 0.00203656i
\(586\) −1.36995 + 0.567450i −0.0565919 + 0.0234412i
\(587\) 7.20502 2.98442i 0.297383 0.123180i −0.229003 0.973426i \(-0.573547\pi\)
0.526386 + 0.850246i \(0.323547\pi\)
\(588\) 1.17107 + 1.39994i 0.0482943 + 0.0577323i
\(589\) 49.9838 33.3981i 2.05955 1.37615i
\(590\) −0.345048 1.73467i −0.0142054 0.0714154i
\(591\) 1.45991 + 13.5196i 0.0600528 + 0.556124i
\(592\) −1.04698 0.699572i −0.0430308 0.0287523i
\(593\) −11.6027 + 28.0114i −0.476465 + 1.15029i 0.484790 + 0.874630i \(0.338896\pi\)
−0.961256 + 0.275659i \(0.911104\pi\)
\(594\) −22.2581 11.1026i −0.913261 0.455543i
\(595\) 0 0
\(596\) 6.05095i 0.247857i
\(597\) −19.4526 + 10.6338i −0.796143 + 0.435211i
\(598\) −0.535220 + 0.801013i −0.0218868 + 0.0327558i
\(599\) −17.7610 + 17.7610i −0.725695 + 0.725695i −0.969759 0.244064i \(-0.921519\pi\)
0.244064 + 0.969759i \(0.421519\pi\)
\(600\) −22.8346 11.9309i −0.932217 0.487078i
\(601\) 16.9242 + 25.3288i 0.690351 + 1.03318i 0.996693 + 0.0812623i \(0.0258951\pi\)
−0.306341 + 0.951922i \(0.599105\pi\)
\(602\) −4.80958 0.956686i −0.196024 0.0389916i
\(603\) −9.96858 14.3288i −0.405952 0.583516i
\(604\) −0.429829 1.03770i −0.0174895 0.0422233i
\(605\) 0.0621150 0.312273i 0.00252534 0.0126957i
\(606\) −11.4910 1.02288i −0.466790 0.0415517i
\(607\) 21.3739 4.25153i 0.867539 0.172564i 0.258796 0.965932i \(-0.416674\pi\)
0.608743 + 0.793368i \(0.291674\pi\)
\(608\) −7.25911 7.25911i −0.294396 0.294396i
\(609\) 11.5093 3.60970i 0.466380 0.146273i
\(610\) 0.679012 + 0.281256i 0.0274924 + 0.0113877i
\(611\) 0.348513 0.0140993
\(612\) 0 0
\(613\) 17.5623 0.709337 0.354668 0.934992i \(-0.384594\pi\)
0.354668 + 0.934992i \(0.384594\pi\)
\(614\) −23.7791 9.84962i −0.959646 0.397498i
\(615\) −1.02258 + 0.320714i −0.0412343 + 0.0129325i
\(616\) 13.6074 + 13.6074i 0.548258 + 0.548258i
\(617\) 23.1766 4.61012i 0.933056 0.185596i 0.294922 0.955521i \(-0.404706\pi\)
0.638134 + 0.769925i \(0.279706\pi\)
\(618\) 36.2284 + 3.22490i 1.45732 + 0.129725i
\(619\) −7.79157 + 39.1709i −0.313170 + 1.57441i 0.428435 + 0.903572i \(0.359065\pi\)
−0.741605 + 0.670837i \(0.765935\pi\)
\(620\) −0.131275 0.316925i −0.00527211 0.0127280i
\(621\) 2.28205 32.5493i 0.0915754 1.30616i
\(622\) 37.8693 + 7.53267i 1.51842 + 0.302033i
\(623\) 4.02777 + 6.02799i 0.161369 + 0.241506i
\(624\) 0.605843 + 0.316550i 0.0242531 + 0.0126721i
\(625\) 17.4680 17.4680i 0.698719 0.698719i
\(626\) −13.0134 + 19.4759i −0.520119 + 0.778413i
\(627\) 37.1600 20.3135i 1.48403 0.811242i
\(628\) 3.80106i 0.151679i
\(629\) 0 0
\(630\) −0.209548 0.958955i −0.00834859 0.0382057i
\(631\) −10.2510 + 24.7481i −0.408085 + 0.985205i 0.577556 + 0.816351i \(0.304007\pi\)
−0.985641 + 0.168854i \(0.945993\pi\)
\(632\) 6.07420 + 4.05865i 0.241619 + 0.161444i
\(633\) −0.952104 8.81704i −0.0378428 0.350446i
\(634\) −3.62108 18.2044i −0.143811 0.722988i
\(635\) 1.15691 0.773023i 0.0459106 0.0306765i
\(636\) 1.93821 + 2.31699i 0.0768549 + 0.0918745i
\(637\) 0.417310 0.172855i 0.0165344 0.00684878i
\(638\) −17.4084 + 7.21080i −0.689206 + 0.285478i
\(639\) 38.9807 0.732374i 1.54205 0.0289723i
\(640\) 0.991189 0.662291i 0.0391802 0.0261794i
\(641\) 8.30682 + 41.7612i 0.328100 + 1.64947i 0.694854 + 0.719151i \(0.255469\pi\)
−0.366754 + 0.930318i \(0.619531\pi\)
\(642\) −3.08409 + 0.333034i −0.121719 + 0.0131438i
\(643\) 21.4404 + 14.3260i 0.845525 + 0.564962i 0.901159 0.433490i \(-0.142718\pi\)
−0.0556337 + 0.998451i \(0.517718\pi\)
\(644\) −1.15763 + 2.79475i −0.0456168 + 0.110129i
\(645\) 0.400300 + 0.322273i 0.0157618 + 0.0126895i
\(646\) 0 0
\(647\) 38.1903i 1.50142i 0.660634 + 0.750709i \(0.270288\pi\)
−0.660634 + 0.750709i \(0.729712\pi\)
\(648\) −26.8618 + 1.00972i −1.05523 + 0.0396656i
\(649\) −19.3495 + 28.9585i −0.759533 + 1.13672i
\(650\) −0.540257 + 0.540257i −0.0211906 + 0.0211906i
\(651\) −12.7061 + 24.3182i −0.497992 + 0.953104i
\(652\) −1.68737 2.52533i −0.0660826 0.0988996i
\(653\) −33.6458 6.69257i −1.31666 0.261901i −0.513721 0.857957i \(-0.671733\pi\)
−0.802942 + 0.596057i \(0.796733\pi\)
\(654\) −7.35049 + 25.0769i −0.287427 + 0.980584i
\(655\) 0.701548 + 1.69369i 0.0274118 + 0.0661778i
\(656\) −2.90087 + 14.5836i −0.113260 + 0.569396i
\(657\) −9.65356 9.29750i −0.376621 0.362730i
\(658\) −6.81033 + 1.35466i −0.265494 + 0.0528101i
\(659\) 24.7106 + 24.7106i 0.962589 + 0.962589i 0.999325 0.0367361i \(-0.0116961\pi\)
−0.0367361 + 0.999325i \(0.511696\pi\)
\(660\) −0.0723199 0.230587i −0.00281505 0.00897559i
\(661\) −11.2271 4.65040i −0.436682 0.180880i 0.153502 0.988148i \(-0.450945\pi\)
−0.590184 + 0.807269i \(0.700945\pi\)
\(662\) 9.50727 0.369510
\(663\) 0 0
\(664\) 16.5461 0.642113
\(665\) 1.54403 + 0.639559i 0.0598750 + 0.0248011i
\(666\) 0.536380 1.36702i 0.0207843 0.0529710i
\(667\) −17.4783 17.4783i −0.676762 0.676762i
\(668\) −0.560811 + 0.111552i −0.0216984 + 0.00431608i
\(669\) −0.0290049 + 0.325839i −0.00112139 + 0.0125977i
\(670\) −0.209931 + 1.05539i −0.00811032 + 0.0407734i
\(671\) −5.53844 13.3710i −0.213809 0.516181i
\(672\) 4.49637 + 1.31797i 0.173451 + 0.0508417i
\(673\) −39.7638 7.90952i −1.53278 0.304890i −0.644651 0.764477i \(-0.722997\pi\)
−0.888133 + 0.459587i \(0.847997\pi\)
\(674\) −9.76206 14.6100i −0.376021 0.562755i
\(675\) 6.81126 24.9654i 0.262165 0.960919i
\(676\) 2.50037 2.50037i 0.0961681 0.0961681i
\(677\) −3.80783 + 5.69882i −0.146347 + 0.219024i −0.897400 0.441219i \(-0.854546\pi\)
0.751053 + 0.660242i \(0.229546\pi\)
\(678\) −14.7984 27.0710i −0.568327 1.03966i
\(679\) 8.11552i 0.311445i
\(680\) 0 0
\(681\) −2.31378 + 2.87398i −0.0886644 + 0.110131i
\(682\) 16.4024 39.5988i 0.628079 1.51632i
\(683\) 8.21052 + 5.48609i 0.314167 + 0.209919i 0.702649 0.711537i \(-0.252001\pi\)
−0.388482 + 0.921456i \(0.627001\pi\)
\(684\) 2.96073 4.61649i 0.113206 0.176516i
\(685\) 0.0879732 + 0.442271i 0.00336128 + 0.0168983i
\(686\) −21.0176 + 14.0435i −0.802457 + 0.536184i
\(687\) 22.9619 19.2081i 0.876052 0.732836i
\(688\) 6.58752 2.72864i 0.251147 0.104028i
\(689\) 0.690676 0.286087i 0.0263127 0.0108991i
\(690\) −1.54285 + 1.29063i −0.0587353 + 0.0491333i
\(691\) −11.5339 + 7.70668i −0.438769 + 0.293176i −0.755267 0.655417i \(-0.772493\pi\)
0.316498 + 0.948593i \(0.397493\pi\)
\(692\) 0.654157 + 3.28867i 0.0248673 + 0.125016i
\(693\) −10.4349 + 16.2705i −0.396389 + 0.618065i
\(694\) 36.5828 + 24.4439i 1.38867 + 0.927876i
\(695\) −0.274306 + 0.662233i −0.0104050 + 0.0251199i
\(696\) −12.7699 + 15.8617i −0.484044 + 0.601237i
\(697\) 0 0
\(698\) 36.5813i 1.38462i
\(699\) −8.13525 14.8820i −0.307703 0.562890i
\(700\) −1.33288 + 1.99479i −0.0503780 + 0.0753960i
\(701\) 7.15325 7.15325i 0.270175 0.270175i −0.558996 0.829170i \(-0.688813\pi\)
0.829170 + 0.558996i \(0.188813\pi\)
\(702\) −0.209821 + 0.769060i −0.00791917 + 0.0290263i
\(703\) 1.38907 + 2.07888i 0.0523896 + 0.0784066i
\(704\) −31.3337 6.23266i −1.18093 0.234902i
\(705\) 0.698307 + 0.204687i 0.0262998 + 0.00770894i
\(706\) −3.63353 8.77211i −0.136750 0.330143i
\(707\) −1.74897 + 8.79269i −0.0657770 + 0.330683i
\(708\) −0.399904 + 4.49251i −0.0150293 + 0.168839i
\(709\) 44.1828 8.78850i 1.65932 0.330059i 0.725614 0.688102i \(-0.241556\pi\)
0.933705 + 0.358043i \(0.116556\pi\)
\(710\) −1.69951 1.69951i −0.0637814 0.0637814i
\(711\) −2.68020 + 6.83078i −0.100516 + 0.256174i
\(712\) −11.3075 4.68374i −0.423768 0.175531i
\(713\) 56.2259 2.10568
\(714\) 0 0
\(715\) −0.0598067 −0.00223664
\(716\) −4.65061 1.92635i −0.173801 0.0719909i
\(717\) −11.6297 37.0805i −0.434319 1.38480i
\(718\) 25.6111 + 25.6111i 0.955796 + 0.955796i
\(719\) −28.2094 + 5.61120i −1.05203 + 0.209263i −0.690676 0.723165i \(-0.742687\pi\)
−0.361358 + 0.932427i \(0.617687\pi\)
\(720\) 1.02800 + 0.990082i 0.0383112 + 0.0368982i
\(721\) 5.51411 27.7213i 0.205356 1.03240i
\(722\) −13.1163 31.6655i −0.488138 1.17847i
\(723\) −0.197556 + 0.673981i −0.00734719 + 0.0250656i
\(724\) −0.568488 0.113079i −0.0211277 0.00420256i
\(725\) −10.8912 16.2998i −0.404489 0.605360i
\(726\) 2.38576 4.56610i 0.0885439 0.169464i
\(727\) 1.86673 1.86673i 0.0692331 0.0692331i −0.671642 0.740876i \(-0.734411\pi\)
0.740876 + 0.671642i \(0.234411\pi\)
\(728\) 0.342644 0.512803i 0.0126992 0.0190058i
\(729\) −6.75071 26.1425i −0.250026 0.968239i
\(730\) 0.826242i 0.0305806i
\(731\) 0 0
\(732\) −1.45990 1.17533i −0.0539593 0.0434415i
\(733\) 11.9956 28.9600i 0.443068 1.06966i −0.531798 0.846871i \(-0.678484\pi\)
0.974866 0.222790i \(-0.0715164\pi\)
\(734\) −12.2773 8.20346i −0.453165 0.302795i
\(735\) 0.937673 0.101254i 0.0345866 0.00373482i
\(736\) −1.87322 9.41729i −0.0690477 0.347126i
\(737\) 17.6186 11.7724i 0.648991 0.433642i
\(738\) −17.3377 + 0.325743i −0.638209 + 0.0119907i
\(739\) −4.41201 + 1.82751i −0.162298 + 0.0672262i −0.462354 0.886696i \(-0.652995\pi\)
0.300055 + 0.953922i \(0.402995\pi\)
\(740\) 0.0131813 0.00545986i 0.000484553 0.000200708i
\(741\) −0.870857 1.04105i −0.0319917 0.0382438i
\(742\) −12.3846 + 8.27510i −0.454651 + 0.303788i
\(743\) −4.10808 20.6527i −0.150711 0.757674i −0.980022 0.198888i \(-0.936267\pi\)
0.829312 0.558787i \(-0.188733\pi\)
\(744\) −4.97297 46.0526i −0.182318 1.68837i
\(745\) 2.59978 + 1.73712i 0.0952486 + 0.0636431i
\(746\) −2.76818 + 6.68298i −0.101350 + 0.244681i
\(747\) 3.54792 + 16.2364i 0.129812 + 0.594058i
\(748\) 0 0
\(749\) 2.41058i 0.0880806i
\(750\) −2.80516 + 1.53344i −0.102430 + 0.0559933i
\(751\) 12.8753 19.2693i 0.469827 0.703145i −0.518571 0.855035i \(-0.673536\pi\)
0.988397 + 0.151889i \(0.0485358\pi\)
\(752\) 7.13925 7.13925i 0.260342 0.260342i
\(753\) 1.62815 + 0.850699i 0.0593330 + 0.0310012i
\(754\) 0.335503 + 0.502116i 0.0122183 + 0.0182860i
\(755\) −0.569241 0.113229i −0.0207168 0.00412083i
\(756\) −0.175067 + 2.49701i −0.00636711 + 0.0908155i
\(757\) −9.85760 23.7983i −0.358280 0.864965i −0.995542 0.0943180i \(-0.969933\pi\)
0.637262 0.770647i \(-0.280067\pi\)
\(758\) 1.35061 6.78999i 0.0490564 0.246623i
\(759\) 39.4540 + 3.51203i 1.43209 + 0.127478i
\(760\) −2.76721 + 0.550432i −0.100377 + 0.0199663i
\(761\) −15.9336 15.9336i −0.577594 0.577594i 0.356646 0.934240i \(-0.383920\pi\)
−0.934240 + 0.356646i \(0.883920\pi\)
\(762\) 21.4822 6.73753i 0.778217 0.244075i
\(763\) 18.7613 + 7.77120i 0.679206 + 0.281336i
\(764\) −4.72118 −0.170806
\(765\) 0 0
\(766\) −27.8109 −1.00485
\(767\) 1.03124 + 0.427153i 0.0372359 + 0.0154236i
\(768\) −10.5909 + 3.32165i −0.382165 + 0.119860i
\(769\) −10.2112 10.2112i −0.368226 0.368226i 0.498604 0.866830i \(-0.333846\pi\)
−0.866830 + 0.498604i \(0.833846\pi\)
\(770\) 1.16869 0.232466i 0.0421166 0.00837751i
\(771\) 34.7326 + 3.09175i 1.25086 + 0.111347i
\(772\) 0.862495 4.33606i 0.0310419 0.156058i
\(773\) −0.930920 2.24744i −0.0334829 0.0808348i 0.906254 0.422734i \(-0.138930\pi\)
−0.939736 + 0.341900i \(0.888930\pi\)
\(774\) 4.74884 + 6.82599i 0.170694 + 0.245355i
\(775\) 43.7354 + 8.69951i 1.57102 + 0.312496i
\(776\) 7.61171 + 11.3917i 0.273245 + 0.408939i
\(777\) −1.01142 0.528461i −0.0362845 0.0189584i
\(778\) 11.6153 11.6153i 0.416429 0.416429i
\(779\) 16.4029 24.5487i 0.587696 0.879549i
\(780\) −0.00679590 + 0.00371497i −0.000243332 + 0.000133017i
\(781\) 47.3287i 1.69355i
\(782\) 0 0
\(783\) −18.3030 9.12973i −0.654097 0.326270i
\(784\) 5.00762 12.0895i 0.178844 0.431766i
\(785\) −1.63312 1.09121i −0.0582885 0.0389471i
\(786\) 3.18464 + 29.4916i 0.113592 + 1.05193i
\(787\) −6.18658 31.1021i −0.220528 1.10867i −0.919370 0.393393i \(-0.871301\pi\)
0.698843 0.715276i \(-0.253699\pi\)
\(788\) −1.77746 + 1.18766i −0.0633194 + 0.0423086i
\(789\) 6.13615 + 7.33533i 0.218453 + 0.261145i
\(790\) 0.417919 0.173108i 0.0148689 0.00615889i
\(791\) −22.1499 + 9.17479i −0.787560 + 0.326218i
\(792\) −0.612980 32.6259i −0.0217813 1.15931i
\(793\) −0.385663 + 0.257692i −0.0136953 + 0.00915090i
\(794\) −9.97507 50.1481i −0.354002 1.77969i
\(795\) 1.55191 0.167583i 0.0550407 0.00594354i
\(796\) −2.89781 1.93626i −0.102710 0.0686288i
\(797\) −17.3442 + 41.8726i −0.614363 + 1.48320i 0.243800 + 0.969825i \(0.421606\pi\)
−0.858163 + 0.513377i \(0.828394\pi\)
\(798\) 21.0640 + 16.9582i 0.745658 + 0.600314i
\(799\) 0 0
\(800\) 7.61508i 0.269234i
\(801\) 2.17142 12.1002i 0.0767235 0.427539i
\(802\) −19.8832 + 29.7572i −0.702099 + 1.05076i
\(803\) 11.5048 11.5048i 0.405995 0.405995i
\(804\) 1.27077 2.43212i 0.0448165 0.0857741i
\(805\) 0.868428 + 1.29969i 0.0306081 + 0.0458082i
\(806\) −1.34727 0.267988i −0.0474555 0.00943949i
\(807\) 4.45280 15.1911i 0.156746 0.534753i
\(808\) −5.79181 13.9827i −0.203755 0.491908i
\(809\) 4.90669 24.6676i 0.172510 0.867266i −0.793462 0.608620i \(-0.791724\pi\)
0.965972 0.258646i \(-0.0832764\pi\)
\(810\) −0.872091 + 1.41771i −0.0306422 + 0.0498134i
\(811\) 22.8258 4.54032i 0.801521 0.159432i 0.222700 0.974887i \(-0.428513\pi\)
0.578821 + 0.815455i \(0.303513\pi\)
\(812\) 1.34084 + 1.34084i 0.0470544 + 0.0470544i
\(813\) −1.37266 4.37664i −0.0481413 0.153496i
\(814\) 1.64696 + 0.682192i 0.0577259 + 0.0239108i
\(815\) −1.56942 −0.0549743
\(816\) 0 0
\(817\) −14.1578 −0.495320
\(818\) 34.2732 + 14.1964i 1.19834 + 0.496367i
\(819\) 0.576676 + 0.226271i 0.0201507 + 0.00790656i
\(820\) −0.119131 0.119131i −0.00416024 0.00416024i
\(821\) 42.3900 8.43190i 1.47942 0.294275i 0.611607 0.791162i \(-0.290524\pi\)
0.867815 + 0.496887i \(0.165524\pi\)
\(822\) −0.646944 + 7.26774i −0.0225648 + 0.253492i
\(823\) −3.29041 + 16.5420i −0.114696 + 0.576617i 0.880105 + 0.474780i \(0.157472\pi\)
−0.994801 + 0.101838i \(0.967528\pi\)
\(824\) 18.2602 + 44.0841i 0.636125 + 1.53574i
\(825\) 30.1459 + 8.83631i 1.04955 + 0.307641i
\(826\) −21.8119 4.33865i −0.758931 0.150961i
\(827\) 12.3170 + 18.4337i 0.428304 + 0.641002i 0.981368 0.192136i \(-0.0615416\pi\)
−0.553064 + 0.833139i \(0.686542\pi\)
\(828\) 4.70135 2.05166i 0.163383 0.0713001i
\(829\) −19.3451 + 19.3451i −0.671883 + 0.671883i −0.958150 0.286267i \(-0.907585\pi\)
0.286267 + 0.958150i \(0.407585\pi\)
\(830\) 0.569205 0.851875i 0.0197574 0.0295690i
\(831\) 17.1888 + 31.4440i 0.596274 + 1.09078i
\(832\) 1.02389i 0.0354968i
\(833\) 0 0
\(834\) −7.27334 + 9.03431i −0.251855 + 0.312833i
\(835\) −0.113070 + 0.272976i −0.00391296 + 0.00944672i
\(836\) 5.53564 + 3.69880i 0.191454 + 0.127926i
\(837\) 44.1242 14.7548i 1.52516 0.510000i
\(838\) 2.39518 + 12.0414i 0.0827400 + 0.415962i
\(839\) 20.6465 13.7956i 0.712798 0.476276i −0.145546 0.989352i \(-0.546494\pi\)
0.858344 + 0.513075i \(0.171494\pi\)
\(840\) 0.987723 0.826251i 0.0340797 0.0285084i
\(841\) 12.4774 5.16832i 0.430256 0.178218i
\(842\) 16.1539 6.69119i 0.556702 0.230593i
\(843\) −13.6686 + 11.4341i −0.470771 + 0.393810i
\(844\) 1.15920 0.774551i 0.0399012 0.0266611i
\(845\) −0.356469 1.79209i −0.0122629 0.0616498i
\(846\) 9.91131 + 6.35651i 0.340758 + 0.218541i
\(847\) −3.32876 2.22420i −0.114377 0.0764246i
\(848\) 8.28795 20.0089i 0.284609 0.687107i
\(849\) 13.9495 17.3269i 0.478745 0.594656i
\(850\) 0 0
\(851\) 2.33850i 0.0801628i
\(852\) 2.93989 + 5.37801i 0.100719 + 0.184248i
\(853\) 16.5745 24.8055i 0.567499 0.849323i −0.431096 0.902306i \(-0.641873\pi\)
0.998595 + 0.0529834i \(0.0168730\pi\)
\(854\) 6.53464 6.53464i 0.223611 0.223611i
\(855\) −1.13349 2.59738i −0.0387646 0.0888286i
\(856\) −2.26093 3.38372i −0.0772770 0.115653i
\(857\) 33.3750 + 6.63871i 1.14007 + 0.226774i 0.728791 0.684736i \(-0.240082\pi\)
0.411279 + 0.911510i \(0.365082\pi\)
\(858\) −0.928644 0.272203i −0.0317034 0.00929284i
\(859\) 7.54327 + 18.2111i 0.257373 + 0.621354i 0.998763 0.0497206i \(-0.0158331\pi\)
−0.741390 + 0.671074i \(0.765833\pi\)
\(860\) −0.0157612 + 0.0792371i −0.000537454 + 0.00270196i
\(861\) −1.19481 + 13.4224i −0.0407189 + 0.457434i
\(862\) −18.8354 + 3.74660i −0.641538 + 0.127610i
\(863\) −4.36492 4.36492i −0.148584 0.148584i 0.628901 0.777485i \(-0.283505\pi\)
−0.777485 + 0.628901i \(0.783505\pi\)
\(864\) −3.94132 6.89880i −0.134086 0.234702i
\(865\) 1.60077 + 0.663059i 0.0544277 + 0.0225447i
\(866\) 23.4504 0.796876
\(867\) 0 0
\(868\) −4.31336 −0.146405
\(869\) −8.22958 3.40880i −0.279169 0.115636i
\(870\) 0.377339 + 1.20312i 0.0127930 + 0.0407897i
\(871\) −0.480203 0.480203i −0.0162710 0.0162710i
\(872\) −33.6240 + 6.68823i −1.13865 + 0.226492i
\(873\) −9.54633 + 9.91192i −0.323094 + 0.335468i
\(874\) 10.8110 54.3507i 0.365689 1.83844i
\(875\) 0.950712 + 2.29522i 0.0321399 + 0.0775927i
\(876\) 0.592666 2.02194i 0.0200243 0.0683149i
\(877\) 9.35016 + 1.85986i 0.315732 + 0.0628031i 0.350413 0.936595i \(-0.386041\pi\)
−0.0346804 + 0.999398i \(0.511041\pi\)
\(878\) 19.2494 + 28.8088i 0.649636 + 0.972248i
\(879\) 0.904859 1.73180i 0.0305201 0.0584123i
\(880\) −1.22513 + 1.22513i −0.0412992 + 0.0412992i
\(881\) 23.8975 35.7652i 0.805128 1.20496i −0.170464 0.985364i \(-0.554527\pi\)
0.975591 0.219595i \(-0.0704735\pi\)
\(882\) 15.0205 + 2.69548i 0.505767 + 0.0907617i
\(883\) 41.3162i 1.39040i 0.718816 + 0.695200i \(0.244684\pi\)
−0.718816 + 0.695200i \(0.755316\pi\)
\(884\) 0 0
\(885\) 1.81539 + 1.46153i 0.0610237 + 0.0491289i
\(886\) 4.86427 11.7434i 0.163418 0.394527i
\(887\) 12.3415 + 8.24630i 0.414386 + 0.276884i 0.745238 0.666799i \(-0.232336\pi\)
−0.330852 + 0.943683i \(0.607336\pi\)
\(888\) 1.91538 0.206831i 0.0642760 0.00694081i
\(889\) −3.41322 17.1594i −0.114476 0.575508i
\(890\) −0.630135 + 0.421042i −0.0211222 + 0.0141134i
\(891\) 31.8838 7.59737i 1.06815 0.254522i
\(892\) −0.0475120 + 0.0196801i −0.00159082 + 0.000658939i
\(893\) −18.5214 + 7.67180i −0.619794 + 0.256727i
\(894\) 32.4617 + 38.8056i 1.08568 + 1.29785i
\(895\) −2.16276 + 1.44511i −0.0722930 + 0.0483046i
\(896\) −2.92429 14.7014i −0.0976937 0.491139i
\(897\) −0.136289 1.26212i −0.00455057 0.0421410i
\(898\) −1.15489 0.771672i −0.0385391 0.0257510i
\(899\) 13.4878 32.5624i 0.449843 1.08602i
\(900\) 3.97439 0.868473i 0.132480 0.0289491i
\(901\) 0 0
\(902\) 21.0507i 0.700910i
\(903\) 5.67001 3.09950i 0.188686 0.103145i
\(904\) 22.4865 33.6535i 0.747890 1.11930i
\(905\) −0.211787 + 0.211787i −0.00704002 + 0.00704002i
\(906\) −8.32350 4.34899i −0.276530 0.144485i
\(907\) 9.50457 + 14.2246i 0.315594 + 0.472320i 0.955024 0.296530i \(-0.0958294\pi\)
−0.639429 + 0.768850i \(0.720829\pi\)
\(908\) −0.568889 0.113159i −0.0188792 0.00375531i
\(909\) 12.4790 8.68165i 0.413902 0.287952i
\(910\) −0.0146143 0.0352820i −0.000484459 0.00116959i
\(911\) 10.7926 54.2580i 0.357574 1.79765i −0.213712 0.976897i \(-0.568555\pi\)
0.571286 0.820751i \(-0.306445\pi\)
\(912\) −39.1651 3.48631i −1.29689 0.115443i
\(913\) −19.7874 + 3.93596i −0.654868 + 0.130261i
\(914\) −19.9143 19.9143i −0.658705 0.658705i
\(915\) −0.924088 + 0.289825i −0.0305494 + 0.00958132i
\(916\) 4.34800 + 1.80100i 0.143662 + 0.0595067i
\(917\) 23.0511 0.761216
\(918\) 0 0
\(919\) −57.0283 −1.88119 −0.940595 0.339530i \(-0.889732\pi\)
−0.940595 + 0.339530i \(0.889732\pi\)
\(920\) −2.43802 1.00986i −0.0803791 0.0332941i
\(921\) 32.3617 10.1497i 1.06635 0.334445i
\(922\) 22.9019 + 22.9019i 0.754233 + 0.754233i
\(923\) 1.48769 0.295920i 0.0489679 0.00974032i
\(924\) −3.02670 0.269424i −0.0995711 0.00886341i
\(925\) −0.361822 + 1.81900i −0.0118966 + 0.0598085i
\(926\) −9.70769 23.4364i −0.319014 0.770169i
\(927\) −39.3434 + 27.3712i −1.29221 + 0.898989i
\(928\) −5.90324 1.17423i −0.193783 0.0385459i
\(929\) −19.8977 29.7790i −0.652822 0.977016i −0.999242 0.0389370i \(-0.987603\pi\)
0.346420 0.938079i \(-0.387397\pi\)
\(930\) −2.54209 1.32823i −0.0833585 0.0435544i
\(931\) −18.3724 + 18.3724i −0.602132 + 0.602132i
\(932\) 1.48131 2.21694i 0.0485220 0.0726184i
\(933\) −44.6440 + 24.4046i −1.46158 + 0.798971i
\(934\) 16.3585i 0.535267i
\(935\) 0 0
\(936\) −1.02170 + 0.223259i −0.0333954 + 0.00729746i
\(937\) −7.73785 + 18.6808i −0.252785 + 0.610276i −0.998427 0.0560704i \(-0.982143\pi\)
0.745642 + 0.666347i \(0.232143\pi\)
\(938\) 11.2502 + 7.51715i 0.367333 + 0.245444i
\(939\) −3.31375 30.6873i −0.108140 1.00144i
\(940\) 0.0223178 + 0.112199i 0.000727926 + 0.00365953i
\(941\) −6.45567 + 4.31354i −0.210449 + 0.140618i −0.656328 0.754476i \(-0.727891\pi\)
0.445879 + 0.895093i \(0.352891\pi\)
\(942\) −20.3916 24.3767i −0.664394 0.794236i
\(943\) 25.5124 10.5676i 0.830798 0.344128i
\(944\) 29.8749 12.3746i 0.972347 0.402759i
\(945\) 1.02258 + 0.792064i 0.0332645 + 0.0257658i
\(946\) −8.39318 + 5.60815i −0.272886 + 0.182337i
\(947\) −0.702897 3.53370i −0.0228411 0.114830i 0.967683 0.252171i \(-0.0811444\pi\)
−0.990524 + 0.137341i \(0.956144\pi\)
\(948\) −1.14688 + 0.123845i −0.0372489 + 0.00402231i
\(949\) −0.433564 0.289698i −0.0140741 0.00940400i
\(950\) 16.8187 40.6040i 0.545672 1.31737i
\(951\) 19.0515 + 15.3379i 0.617786 + 0.497367i
\(952\) 0 0
\(953\) 22.5397i 0.730132i −0.930982 0.365066i \(-0.881046\pi\)
0.930982 0.365066i \(-0.118954\pi\)
\(954\) 24.8600 + 4.46121i 0.804871 + 0.144437i
\(955\) −1.35536 + 2.02845i −0.0438585 + 0.0656389i
\(956\) 4.31991 4.31991i 0.139716 0.139716i
\(957\) 11.4984 22.0067i 0.371690 0.711375i
\(958\) 16.5761 + 24.8079i 0.535550 + 0.801507i
\(959\) 5.56114 + 1.10618i 0.179578 + 0.0357204i
\(960\) −0.601342 + 2.05153i −0.0194082 + 0.0662129i
\(961\) 18.8174 + 45.4292i 0.607013 + 1.46546i
\(962\) 0.0111459 0.0560344i 0.000359360 0.00180662i
\(963\) 2.83558 2.94417i 0.0913751 0.0948744i
\(964\) −0.108291 + 0.0215404i −0.00348781 + 0.000693768i
\(965\) −1.61537 1.61537i −0.0520007 0.0520007i
\(966\) 7.56906 + 24.1335i 0.243531 + 0.776481i
\(967\) −20.7527 8.59605i −0.667362 0.276430i 0.0231709 0.999732i \(-0.492624\pi\)
−0.690533 + 0.723301i \(0.742624\pi\)
\(968\) 6.75869 0.217233
\(969\) 0 0
\(970\) 0.848355 0.0272390
\(971\) −31.6660 13.1165i −1.01621 0.420928i −0.188493 0.982075i \(-0.560360\pi\)
−0.827716 + 0.561147i \(0.810360\pi\)
\(972\) 3.15107 2.84380i 0.101071 0.0912150i
\(973\) 6.37317 + 6.37317i 0.204314 + 0.204314i
\(974\) −29.6319 + 5.89415i −0.949468 + 0.188861i
\(975\) 0.0892676 1.00283i 0.00285885 0.0321162i
\(976\) −2.62147 + 13.1790i −0.0839113 + 0.421851i
\(977\) 10.7764 + 26.0166i 0.344769 + 0.832345i 0.997220 + 0.0745143i \(0.0237406\pi\)
−0.652451 + 0.757831i \(0.726259\pi\)
\(978\) −24.3690 7.14301i −0.779235 0.228408i
\(979\) 14.6368 + 2.91144i 0.467795 + 0.0930502i
\(980\) 0.0823718 + 0.123278i 0.00263127 + 0.00393798i
\(981\) −13.7729 31.5604i −0.439735 1.00765i
\(982\) 18.9356 18.9356i 0.604261 0.604261i
\(983\) −23.1813 + 34.6933i −0.739370 + 1.10654i 0.250985 + 0.967991i \(0.419245\pi\)
−0.990355 + 0.138554i \(0.955755\pi\)
\(984\) −10.9120 19.9616i −0.347862 0.636353i
\(985\) 1.10464i 0.0351967i
\(986\) 0 0
\(987\) 5.73799 7.12723i 0.182642 0.226862i
\(988\) 0.0816535 0.197129i 0.00259774 0.00627151i
\(989\) −11.0102 7.35681i −0.350105 0.233933i
\(990\) −1.70083 1.09081i −0.0540560 0.0346682i
\(991\) 1.97993 + 9.95379i 0.0628946 + 0.316193i 0.999407 0.0344428i \(-0.0109656\pi\)
−0.936512 + 0.350635i \(0.885966\pi\)
\(992\) 11.3838 7.60639i 0.361435 0.241503i
\(993\) −9.60918 + 8.03828i −0.304938 + 0.255087i
\(994\) −27.9208 + 11.5652i −0.885595 + 0.366826i
\(995\) −1.66382 + 0.689176i −0.0527466 + 0.0218483i
\(996\) −2.00398 + 1.67637i −0.0634986 + 0.0531179i
\(997\) 33.1970 22.1815i 1.05136 0.702496i 0.0952350 0.995455i \(-0.469640\pi\)
0.956125 + 0.292958i \(0.0946398\pi\)
\(998\) −0.276730 1.39122i −0.00875974 0.0440382i
\(999\) 0.613668 + 1.83518i 0.0194156 + 0.0580624i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 867.2.i.i.653.3 32
3.2 odd 2 inner 867.2.i.i.653.2 32
17.2 even 8 867.2.i.h.827.2 32
17.3 odd 16 867.2.i.f.131.3 32
17.4 even 4 867.2.i.g.503.2 32
17.5 odd 16 inner 867.2.i.i.158.2 32
17.6 odd 16 51.2.i.a.14.3 yes 32
17.7 odd 16 867.2.i.d.224.2 32
17.8 even 8 867.2.i.d.329.3 32
17.9 even 8 867.2.i.c.329.3 32
17.10 odd 16 867.2.i.c.224.2 32
17.11 odd 16 867.2.i.h.65.3 32
17.12 odd 16 867.2.i.b.158.2 32
17.13 even 4 867.2.i.f.503.2 32
17.14 odd 16 867.2.i.g.131.3 32
17.15 even 8 51.2.i.a.11.2 32
17.16 even 2 867.2.i.b.653.3 32
51.2 odd 8 867.2.i.h.827.3 32
51.5 even 16 inner 867.2.i.i.158.3 32
51.8 odd 8 867.2.i.d.329.2 32
51.11 even 16 867.2.i.h.65.2 32
51.14 even 16 867.2.i.g.131.2 32
51.20 even 16 867.2.i.f.131.2 32
51.23 even 16 51.2.i.a.14.2 yes 32
51.26 odd 8 867.2.i.c.329.2 32
51.29 even 16 867.2.i.b.158.3 32
51.32 odd 8 51.2.i.a.11.3 yes 32
51.38 odd 4 867.2.i.g.503.3 32
51.41 even 16 867.2.i.d.224.3 32
51.44 even 16 867.2.i.c.224.3 32
51.47 odd 4 867.2.i.f.503.3 32
51.50 odd 2 867.2.i.b.653.2 32
68.15 odd 8 816.2.cj.c.113.1 32
68.23 even 16 816.2.cj.c.65.4 32
204.23 odd 16 816.2.cj.c.65.1 32
204.83 even 8 816.2.cj.c.113.4 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.2.i.a.11.2 32 17.15 even 8
51.2.i.a.11.3 yes 32 51.32 odd 8
51.2.i.a.14.2 yes 32 51.23 even 16
51.2.i.a.14.3 yes 32 17.6 odd 16
816.2.cj.c.65.1 32 204.23 odd 16
816.2.cj.c.65.4 32 68.23 even 16
816.2.cj.c.113.1 32 68.15 odd 8
816.2.cj.c.113.4 32 204.83 even 8
867.2.i.b.158.2 32 17.12 odd 16
867.2.i.b.158.3 32 51.29 even 16
867.2.i.b.653.2 32 51.50 odd 2
867.2.i.b.653.3 32 17.16 even 2
867.2.i.c.224.2 32 17.10 odd 16
867.2.i.c.224.3 32 51.44 even 16
867.2.i.c.329.2 32 51.26 odd 8
867.2.i.c.329.3 32 17.9 even 8
867.2.i.d.224.2 32 17.7 odd 16
867.2.i.d.224.3 32 51.41 even 16
867.2.i.d.329.2 32 51.8 odd 8
867.2.i.d.329.3 32 17.8 even 8
867.2.i.f.131.2 32 51.20 even 16
867.2.i.f.131.3 32 17.3 odd 16
867.2.i.f.503.2 32 17.13 even 4
867.2.i.f.503.3 32 51.47 odd 4
867.2.i.g.131.2 32 51.14 even 16
867.2.i.g.131.3 32 17.14 odd 16
867.2.i.g.503.2 32 17.4 even 4
867.2.i.g.503.3 32 51.38 odd 4
867.2.i.h.65.2 32 51.11 even 16
867.2.i.h.65.3 32 17.11 odd 16
867.2.i.h.827.2 32 17.2 even 8
867.2.i.h.827.3 32 51.2 odd 8
867.2.i.i.158.2 32 17.5 odd 16 inner
867.2.i.i.158.3 32 51.5 even 16 inner
867.2.i.i.653.2 32 3.2 odd 2 inner
867.2.i.i.653.3 32 1.1 even 1 trivial