Properties

Label 867.2.i.g.131.2
Level $867$
Weight $2$
Character 867.131
Analytic conductor $6.923$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [867,2,Mod(65,867)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(867, base_ring=CyclotomicField(16))
 
chi = DirichletCharacter(H, H._module([8, 9]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("867.65");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 867 = 3 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 867.i (of order \(16\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.92302985525\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(4\) over \(\Q(\zeta_{16})\)
Twist minimal: no (minimal twist has level 51)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 131.2
Character \(\chi\) \(=\) 867.131
Dual form 867.2.i.g.503.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.21437 + 0.503008i) q^{2} +(0.518334 - 1.65267i) q^{3} +(-0.192538 + 0.192538i) q^{4} +(0.0274494 - 0.137998i) q^{5} +(0.201860 + 2.26768i) q^{6} +(-1.73519 + 0.345150i) q^{7} +(1.14298 - 2.75940i) q^{8} +(-2.46266 - 1.71327i) q^{9} +(0.0360802 + 0.181387i) q^{10} +(-3.02807 - 2.02329i) q^{11} +(0.218403 + 0.418001i) q^{12} +(0.0825311 + 0.0825311i) q^{13} +(1.93354 - 1.29195i) q^{14} +(-0.213837 - 0.116894i) q^{15} +3.38128i q^{16} +(3.85237 + 0.841809i) q^{18} +(2.56928 + 6.20278i) q^{19} +(0.0212847 + 0.0318548i) q^{20} +(-0.328986 + 3.04660i) q^{21} +(4.69492 + 0.933878i) q^{22} +(-3.48870 + 5.22121i) q^{23} +(-3.96794 - 3.31926i) q^{24} +(4.60111 + 1.90584i) q^{25} +(-0.141737 - 0.0587094i) q^{26} +(-4.10796 + 3.18193i) q^{27} +(0.267635 - 0.400544i) q^{28} +(3.86068 + 0.767936i) q^{29} +(0.318476 + 0.0343905i) q^{30} +(-4.97452 - 7.44489i) q^{31} +(0.585150 + 1.41268i) q^{32} +(-4.91339 + 3.95567i) q^{33} +0.248926i q^{35} +(0.804026 - 0.144285i) q^{36} +(-0.309641 + 0.206896i) q^{37} +(-6.24010 - 6.24010i) q^{38} +(0.179176 - 0.0936183i) q^{39} +(-0.349416 - 0.233473i) q^{40} +(0.857920 + 4.31306i) q^{41} +(-1.13296 - 3.86518i) q^{42} +(-0.806985 + 1.94823i) q^{43} +(0.972578 - 0.193458i) q^{44} +(-0.304026 + 0.292813i) q^{45} +(1.61026 - 8.09532i) q^{46} +(2.11141 - 2.11141i) q^{47} +(5.58815 + 1.75263i) q^{48} +(-3.57541 + 1.48098i) q^{49} -6.54610 q^{50} -0.0317807 q^{52} +(-5.91755 + 2.45113i) q^{53} +(3.38805 - 5.93037i) q^{54} +(-0.362328 + 0.362328i) q^{55} +(-1.03088 + 5.18257i) q^{56} +(11.5829 - 1.03106i) q^{57} +(-5.07456 + 1.00939i) q^{58} +(-3.65974 + 8.83540i) q^{59} +(0.0636782 - 0.0186653i) q^{60} +(0.775290 + 3.89765i) q^{61} +(9.78574 + 6.53863i) q^{62} +(4.86451 + 2.12286i) q^{63} +(-6.20303 - 6.20303i) q^{64} +(0.0136545 - 0.00912367i) q^{65} +(3.97693 - 7.27511i) q^{66} +5.81844i q^{67} +(6.82064 + 8.47201i) q^{69} +(-0.125212 - 0.302288i) q^{70} +(7.22012 + 10.8057i) q^{71} +(-7.54238 + 4.83722i) q^{72} +(-4.38175 - 0.871585i) q^{73} +(0.271949 - 0.407000i) q^{74} +(5.53464 - 6.61627i) q^{75} +(-1.68895 - 0.699588i) q^{76} +(5.95260 + 2.46565i) q^{77} +(-0.170495 + 0.203814i) q^{78} +(-1.35888 + 2.03371i) q^{79} +(0.466609 + 0.0928142i) q^{80} +(3.12939 + 8.43842i) q^{81} +(-3.21133 - 4.80610i) q^{82} +(2.12000 + 5.11813i) q^{83} +(-0.523244 - 0.649928i) q^{84} -2.77180i q^{86} +(3.27027 - 5.98239i) q^{87} +(-9.04408 + 6.04306i) q^{88} +(2.89760 + 2.89760i) q^{89} +(0.221913 - 0.508511i) q^{90} +(-0.171693 - 0.114721i) q^{91} +(-0.333574 - 1.67699i) q^{92} +(-14.8824 + 4.36231i) q^{93} +(-1.50197 + 3.62608i) q^{94} +(0.926494 - 0.184291i) q^{95} +(2.63800 - 0.234823i) q^{96} +(0.894911 - 4.49902i) q^{97} +(3.59692 - 3.59692i) q^{98} +(3.99065 + 10.1706i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 16 q^{4} + 8 q^{6} + 24 q^{9} + 16 q^{10} + 16 q^{12} + 16 q^{13} + 16 q^{15} + 16 q^{18} + 32 q^{19} - 16 q^{21} - 16 q^{22} - 24 q^{24} - 24 q^{27} + 8 q^{30} - 32 q^{31} - 24 q^{36} - 16 q^{37}+ \cdots + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/867\mathbb{Z}\right)^\times\).

\(n\) \(290\) \(292\)
\(\chi(n)\) \(-1\) \(e\left(\frac{13}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.21437 + 0.503008i −0.858689 + 0.355681i −0.768195 0.640216i \(-0.778845\pi\)
−0.0904942 + 0.995897i \(0.528845\pi\)
\(3\) 0.518334 1.65267i 0.299260 0.954172i
\(4\) −0.192538 + 0.192538i −0.0962690 + 0.0962690i
\(5\) 0.0274494 0.137998i 0.0122758 0.0617144i −0.974162 0.225851i \(-0.927484\pi\)
0.986438 + 0.164137i \(0.0524838\pi\)
\(6\) 0.201860 + 2.26768i 0.0824088 + 0.925777i
\(7\) −1.73519 + 0.345150i −0.655839 + 0.130455i −0.511783 0.859115i \(-0.671015\pi\)
−0.144056 + 0.989569i \(0.546015\pi\)
\(8\) 1.14298 2.75940i 0.404105 0.975595i
\(9\) −2.46266 1.71327i −0.820887 0.571091i
\(10\) 0.0360802 + 0.181387i 0.0114096 + 0.0573597i
\(11\) −3.02807 2.02329i −0.912997 0.610045i 0.00785036 0.999969i \(-0.497501\pi\)
−0.920847 + 0.389924i \(0.872501\pi\)
\(12\) 0.218403 + 0.418001i 0.0630476 + 0.120667i
\(13\) 0.0825311 + 0.0825311i 0.0228900 + 0.0228900i 0.718459 0.695569i \(-0.244848\pi\)
−0.695569 + 0.718459i \(0.744848\pi\)
\(14\) 1.93354 1.29195i 0.516762 0.345289i
\(15\) −0.213837 0.116894i −0.0552125 0.0301819i
\(16\) 3.38128i 0.845320i
\(17\) 0 0
\(18\) 3.85237 + 0.841809i 0.908012 + 0.198416i
\(19\) 2.56928 + 6.20278i 0.589432 + 1.42302i 0.884046 + 0.467399i \(0.154809\pi\)
−0.294614 + 0.955616i \(0.595191\pi\)
\(20\) 0.0212847 + 0.0318548i 0.00475941 + 0.00712296i
\(21\) −0.328986 + 3.04660i −0.0717906 + 0.664823i
\(22\) 4.69492 + 0.933878i 1.00096 + 0.199104i
\(23\) −3.48870 + 5.22121i −0.727444 + 1.08870i 0.264789 + 0.964306i \(0.414698\pi\)
−0.992233 + 0.124391i \(0.960302\pi\)
\(24\) −3.96794 3.31926i −0.809952 0.677542i
\(25\) 4.60111 + 1.90584i 0.920222 + 0.381168i
\(26\) −0.141737 0.0587094i −0.0277969 0.0115139i
\(27\) −4.10796 + 3.18193i −0.790578 + 0.612362i
\(28\) 0.267635 0.400544i 0.0505782 0.0756957i
\(29\) 3.86068 + 0.767936i 0.716909 + 0.142602i 0.540049 0.841634i \(-0.318406\pi\)
0.176861 + 0.984236i \(0.443406\pi\)
\(30\) 0.318476 + 0.0343905i 0.0581455 + 0.00627881i
\(31\) −4.97452 7.44489i −0.893450 1.33714i −0.941047 0.338275i \(-0.890156\pi\)
0.0475974 0.998867i \(-0.484844\pi\)
\(32\) 0.585150 + 1.41268i 0.103441 + 0.249728i
\(33\) −4.91339 + 3.95567i −0.855311 + 0.688593i
\(34\) 0 0
\(35\) 0.248926i 0.0420762i
\(36\) 0.804026 0.144285i 0.134004 0.0240475i
\(37\) −0.309641 + 0.206896i −0.0509047 + 0.0340135i −0.580762 0.814073i \(-0.697245\pi\)
0.529858 + 0.848087i \(0.322245\pi\)
\(38\) −6.24010 6.24010i −1.01228 1.01228i
\(39\) 0.179176 0.0936183i 0.0286911 0.0149909i
\(40\) −0.349416 0.233473i −0.0552476 0.0369153i
\(41\) 0.857920 + 4.31306i 0.133985 + 0.673586i 0.988138 + 0.153566i \(0.0490757\pi\)
−0.854154 + 0.520020i \(0.825924\pi\)
\(42\) −1.13296 3.86518i −0.174819 0.596410i
\(43\) −0.806985 + 1.94823i −0.123064 + 0.297103i −0.973390 0.229153i \(-0.926404\pi\)
0.850326 + 0.526256i \(0.176404\pi\)
\(44\) 0.972578 0.193458i 0.146622 0.0291648i
\(45\) −0.304026 + 0.292813i −0.0453216 + 0.0436500i
\(46\) 1.61026 8.09532i 0.237420 1.19359i
\(47\) 2.11141 2.11141i 0.307980 0.307980i −0.536145 0.844126i \(-0.680120\pi\)
0.844126 + 0.536145i \(0.180120\pi\)
\(48\) 5.58815 + 1.75263i 0.806580 + 0.252971i
\(49\) −3.57541 + 1.48098i −0.510773 + 0.211569i
\(50\) −6.54610 −0.925758
\(51\) 0 0
\(52\) −0.0317807 −0.00440720
\(53\) −5.91755 + 2.45113i −0.812837 + 0.336688i −0.750085 0.661341i \(-0.769988\pi\)
−0.0627519 + 0.998029i \(0.519988\pi\)
\(54\) 3.38805 5.93037i 0.461055 0.807021i
\(55\) −0.362328 + 0.362328i −0.0488563 + 0.0488563i
\(56\) −1.03088 + 5.18257i −0.137757 + 0.692551i
\(57\) 11.5829 1.03106i 1.53419 0.136568i
\(58\) −5.07456 + 1.00939i −0.666323 + 0.132540i
\(59\) −3.65974 + 8.83540i −0.476458 + 1.15027i 0.484801 + 0.874624i \(0.338892\pi\)
−0.961259 + 0.275647i \(0.911108\pi\)
\(60\) 0.0636782 0.0186653i 0.00822083 0.00240967i
\(61\) 0.775290 + 3.89765i 0.0992658 + 0.499043i 0.998147 + 0.0608502i \(0.0193812\pi\)
−0.898881 + 0.438193i \(0.855619\pi\)
\(62\) 9.78574 + 6.53863i 1.24279 + 0.830406i
\(63\) 4.86451 + 2.12286i 0.612871 + 0.267456i
\(64\) −6.20303 6.20303i −0.775378 0.775378i
\(65\) 0.0136545 0.00912367i 0.00169364 0.00113165i
\(66\) 3.97693 7.27511i 0.489527 0.895505i
\(67\) 5.81844i 0.710836i 0.934707 + 0.355418i \(0.115661\pi\)
−0.934707 + 0.355418i \(0.884339\pi\)
\(68\) 0 0
\(69\) 6.82064 + 8.47201i 0.821109 + 1.01991i
\(70\) −0.125212 0.302288i −0.0149657 0.0361303i
\(71\) 7.22012 + 10.8057i 0.856870 + 1.28240i 0.957780 + 0.287502i \(0.0928246\pi\)
−0.100910 + 0.994896i \(0.532175\pi\)
\(72\) −7.54238 + 4.83722i −0.888878 + 0.570072i
\(73\) −4.38175 0.871585i −0.512845 0.102011i −0.0681180 0.997677i \(-0.521699\pi\)
−0.444727 + 0.895666i \(0.646699\pi\)
\(74\) 0.271949 0.407000i 0.0316134 0.0473128i
\(75\) 5.53464 6.61627i 0.639086 0.763981i
\(76\) −1.68895 0.699588i −0.193736 0.0802482i
\(77\) 5.95260 + 2.46565i 0.678362 + 0.280987i
\(78\) −0.170495 + 0.203814i −0.0193047 + 0.0230774i
\(79\) −1.35888 + 2.03371i −0.152886 + 0.228811i −0.900004 0.435881i \(-0.856437\pi\)
0.747118 + 0.664691i \(0.231437\pi\)
\(80\) 0.466609 + 0.0928142i 0.0521684 + 0.0103769i
\(81\) 3.12939 + 8.43842i 0.347710 + 0.937602i
\(82\) −3.21133 4.80610i −0.354633 0.530745i
\(83\) 2.12000 + 5.11813i 0.232700 + 0.561788i 0.996493 0.0836731i \(-0.0266652\pi\)
−0.763793 + 0.645461i \(0.776665\pi\)
\(84\) −0.523244 0.649928i −0.0570906 0.0709130i
\(85\) 0 0
\(86\) 2.77180i 0.298890i
\(87\) 3.27027 5.98239i 0.350609 0.641379i
\(88\) −9.04408 + 6.04306i −0.964103 + 0.644193i
\(89\) 2.89760 + 2.89760i 0.307145 + 0.307145i 0.843801 0.536656i \(-0.180313\pi\)
−0.536656 + 0.843801i \(0.680313\pi\)
\(90\) 0.221913 0.508511i 0.0233917 0.0536017i
\(91\) −0.171693 0.114721i −0.0179983 0.0120261i
\(92\) −0.333574 1.67699i −0.0347775 0.174838i
\(93\) −14.8824 + 4.36231i −1.54324 + 0.452351i
\(94\) −1.50197 + 3.62608i −0.154917 + 0.374002i
\(95\) 0.926494 0.184291i 0.0950563 0.0189079i
\(96\) 2.63800 0.234823i 0.269239 0.0239666i
\(97\) 0.894911 4.49902i 0.0908645 0.456807i −0.908387 0.418130i \(-0.862686\pi\)
0.999252 0.0386768i \(-0.0123143\pi\)
\(98\) 3.59692 3.59692i 0.363344 0.363344i
\(99\) 3.99065 + 10.1706i 0.401075 + 1.02218i
\(100\) −1.25283 + 0.518941i −0.125283 + 0.0518941i
\(101\) 5.06729 0.504214 0.252107 0.967699i \(-0.418877\pi\)
0.252107 + 0.967699i \(0.418877\pi\)
\(102\) 0 0
\(103\) −15.9760 −1.57416 −0.787080 0.616851i \(-0.788408\pi\)
−0.787080 + 0.616851i \(0.788408\pi\)
\(104\) 0.322068 0.133405i 0.0315813 0.0130814i
\(105\) 0.411393 + 0.129027i 0.0401479 + 0.0125917i
\(106\) 5.95315 5.95315i 0.578221 0.578221i
\(107\) −0.265818 + 1.33636i −0.0256976 + 0.129191i −0.991505 0.130071i \(-0.958479\pi\)
0.965807 + 0.259262i \(0.0834793\pi\)
\(108\) 0.178297 1.40358i 0.0171567 0.135060i
\(109\) 11.2577 2.23930i 1.07829 0.214486i 0.376176 0.926548i \(-0.377239\pi\)
0.702116 + 0.712062i \(0.252239\pi\)
\(110\) 0.257746 0.622254i 0.0245751 0.0593296i
\(111\) 0.181434 + 0.618977i 0.0172209 + 0.0587507i
\(112\) −1.16705 5.86715i −0.110276 0.554394i
\(113\) −11.2676 7.52875i −1.05996 0.708245i −0.101899 0.994795i \(-0.532492\pi\)
−0.958066 + 0.286549i \(0.907492\pi\)
\(114\) −13.5473 + 7.07839i −1.26882 + 0.662952i
\(115\) 0.624752 + 0.624752i 0.0582584 + 0.0582584i
\(116\) −0.891183 + 0.595470i −0.0827443 + 0.0552880i
\(117\) −0.0618477 0.344645i −0.00571782 0.0318624i
\(118\) 12.5703i 1.15719i
\(119\) 0 0
\(120\) −0.566968 + 0.456454i −0.0517569 + 0.0416684i
\(121\) 0.865970 + 2.09064i 0.0787246 + 0.190058i
\(122\) −2.90204 4.34321i −0.262738 0.393215i
\(123\) 7.57276 + 0.817741i 0.682813 + 0.0737332i
\(124\) 2.39121 + 0.475641i 0.214737 + 0.0427138i
\(125\) 0.780146 1.16757i 0.0697784 0.104431i
\(126\) −6.97513 0.131050i −0.621394 0.0116748i
\(127\) 9.13631 + 3.78439i 0.810717 + 0.335810i 0.749240 0.662299i \(-0.230419\pi\)
0.0614768 + 0.998109i \(0.480419\pi\)
\(128\) 7.82759 + 3.24229i 0.691867 + 0.286581i
\(129\) 2.80151 + 2.34352i 0.246659 + 0.206335i
\(130\) −0.0119924 + 0.0179478i −0.00105180 + 0.00157413i
\(131\) −12.7789 2.54189i −1.11650 0.222086i −0.397845 0.917453i \(-0.630242\pi\)
−0.718655 + 0.695367i \(0.755242\pi\)
\(132\) 0.184398 1.70763i 0.0160497 0.148630i
\(133\) −6.59907 9.87620i −0.572212 0.856375i
\(134\) −2.92672 7.06574i −0.252830 0.610387i
\(135\) 0.326337 + 0.654231i 0.0280866 + 0.0563073i
\(136\) 0 0
\(137\) 3.20492i 0.273815i 0.990584 + 0.136907i \(0.0437163\pi\)
−0.990584 + 0.136907i \(0.956284\pi\)
\(138\) −12.5443 6.85731i −1.06784 0.583733i
\(139\) −4.23589 + 2.83033i −0.359283 + 0.240065i −0.722090 0.691799i \(-0.756818\pi\)
0.362807 + 0.931864i \(0.381818\pi\)
\(140\) −0.0479277 0.0479277i −0.00405063 0.00405063i
\(141\) −2.39505 4.58388i −0.201700 0.386032i
\(142\) −14.2032 9.49030i −1.19191 0.796408i
\(143\) −0.0829254 0.416894i −0.00693457 0.0348624i
\(144\) 5.79306 8.32694i 0.482755 0.693912i
\(145\) 0.211947 0.511685i 0.0176012 0.0424931i
\(146\) 5.75948 1.14563i 0.476658 0.0948132i
\(147\) 0.594326 + 6.67663i 0.0490192 + 0.550679i
\(148\) 0.0197824 0.0994530i 0.00162611 0.00817499i
\(149\) −15.7137 + 15.7137i −1.28731 + 1.28731i −0.350902 + 0.936412i \(0.614125\pi\)
−0.936412 + 0.350902i \(0.885875\pi\)
\(150\) −3.39306 + 10.8186i −0.277043 + 0.883332i
\(151\) −3.81101 + 1.57857i −0.310135 + 0.128462i −0.532322 0.846542i \(-0.678681\pi\)
0.222187 + 0.975004i \(0.428681\pi\)
\(152\) 20.0526 1.62648
\(153\) 0 0
\(154\) −8.46890 −0.682443
\(155\) −1.16393 + 0.482114i −0.0934887 + 0.0387243i
\(156\) −0.0164730 + 0.0525232i −0.00131890 + 0.00420522i
\(157\) 9.87094 9.87094i 0.787787 0.787787i −0.193344 0.981131i \(-0.561933\pi\)
0.981131 + 0.193344i \(0.0619335\pi\)
\(158\) 0.627212 3.15321i 0.0498983 0.250856i
\(159\) 0.983649 + 11.0503i 0.0780085 + 0.876344i
\(160\) 0.211008 0.0419721i 0.0166817 0.00331819i
\(161\) 4.25145 10.2639i 0.335061 0.808909i
\(162\) −8.04483 8.67325i −0.632061 0.681435i
\(163\) −2.17609 10.9399i −0.170444 0.856881i −0.967480 0.252949i \(-0.918600\pi\)
0.797035 0.603933i \(-0.206400\pi\)
\(164\) −0.995609 0.665245i −0.0777440 0.0519469i
\(165\) 0.411003 + 0.786617i 0.0319965 + 0.0612380i
\(166\) −5.14893 5.14893i −0.399634 0.399634i
\(167\) −1.74605 + 1.16668i −0.135114 + 0.0902801i −0.621290 0.783581i \(-0.713391\pi\)
0.486177 + 0.873861i \(0.338391\pi\)
\(168\) 8.03076 + 4.39001i 0.619587 + 0.338697i
\(169\) 12.9864i 0.998952i
\(170\) 0 0
\(171\) 4.29981 19.6772i 0.328815 1.50475i
\(172\) −0.219734 0.530484i −0.0167545 0.0404490i
\(173\) −6.84154 10.2391i −0.520153 0.778463i 0.474662 0.880168i \(-0.342570\pi\)
−0.994815 + 0.101705i \(0.967570\pi\)
\(174\) −0.962121 + 8.90980i −0.0729382 + 0.675450i
\(175\) −8.64158 1.71892i −0.653242 0.129938i
\(176\) 6.84131 10.2387i 0.515683 0.771774i
\(177\) 12.7051 + 10.6280i 0.954971 + 0.798853i
\(178\) −4.97628 2.06124i −0.372988 0.154497i
\(179\) −17.0796 7.07462i −1.27659 0.528782i −0.361630 0.932322i \(-0.617780\pi\)
−0.914962 + 0.403540i \(0.867780\pi\)
\(180\) 0.00215902 0.114914i 0.000160924 0.00856520i
\(181\) 1.18265 1.76995i 0.0879054 0.131560i −0.784911 0.619609i \(-0.787291\pi\)
0.872816 + 0.488049i \(0.162291\pi\)
\(182\) 0.266204 + 0.0529513i 0.0197324 + 0.00392501i
\(183\) 6.84340 + 0.738981i 0.505879 + 0.0546271i
\(184\) 10.4199 + 15.5945i 0.768164 + 1.14964i
\(185\) 0.0200517 + 0.0484090i 0.00147423 + 0.00355910i
\(186\) 15.8785 12.7834i 1.16427 0.937328i
\(187\) 0 0
\(188\) 0.813051i 0.0592979i
\(189\) 6.02984 6.93910i 0.438606 0.504745i
\(190\) −1.03241 + 0.689832i −0.0748986 + 0.0500457i
\(191\) 12.2604 + 12.2604i 0.887130 + 0.887130i 0.994247 0.107116i \(-0.0341617\pi\)
−0.107116 + 0.994247i \(0.534162\pi\)
\(192\) −13.4668 + 7.03634i −0.971884 + 0.507804i
\(193\) −13.5001 9.02046i −0.971757 0.649307i −0.0350364 0.999386i \(-0.511155\pi\)
−0.936720 + 0.350079i \(0.886155\pi\)
\(194\) 1.17629 + 5.91362i 0.0844529 + 0.424573i
\(195\) −0.00800084 0.0272956i −0.000572952 0.00195468i
\(196\) 0.403257 0.973548i 0.0288040 0.0695391i
\(197\) 7.70009 1.53164i 0.548609 0.109125i 0.0869994 0.996208i \(-0.472272\pi\)
0.461609 + 0.887083i \(0.347272\pi\)
\(198\) −9.96201 10.3435i −0.707969 0.735081i
\(199\) −2.49706 + 12.5536i −0.177012 + 0.889898i 0.785542 + 0.618808i \(0.212384\pi\)
−0.962554 + 0.271090i \(0.912616\pi\)
\(200\) 10.5180 10.5180i 0.743732 0.743732i
\(201\) 9.61599 + 3.01590i 0.678259 + 0.212725i
\(202\) −6.15356 + 2.54889i −0.432963 + 0.179339i
\(203\) −6.96405 −0.488780
\(204\) 0 0
\(205\) 0.618741 0.0432147
\(206\) 19.4007 8.03605i 1.35171 0.559898i
\(207\) 17.5368 6.88096i 1.21889 0.478260i
\(208\) −0.279061 + 0.279061i −0.0193494 + 0.0193494i
\(209\) 4.77008 23.9808i 0.329954 1.65879i
\(210\) −0.564485 + 0.0502481i −0.0389532 + 0.00346745i
\(211\) −5.02173 + 0.998885i −0.345710 + 0.0687661i −0.364892 0.931050i \(-0.618894\pi\)
0.0191813 + 0.999816i \(0.493894\pi\)
\(212\) 0.667417 1.61129i 0.0458384 0.110664i
\(213\) 21.6007 6.33155i 1.48005 0.433831i
\(214\) −0.349398 1.75654i −0.0238843 0.120075i
\(215\) 0.246700 + 0.164840i 0.0168248 + 0.0112420i
\(216\) 4.08488 + 14.9724i 0.277941 + 1.01874i
\(217\) 11.2013 + 11.2013i 0.760395 + 0.760395i
\(218\) −12.5446 + 8.38205i −0.849630 + 0.567704i
\(219\) −3.71166 + 6.78984i −0.250810 + 0.458815i
\(220\) 0.139524i 0.00940669i
\(221\) 0 0
\(222\) −0.531678 0.660405i −0.0356839 0.0443235i
\(223\) −0.0722764 0.174491i −0.00483999 0.0116848i 0.921441 0.388518i \(-0.127013\pi\)
−0.926281 + 0.376833i \(0.877013\pi\)
\(224\) −1.50293 2.24929i −0.100419 0.150287i
\(225\) −8.06574 12.5764i −0.537716 0.838426i
\(226\) 17.4700 + 3.47500i 1.16209 + 0.231154i
\(227\) 1.18348 1.77120i 0.0785504 0.117559i −0.790114 0.612960i \(-0.789979\pi\)
0.868665 + 0.495401i \(0.164979\pi\)
\(228\) −2.03163 + 2.42867i −0.134548 + 0.160843i
\(229\) 15.9683 + 6.61427i 1.05521 + 0.437084i 0.841750 0.539868i \(-0.181526\pi\)
0.213463 + 0.976951i \(0.431526\pi\)
\(230\) −1.07293 0.444424i −0.0707472 0.0293045i
\(231\) 7.16035 8.55968i 0.471116 0.563185i
\(232\) 6.53172 9.77541i 0.428828 0.641787i
\(233\) 9.60397 + 1.91035i 0.629177 + 0.125151i 0.499371 0.866388i \(-0.333565\pi\)
0.129806 + 0.991539i \(0.458565\pi\)
\(234\) 0.248465 + 0.387416i 0.0162427 + 0.0253262i
\(235\) −0.233412 0.349326i −0.0152261 0.0227875i
\(236\) −0.996510 2.40579i −0.0648673 0.156603i
\(237\) 2.65671 + 3.29993i 0.172572 + 0.214354i
\(238\) 0 0
\(239\) 22.4367i 1.45131i −0.688059 0.725654i \(-0.741537\pi\)
0.688059 0.725654i \(-0.258463\pi\)
\(240\) 0.395251 0.723043i 0.0255133 0.0466722i
\(241\) −0.337157 + 0.225281i −0.0217182 + 0.0145116i −0.566382 0.824143i \(-0.691657\pi\)
0.544664 + 0.838655i \(0.316657\pi\)
\(242\) −2.10322 2.10322i −0.135200 0.135200i
\(243\) 15.5680 0.797936i 0.998689 0.0511876i
\(244\) −0.899718 0.601172i −0.0575985 0.0384861i
\(245\) 0.106229 + 0.534050i 0.00678674 + 0.0341192i
\(246\) −9.60746 + 2.81612i −0.612549 + 0.179549i
\(247\) −0.299877 + 0.723968i −0.0190807 + 0.0460650i
\(248\) −26.2292 + 5.21731i −1.66556 + 0.331300i
\(249\) 9.55747 0.850766i 0.605680 0.0539151i
\(250\) −0.360088 + 1.81028i −0.0227739 + 0.114492i
\(251\) −0.749951 + 0.749951i −0.0473365 + 0.0473365i −0.730379 0.683042i \(-0.760656\pi\)
0.683042 + 0.730379i \(0.260656\pi\)
\(252\) −1.34533 + 0.527872i −0.0847481 + 0.0332528i
\(253\) 21.1280 8.75152i 1.32831 0.550203i
\(254\) −12.9984 −0.815594
\(255\) 0 0
\(256\) 6.40833 0.400521
\(257\) 18.5997 7.70425i 1.16022 0.480578i 0.282270 0.959335i \(-0.408913\pi\)
0.877947 + 0.478757i \(0.158913\pi\)
\(258\) −4.58087 1.43672i −0.285193 0.0894460i
\(259\) 0.465876 0.465876i 0.0289481 0.0289481i
\(260\) −0.000872364 0.00438567i −5.41017e−5 0.000271988i
\(261\) −8.19185 8.50556i −0.507063 0.526481i
\(262\) 16.7969 3.34111i 1.03772 0.206415i
\(263\) 2.11297 5.10116i 0.130291 0.314551i −0.845249 0.534373i \(-0.820548\pi\)
0.975540 + 0.219822i \(0.0705477\pi\)
\(264\) 5.29936 + 18.0792i 0.326153 + 1.11270i
\(265\) 0.175817 + 0.883889i 0.0108003 + 0.0542969i
\(266\) 12.9815 + 8.67397i 0.795948 + 0.531835i
\(267\) 6.29072 3.28687i 0.384986 0.201153i
\(268\) −1.12027 1.12027i −0.0684314 0.0684314i
\(269\) 7.59932 5.07770i 0.463339 0.309593i −0.301900 0.953340i \(-0.597621\pi\)
0.765239 + 0.643747i \(0.222621\pi\)
\(270\) −0.725377 0.630328i −0.0441451 0.0383605i
\(271\) 2.64822i 0.160868i −0.996760 0.0804339i \(-0.974369\pi\)
0.996760 0.0804339i \(-0.0256306\pi\)
\(272\) 0 0
\(273\) −0.278591 + 0.224288i −0.0168611 + 0.0135745i
\(274\) −1.61210 3.89196i −0.0973906 0.235122i
\(275\) −10.0764 15.0804i −0.607629 0.909382i
\(276\) −2.94442 0.317951i −0.177233 0.0191384i
\(277\) −20.2921 4.03634i −1.21923 0.242520i −0.456789 0.889575i \(-0.651001\pi\)
−0.762444 + 0.647055i \(0.776001\pi\)
\(278\) 3.72025 5.56775i 0.223126 0.333931i
\(279\) −0.504591 + 26.8569i −0.0302091 + 1.60788i
\(280\) 0.686886 + 0.284517i 0.0410493 + 0.0170032i
\(281\) −9.50546 3.93729i −0.567048 0.234879i 0.0806938 0.996739i \(-0.474286\pi\)
−0.647742 + 0.761860i \(0.724286\pi\)
\(282\) 5.21420 + 4.36179i 0.310501 + 0.259741i
\(283\) −7.13505 + 10.6783i −0.424134 + 0.634762i −0.980579 0.196122i \(-0.937165\pi\)
0.556445 + 0.830884i \(0.312165\pi\)
\(284\) −3.47065 0.690355i −0.205945 0.0409650i
\(285\) 0.175660 1.62672i 0.0104052 0.0963584i
\(286\) 0.310403 + 0.464551i 0.0183545 + 0.0274695i
\(287\) −2.97730 7.18785i −0.175745 0.424285i
\(288\) 0.979277 4.48146i 0.0577044 0.264073i
\(289\) 0 0
\(290\) 0.727985i 0.0427488i
\(291\) −6.97155 3.81099i −0.408680 0.223404i
\(292\) 1.01147 0.675840i 0.0591916 0.0395506i
\(293\) −0.797696 0.797696i −0.0466019 0.0466019i 0.683422 0.730024i \(-0.260491\pi\)
−0.730024 + 0.683422i \(0.760491\pi\)
\(294\) −4.08013 7.80895i −0.237958 0.455427i
\(295\) 1.11881 + 0.747562i 0.0651394 + 0.0435248i
\(296\) 0.216994 + 1.09090i 0.0126125 + 0.0634074i
\(297\) 18.8771 1.32348i 1.09536 0.0767964i
\(298\) 11.1781 26.9863i 0.647530 1.56327i
\(299\) −0.718839 + 0.142986i −0.0415715 + 0.00826909i
\(300\) 0.208254 + 2.33951i 0.0120235 + 0.135072i
\(301\) 0.727837 3.65908i 0.0419518 0.210906i
\(302\) 3.83394 3.83394i 0.220618 0.220618i
\(303\) 2.62655 8.37457i 0.150891 0.481106i
\(304\) −20.9733 + 8.68744i −1.20290 + 0.498259i
\(305\) 0.559148 0.0320167
\(306\) 0 0
\(307\) −19.5814 −1.11757 −0.558785 0.829312i \(-0.688732\pi\)
−0.558785 + 0.829312i \(0.688732\pi\)
\(308\) −1.62083 + 0.671371i −0.0923555 + 0.0382549i
\(309\) −8.28089 + 26.4031i −0.471083 + 1.50202i
\(310\) 1.17093 1.17093i 0.0665042 0.0665042i
\(311\) −5.73078 + 28.8106i −0.324963 + 1.63370i 0.380380 + 0.924830i \(0.375793\pi\)
−0.705342 + 0.708867i \(0.749207\pi\)
\(312\) −0.0535360 0.601421i −0.00303088 0.0340488i
\(313\) −17.4779 + 3.47657i −0.987910 + 0.196507i −0.662497 0.749065i \(-0.730503\pi\)
−0.325413 + 0.945572i \(0.605503\pi\)
\(314\) −7.02180 + 16.9521i −0.396263 + 0.956664i
\(315\) 0.426478 0.613020i 0.0240293 0.0345398i
\(316\) −0.129930 0.653204i −0.00730915 0.0367456i
\(317\) 11.7412 + 7.84523i 0.659452 + 0.440632i 0.839745 0.542981i \(-0.182704\pi\)
−0.180293 + 0.983613i \(0.557704\pi\)
\(318\) −6.75289 12.9243i −0.378683 0.724760i
\(319\) −10.1366 10.1366i −0.567542 0.567542i
\(320\) −1.02627 + 0.685733i −0.0573704 + 0.0383337i
\(321\) 2.07078 + 1.13199i 0.115580 + 0.0631815i
\(322\) 14.6027i 0.813775i
\(323\) 0 0
\(324\) −2.22724 1.02219i −0.123736 0.0567883i
\(325\) 0.222443 + 0.537026i 0.0123389 + 0.0297888i
\(326\) 8.14545 + 12.1905i 0.451135 + 0.675171i
\(327\) 2.13442 19.7660i 0.118034 1.09306i
\(328\) 12.8820 + 2.56239i 0.711291 + 0.141485i
\(329\) −2.93493 + 4.39244i −0.161808 + 0.242163i
\(330\) −0.894784 0.748505i −0.0492562 0.0412039i
\(331\) −6.68245 2.76796i −0.367301 0.152141i 0.191396 0.981513i \(-0.438698\pi\)
−0.558697 + 0.829372i \(0.688698\pi\)
\(332\) −1.39362 0.577254i −0.0764846 0.0316810i
\(333\) 1.11701 + 0.0209865i 0.0612118 + 0.00115005i
\(334\) 1.53351 2.29505i 0.0839097 0.125580i
\(335\) 0.802931 + 0.159713i 0.0438688 + 0.00872605i
\(336\) −10.3014 1.11239i −0.561988 0.0606860i
\(337\) −7.42687 11.1151i −0.404568 0.605478i 0.572113 0.820175i \(-0.306124\pi\)
−0.976681 + 0.214696i \(0.931124\pi\)
\(338\) 6.53226 + 15.7703i 0.355308 + 0.857789i
\(339\) −18.2829 + 14.7192i −0.992993 + 0.799438i
\(340\) 0 0
\(341\) 32.6085i 1.76585i
\(342\) 4.67625 + 26.0582i 0.252862 + 1.40907i
\(343\) 15.9900 10.6842i 0.863378 0.576891i
\(344\) 4.45359 + 4.45359i 0.240121 + 0.240121i
\(345\) 1.35634 0.708681i 0.0730229 0.0381541i
\(346\) 13.4585 + 8.99268i 0.723534 + 0.483450i
\(347\) −6.53027 32.8299i −0.350563 1.76240i −0.605893 0.795546i \(-0.707184\pi\)
0.255329 0.966854i \(-0.417816\pi\)
\(348\) 0.522186 + 1.78149i 0.0279921 + 0.0954977i
\(349\) −10.6503 + 25.7122i −0.570099 + 1.37634i 0.331372 + 0.943500i \(0.392489\pi\)
−0.901471 + 0.432840i \(0.857511\pi\)
\(350\) 11.3587 2.25939i 0.607148 0.120769i
\(351\) −0.601643 0.0764269i −0.0321133 0.00407937i
\(352\) 1.08638 5.46161i 0.0579043 0.291105i
\(353\) −5.10785 + 5.10785i −0.271864 + 0.271864i −0.829850 0.557986i \(-0.811574\pi\)
0.557986 + 0.829850i \(0.311574\pi\)
\(354\) −20.7746 6.51562i −1.10416 0.346301i
\(355\) 1.68935 0.699750i 0.0896611 0.0371389i
\(356\) −1.11580 −0.0591371
\(357\) 0 0
\(358\) 24.2996 1.28427
\(359\) −25.4579 + 10.5450i −1.34362 + 0.556544i −0.934508 0.355942i \(-0.884160\pi\)
−0.409108 + 0.912486i \(0.634160\pi\)
\(360\) 0.460491 + 1.17361i 0.0242700 + 0.0618546i
\(361\) −18.4383 + 18.4383i −0.970437 + 0.970437i
\(362\) −0.545867 + 2.74426i −0.0286901 + 0.144235i
\(363\) 3.90400 0.347518i 0.204907 0.0182400i
\(364\) 0.0551455 0.0109691i 0.00289041 0.000574939i
\(365\) −0.240553 + 0.580747i −0.0125911 + 0.0303977i
\(366\) −8.68213 + 2.54489i −0.453822 + 0.133024i
\(367\) 2.19159 + 11.0178i 0.114400 + 0.575127i 0.994882 + 0.101047i \(0.0322192\pi\)
−0.880482 + 0.474080i \(0.842781\pi\)
\(368\) −17.6544 11.7963i −0.920297 0.614923i
\(369\) 5.27668 12.0914i 0.274693 0.629455i
\(370\) −0.0487002 0.0487002i −0.00253180 0.00253180i
\(371\) 9.42204 6.29561i 0.489168 0.326852i
\(372\) 2.02552 3.70534i 0.105018 0.192113i
\(373\) 5.50325i 0.284948i −0.989799 0.142474i \(-0.954494\pi\)
0.989799 0.142474i \(-0.0455057\pi\)
\(374\) 0 0
\(375\) −1.52524 1.89452i −0.0787630 0.0978326i
\(376\) −3.41292 8.23951i −0.176008 0.424920i
\(377\) 0.255247 + 0.382005i 0.0131459 + 0.0196742i
\(378\) −3.83203 + 11.4597i −0.197098 + 0.589423i
\(379\) −5.16575 1.02753i −0.265347 0.0527808i 0.0606237 0.998161i \(-0.480691\pi\)
−0.325971 + 0.945380i \(0.605691\pi\)
\(380\) −0.142902 + 0.213868i −0.00733073 + 0.0109712i
\(381\) 10.9900 13.1378i 0.563036 0.673068i
\(382\) −21.0557 8.72156i −1.07730 0.446234i
\(383\) 19.5477 + 8.09691i 0.998840 + 0.413733i 0.821372 0.570394i \(-0.193209\pi\)
0.177468 + 0.984127i \(0.443209\pi\)
\(384\) 9.41575 11.2559i 0.480496 0.574398i
\(385\) 0.503649 0.753764i 0.0256683 0.0384154i
\(386\) 20.9314 + 4.16352i 1.06538 + 0.211918i
\(387\) 5.32519 3.41525i 0.270694 0.173607i
\(388\) 0.693928 + 1.03854i 0.0352289 + 0.0527237i
\(389\) −4.78245 11.5459i −0.242480 0.585398i 0.755048 0.655669i \(-0.227613\pi\)
−0.997528 + 0.0702713i \(0.977613\pi\)
\(390\) 0.0234459 + 0.0291224i 0.00118723 + 0.00147467i
\(391\) 0 0
\(392\) 11.5587i 0.583804i
\(393\) −10.8247 + 19.8018i −0.546032 + 0.998871i
\(394\) −8.58033 + 5.73319i −0.432271 + 0.288834i
\(395\) 0.243347 + 0.243347i 0.0122441 + 0.0122441i
\(396\) −2.72657 1.18987i −0.137015 0.0597933i
\(397\) 32.3438 + 21.6114i 1.62329 + 1.08465i 0.932240 + 0.361839i \(0.117851\pi\)
0.691049 + 0.722808i \(0.257149\pi\)
\(398\) −3.28219 16.5007i −0.164521 0.827105i
\(399\) −19.7427 + 5.78693i −0.988369 + 0.289709i
\(400\) −6.44418 + 15.5576i −0.322209 + 0.777881i
\(401\) −26.7045 + 5.31186i −1.33356 + 0.265262i −0.809851 0.586635i \(-0.800452\pi\)
−0.523709 + 0.851897i \(0.675452\pi\)
\(402\) −13.1944 + 1.17451i −0.658076 + 0.0585792i
\(403\) 0.203883 1.02499i 0.0101561 0.0510583i
\(404\) −0.975645 + 0.975645i −0.0485401 + 0.0485401i
\(405\) 1.25038 0.200218i 0.0621320 0.00994892i
\(406\) 8.45693 3.50297i 0.419710 0.173850i
\(407\) 1.35623 0.0672256
\(408\) 0 0
\(409\) 28.2231 1.39554 0.697770 0.716322i \(-0.254176\pi\)
0.697770 + 0.716322i \(0.254176\pi\)
\(410\) −0.751380 + 0.311232i −0.0371080 + 0.0153706i
\(411\) 5.29669 + 1.66122i 0.261266 + 0.0819419i
\(412\) 3.07598 3.07598i 0.151543 0.151543i
\(413\) 3.30080 16.5942i 0.162422 0.816549i
\(414\) −17.8350 + 17.1772i −0.876543 + 0.844214i
\(415\) 0.764483 0.152065i 0.0375270 0.00746459i
\(416\) −0.0682967 + 0.164883i −0.00334852 + 0.00808405i
\(417\) 2.48201 + 8.46759i 0.121544 + 0.414660i
\(418\) 6.26991 + 31.5210i 0.306671 + 1.54174i
\(419\) −7.76628 5.18926i −0.379408 0.253512i 0.351213 0.936295i \(-0.385769\pi\)
−0.730621 + 0.682784i \(0.760769\pi\)
\(420\) −0.104051 + 0.0543663i −0.00507719 + 0.00265280i
\(421\) 9.40617 + 9.40617i 0.458429 + 0.458429i 0.898139 0.439711i \(-0.144919\pi\)
−0.439711 + 0.898139i \(0.644919\pi\)
\(422\) 5.59579 3.73899i 0.272399 0.182011i
\(423\) −8.81709 + 1.58226i −0.428702 + 0.0769320i
\(424\) 19.1305i 0.929057i
\(425\) 0 0
\(426\) −23.0464 + 18.5542i −1.11660 + 0.898952i
\(427\) −2.69055 6.49556i −0.130205 0.314342i
\(428\) −0.206119 0.308480i −0.00996316 0.0149109i
\(429\) −0.731973 0.0790418i −0.0353400 0.00381617i
\(430\) −0.382501 0.0760842i −0.0184459 0.00366911i
\(431\) −8.11718 + 12.1482i −0.390991 + 0.585159i −0.973788 0.227459i \(-0.926958\pi\)
0.582797 + 0.812618i \(0.301958\pi\)
\(432\) −10.7590 13.8902i −0.517641 0.668291i
\(433\) −16.4827 6.82738i −0.792110 0.328103i −0.0503185 0.998733i \(-0.516024\pi\)
−0.741792 + 0.670631i \(0.766024\pi\)
\(434\) −19.2369 7.96819i −0.923401 0.382485i
\(435\) −0.735789 0.615502i −0.0352784 0.0295111i
\(436\) −1.73639 + 2.59869i −0.0831578 + 0.124454i
\(437\) −41.3495 8.22492i −1.97801 0.393451i
\(438\) 1.09198 10.1124i 0.0521768 0.483187i
\(439\) 14.6447 + 21.9174i 0.698955 + 1.04606i 0.995838 + 0.0911464i \(0.0290531\pi\)
−0.296882 + 0.954914i \(0.595947\pi\)
\(440\) 0.585674 + 1.41394i 0.0279209 + 0.0674070i
\(441\) 11.3424 + 2.47850i 0.540112 + 0.118024i
\(442\) 0 0
\(443\) 9.67036i 0.459453i 0.973255 + 0.229726i \(0.0737831\pi\)
−0.973255 + 0.229726i \(0.926217\pi\)
\(444\) −0.154109 0.0842438i −0.00731371 0.00399803i
\(445\) 0.479400 0.320325i 0.0227257 0.0151848i
\(446\) 0.175541 + 0.175541i 0.00831208 + 0.00831208i
\(447\) 17.8246 + 34.1145i 0.843076 + 1.61356i
\(448\) 12.9044 + 8.62244i 0.609675 + 0.407372i
\(449\) 0.206155 + 1.03641i 0.00972906 + 0.0489113i 0.985345 0.170574i \(-0.0545622\pi\)
−0.975616 + 0.219485i \(0.929562\pi\)
\(450\) 16.1208 + 11.2153i 0.759942 + 0.528692i
\(451\) 6.12872 14.7960i 0.288590 0.696718i
\(452\) 3.61901 0.719865i 0.170224 0.0338596i
\(453\) 0.633488 + 7.11658i 0.0297639 + 0.334366i
\(454\) −0.546252 + 2.74620i −0.0256369 + 0.128885i
\(455\) −0.0205441 + 0.0205441i −0.000963124 + 0.000963124i
\(456\) 10.3939 33.1404i 0.486741 1.55194i
\(457\) 19.7952 8.19942i 0.925978 0.383553i 0.131827 0.991273i \(-0.457916\pi\)
0.794151 + 0.607720i \(0.207916\pi\)
\(458\) −22.7184 −1.06156
\(459\) 0 0
\(460\) −0.240577 −0.0112169
\(461\) −22.7649 + 9.42954i −1.06027 + 0.439177i −0.843547 0.537056i \(-0.819536\pi\)
−0.216721 + 0.976233i \(0.569536\pi\)
\(462\) −4.38972 + 13.9963i −0.204228 + 0.651168i
\(463\) −13.6466 + 13.6466i −0.634213 + 0.634213i −0.949122 0.314909i \(-0.898026\pi\)
0.314909 + 0.949122i \(0.398026\pi\)
\(464\) −2.59661 + 13.0540i −0.120544 + 0.606018i
\(465\) 0.193474 + 2.17348i 0.00897216 + 0.100793i
\(466\) −12.6237 + 2.51101i −0.584781 + 0.116320i
\(467\) 4.76264 11.4980i 0.220389 0.532066i −0.774554 0.632508i \(-0.782026\pi\)
0.994943 + 0.100442i \(0.0320257\pi\)
\(468\) 0.0782652 + 0.0544491i 0.00361781 + 0.00251691i
\(469\) −2.00824 10.0961i −0.0927317 0.466194i
\(470\) 0.459162 + 0.306802i 0.0211796 + 0.0141517i
\(471\) −11.1970 21.4299i −0.515930 0.987437i
\(472\) 20.1974 + 20.1974i 0.929660 + 0.929660i
\(473\) 6.38545 4.26662i 0.293603 0.196179i
\(474\) −4.88612 2.67099i −0.224427 0.122683i
\(475\) 33.4363i 1.53416i
\(476\) 0 0
\(477\) 18.7724 + 4.10208i 0.859527 + 0.187821i
\(478\) 11.2858 + 27.2464i 0.516202 + 1.24622i
\(479\) 12.6109 + 18.8736i 0.576208 + 0.862357i 0.999038 0.0438524i \(-0.0139631\pi\)
−0.422830 + 0.906209i \(0.638963\pi\)
\(480\) 0.0400064 0.370483i 0.00182604 0.0169102i
\(481\) −0.0426304 0.00847972i −0.00194378 0.000386642i
\(482\) 0.296115 0.443167i 0.0134877 0.0201857i
\(483\) −14.7592 12.3464i −0.671567 0.561780i
\(484\) −0.569259 0.235795i −0.0258754 0.0107179i
\(485\) −0.596290 0.246991i −0.0270761 0.0112153i
\(486\) −18.5040 + 8.79983i −0.839357 + 0.399169i
\(487\) −12.7700 + 19.1116i −0.578662 + 0.866028i −0.999148 0.0412704i \(-0.986859\pi\)
0.420486 + 0.907299i \(0.361859\pi\)
\(488\) 11.6413 + 2.31560i 0.526977 + 0.104822i
\(489\) −19.2081 2.07417i −0.868619 0.0937974i
\(490\) −0.397633 0.595100i −0.0179632 0.0268839i
\(491\) −7.79649 18.8224i −0.351851 0.849443i −0.996392 0.0848732i \(-0.972951\pi\)
0.644541 0.764570i \(-0.277049\pi\)
\(492\) −1.61549 + 1.30060i −0.0728319 + 0.0586355i
\(493\) 0 0
\(494\) 1.03001i 0.0463421i
\(495\) 1.51306 0.271524i 0.0680069 0.0122041i
\(496\) 25.1733 16.8202i 1.13031 0.755251i
\(497\) −16.2578 16.2578i −0.729264 0.729264i
\(498\) −11.1784 + 5.84063i −0.500914 + 0.261725i
\(499\) 0.897288 + 0.599548i 0.0401681 + 0.0268395i 0.575492 0.817807i \(-0.304811\pi\)
−0.535324 + 0.844647i \(0.679811\pi\)
\(500\) 0.0745940 + 0.375010i 0.00333595 + 0.0167709i
\(501\) 1.02309 + 3.49038i 0.0457085 + 0.155939i
\(502\) 0.533486 1.28795i 0.0238106 0.0574840i
\(503\) 9.20449 1.83089i 0.410408 0.0816353i 0.0144315 0.999896i \(-0.495406\pi\)
0.395977 + 0.918261i \(0.370406\pi\)
\(504\) 11.4179 10.9967i 0.508592 0.489834i
\(505\) 0.139094 0.699273i 0.00618961 0.0311173i
\(506\) −21.2552 + 21.2552i −0.944907 + 0.944907i
\(507\) −21.4622 6.73128i −0.953172 0.298947i
\(508\) −2.48772 + 1.03045i −0.110375 + 0.0457188i
\(509\) −7.99190 −0.354235 −0.177117 0.984190i \(-0.556677\pi\)
−0.177117 + 0.984190i \(0.556677\pi\)
\(510\) 0 0
\(511\) 7.90399 0.349652
\(512\) −23.4372 + 9.70803i −1.03579 + 0.429038i
\(513\) −30.2913 17.3055i −1.33739 0.764059i
\(514\) −18.7116 + 18.7116i −0.825334 + 0.825334i
\(515\) −0.438531 + 2.20465i −0.0193240 + 0.0971483i
\(516\) −0.990613 + 0.0881802i −0.0436093 + 0.00388192i
\(517\) −10.6655 + 2.12149i −0.469066 + 0.0933031i
\(518\) −0.331406 + 0.800085i −0.0145611 + 0.0351537i
\(519\) −20.4681 + 5.99957i −0.898449 + 0.263352i
\(520\) −0.00956898 0.0481065i −0.000419627 0.00210961i
\(521\) 1.31074 + 0.875810i 0.0574246 + 0.0383699i 0.583951 0.811789i \(-0.301506\pi\)
−0.526527 + 0.850159i \(0.676506\pi\)
\(522\) 14.2263 + 6.20832i 0.622668 + 0.271731i
\(523\) −24.2095 24.2095i −1.05861 1.05861i −0.998172 0.0604341i \(-0.980751\pi\)
−0.0604341 0.998172i \(-0.519249\pi\)
\(524\) 2.94984 1.97102i 0.128864 0.0861043i
\(525\) −7.32004 + 13.3907i −0.319473 + 0.584420i
\(526\) 7.25753i 0.316443i
\(527\) 0 0
\(528\) −13.3752 16.6135i −0.582081 0.723011i
\(529\) −6.28827 15.1812i −0.273403 0.660054i
\(530\) −0.658110 0.984931i −0.0285865 0.0427827i
\(531\) 24.1502 15.4884i 1.04803 0.672141i
\(532\) 3.17211 + 0.630973i 0.137529 + 0.0273561i
\(533\) −0.285156 + 0.426766i −0.0123515 + 0.0184853i
\(534\) −5.98593 + 7.15575i −0.259037 + 0.309660i
\(535\) 0.177118 + 0.0733645i 0.00765746 + 0.00317183i
\(536\) 16.0554 + 6.65037i 0.693488 + 0.287252i
\(537\) −20.5450 + 24.5601i −0.886582 + 1.05984i
\(538\) −6.67425 + 9.98873i −0.287747 + 0.430645i
\(539\) 13.8230 + 2.74957i 0.595401 + 0.118433i
\(540\) −0.188797 0.0631321i −0.00812451 0.00271677i
\(541\) 1.68432 + 2.52076i 0.0724146 + 0.108376i 0.865909 0.500201i \(-0.166741\pi\)
−0.793495 + 0.608577i \(0.791741\pi\)
\(542\) 1.33208 + 3.21592i 0.0572176 + 0.138135i
\(543\) −2.31215 2.87196i −0.0992239 0.123247i
\(544\) 0 0
\(545\) 1.61500i 0.0691792i
\(546\) 0.225494 0.412502i 0.00965024 0.0176535i
\(547\) −1.44506 + 0.965555i −0.0617861 + 0.0412842i −0.586080 0.810253i \(-0.699329\pi\)
0.524294 + 0.851538i \(0.324329\pi\)
\(548\) −0.617069 0.617069i −0.0263599 0.0263599i
\(549\) 4.76846 10.9269i 0.203513 0.466347i
\(550\) 19.8220 + 13.2447i 0.845214 + 0.564754i
\(551\) 5.15580 + 25.9200i 0.219645 + 1.10423i
\(552\) 31.1735 9.13753i 1.32683 0.388919i
\(553\) 1.65598 3.99789i 0.0704195 0.170008i
\(554\) 26.6724 5.30547i 1.13320 0.225408i
\(555\) 0.0903977 0.00804682i 0.00383717 0.000341569i
\(556\) 0.270623 1.36051i 0.0114770 0.0576986i
\(557\) 29.9311 29.9311i 1.26822 1.26822i 0.321217 0.947006i \(-0.395908\pi\)
0.947006 0.321217i \(-0.104092\pi\)
\(558\) −12.8965 32.8681i −0.545953 1.39142i
\(559\) −0.227391 + 0.0941886i −0.00961763 + 0.00398375i
\(560\) −0.841688 −0.0355678
\(561\) 0 0
\(562\) 13.5236 0.570460
\(563\) 26.2627 10.8784i 1.10684 0.458468i 0.246991 0.969018i \(-0.420558\pi\)
0.859848 + 0.510550i \(0.170558\pi\)
\(564\) 1.34371 + 0.421432i 0.0565803 + 0.0177455i
\(565\) −1.34824 + 1.34824i −0.0567208 + 0.0567208i
\(566\) 3.29328 16.5564i 0.138427 0.695919i
\(567\) −8.34259 13.5621i −0.350356 0.569556i
\(568\) 38.0696 7.57252i 1.59737 0.317736i
\(569\) −7.98685 + 19.2820i −0.334826 + 0.808342i 0.663369 + 0.748292i \(0.269126\pi\)
−0.998195 + 0.0600499i \(0.980874\pi\)
\(570\) 0.604936 + 2.06379i 0.0253380 + 0.0864428i
\(571\) 1.22502 + 6.15858i 0.0512654 + 0.257728i 0.997915 0.0645348i \(-0.0205564\pi\)
−0.946650 + 0.322263i \(0.895556\pi\)
\(572\) 0.0962342 + 0.0643017i 0.00402376 + 0.00268859i
\(573\) 26.6174 13.9074i 1.11196 0.580992i
\(574\) 7.23109 + 7.23109i 0.301820 + 0.301820i
\(575\) −26.0027 + 17.3744i −1.08439 + 0.724564i
\(576\) 4.64846 + 25.9034i 0.193686 + 1.07931i
\(577\) 36.1978i 1.50693i −0.657485 0.753467i \(-0.728380\pi\)
0.657485 0.753467i \(-0.271620\pi\)
\(578\) 0 0
\(579\) −21.9054 + 17.6356i −0.910358 + 0.732911i
\(580\) 0.0577109 + 0.139326i 0.00239632 + 0.00578522i
\(581\) −5.44512 8.14920i −0.225902 0.338086i
\(582\) 10.3830 + 1.12120i 0.430389 + 0.0464754i
\(583\) 22.8781 + 4.55073i 0.947513 + 0.188472i
\(584\) −7.41331 + 11.0948i −0.306765 + 0.459106i
\(585\) −0.0492578 0.000925462i −0.00203656 3.82631e-5i
\(586\) 1.36995 + 0.567450i 0.0565919 + 0.0234412i
\(587\) −7.20502 2.98442i −0.297383 0.123180i 0.229003 0.973426i \(-0.426453\pi\)
−0.526386 + 0.850246i \(0.676453\pi\)
\(588\) −1.39994 1.17107i −0.0577323 0.0482943i
\(589\) 33.3981 49.9838i 1.37615 2.05955i
\(590\) −1.73467 0.345048i −0.0714154 0.0142054i
\(591\) 1.45991 13.5196i 0.0600528 0.556124i
\(592\) −0.699572 1.04698i −0.0287523 0.0430308i
\(593\) 11.6027 + 28.0114i 0.476465 + 1.15029i 0.961256 + 0.275659i \(0.0888960\pi\)
−0.484790 + 0.874630i \(0.661104\pi\)
\(594\) −22.2581 + 11.1026i −0.913261 + 0.455543i
\(595\) 0 0
\(596\) 6.05095i 0.247857i
\(597\) 19.4526 + 10.6338i 0.796143 + 0.435211i
\(598\) 0.801013 0.535220i 0.0327558 0.0218868i
\(599\) −17.7610 17.7610i −0.725695 0.725695i 0.244064 0.969759i \(-0.421519\pi\)
−0.969759 + 0.244064i \(0.921519\pi\)
\(600\) −11.9309 22.8346i −0.487078 0.932217i
\(601\) −25.3288 16.9242i −1.03318 0.690351i −0.0812623 0.996693i \(-0.525895\pi\)
−0.951922 + 0.306341i \(0.900895\pi\)
\(602\) 0.956686 + 4.80958i 0.0389916 + 0.196024i
\(603\) 9.96858 14.3288i 0.405952 0.583516i
\(604\) 0.429829 1.03770i 0.0174895 0.0422233i
\(605\) 0.312273 0.0621150i 0.0126957 0.00252534i
\(606\) 1.02288 + 11.4910i 0.0415517 + 0.466790i
\(607\) −4.25153 + 21.3739i −0.172564 + 0.867539i 0.793368 + 0.608743i \(0.208326\pi\)
−0.965932 + 0.258796i \(0.916674\pi\)
\(608\) −7.25911 + 7.25911i −0.294396 + 0.294396i
\(609\) −3.60970 + 11.5093i −0.146273 + 0.466380i
\(610\) −0.679012 + 0.281256i −0.0274924 + 0.0113877i
\(611\) 0.348513 0.0140993
\(612\) 0 0
\(613\) 17.5623 0.709337 0.354668 0.934992i \(-0.384594\pi\)
0.354668 + 0.934992i \(0.384594\pi\)
\(614\) 23.7791 9.84962i 0.959646 0.397498i
\(615\) 0.320714 1.02258i 0.0129325 0.0412343i
\(616\) 13.6074 13.6074i 0.548258 0.548258i
\(617\) −4.61012 + 23.1766i −0.185596 + 0.933056i 0.769925 + 0.638134i \(0.220294\pi\)
−0.955521 + 0.294922i \(0.904706\pi\)
\(618\) −3.22490 36.2284i −0.129725 1.45732i
\(619\) −39.1709 + 7.79157i −1.57441 + 0.313170i −0.903572 0.428435i \(-0.859065\pi\)
−0.670837 + 0.741605i \(0.734065\pi\)
\(620\) 0.131275 0.316925i 0.00527211 0.0127280i
\(621\) −2.28205 32.5493i −0.0915754 1.30616i
\(622\) −7.53267 37.8693i −0.302033 1.51842i
\(623\) −6.02799 4.02777i −0.241506 0.161369i
\(624\) 0.316550 + 0.605843i 0.0126721 + 0.0242531i
\(625\) 17.4680 + 17.4680i 0.698719 + 0.698719i
\(626\) 19.4759 13.0134i 0.778413 0.520119i
\(627\) −37.1600 20.3135i −1.48403 0.811242i
\(628\) 3.80106i 0.151679i
\(629\) 0 0
\(630\) −0.209548 + 0.958955i −0.00834859 + 0.0382057i
\(631\) 10.2510 + 24.7481i 0.408085 + 0.985205i 0.985641 + 0.168854i \(0.0540067\pi\)
−0.577556 + 0.816351i \(0.695993\pi\)
\(632\) 4.05865 + 6.07420i 0.161444 + 0.241619i
\(633\) −0.952104 + 8.81704i −0.0378428 + 0.350446i
\(634\) −18.2044 3.62108i −0.722988 0.143811i
\(635\) 0.773023 1.15691i 0.0306765 0.0459106i
\(636\) −2.31699 1.93821i −0.0918745 0.0768549i
\(637\) −0.417310 0.172855i −0.0165344 0.00684878i
\(638\) 17.4084 + 7.21080i 0.689206 + 0.285478i
\(639\) 0.732374 38.9807i 0.0289723 1.54205i
\(640\) 0.662291 0.991189i 0.0261794 0.0391802i
\(641\) 41.7612 + 8.30682i 1.64947 + 0.328100i 0.930318 0.366754i \(-0.119531\pi\)
0.719151 + 0.694854i \(0.244531\pi\)
\(642\) −3.08409 0.333034i −0.121719 0.0131438i
\(643\) 14.3260 + 21.4404i 0.564962 + 0.845525i 0.998451 0.0556337i \(-0.0177179\pi\)
−0.433490 + 0.901159i \(0.642718\pi\)
\(644\) 1.15763 + 2.79475i 0.0456168 + 0.110129i
\(645\) 0.400300 0.322273i 0.0157618 0.0126895i
\(646\) 0 0
\(647\) 38.1903i 1.50142i −0.660634 0.750709i \(-0.729712\pi\)
0.660634 0.750709i \(-0.270288\pi\)
\(648\) 26.8618 + 1.00972i 1.05523 + 0.0396656i
\(649\) 28.9585 19.3495i 1.13672 0.759533i
\(650\) −0.540257 0.540257i −0.0211906 0.0211906i
\(651\) 24.3182 12.7061i 0.953104 0.497992i
\(652\) 2.52533 + 1.68737i 0.0988996 + 0.0660826i
\(653\) 6.69257 + 33.6458i 0.261901 + 1.31666i 0.857957 + 0.513721i \(0.171733\pi\)
−0.596057 + 0.802942i \(0.703267\pi\)
\(654\) 7.35049 + 25.0769i 0.287427 + 0.980584i
\(655\) −0.701548 + 1.69369i −0.0274118 + 0.0661778i
\(656\) −14.5836 + 2.90087i −0.569396 + 0.113260i
\(657\) 9.29750 + 9.65356i 0.362730 + 0.376621i
\(658\) 1.35466 6.81033i 0.0528101 0.265494i
\(659\) 24.7106 24.7106i 0.962589 0.962589i −0.0367361 0.999325i \(-0.511696\pi\)
0.999325 + 0.0367361i \(0.0116961\pi\)
\(660\) −0.230587 0.0723199i −0.00897559 0.00281505i
\(661\) 11.2271 4.65040i 0.436682 0.180880i −0.153502 0.988148i \(-0.549055\pi\)
0.590184 + 0.807269i \(0.299055\pi\)
\(662\) 9.50727 0.369510
\(663\) 0 0
\(664\) 16.5461 0.642113
\(665\) −1.54403 + 0.639559i −0.0598750 + 0.0248011i
\(666\) −1.36702 + 0.536380i −0.0529710 + 0.0207843i
\(667\) −17.4783 + 17.4783i −0.676762 + 0.676762i
\(668\) 0.111552 0.560811i 0.00431608 0.0216984i
\(669\) −0.325839 + 0.0290049i −0.0125977 + 0.00112139i
\(670\) −1.05539 + 0.209931i −0.0407734 + 0.00811032i
\(671\) 5.53844 13.3710i 0.213809 0.516181i
\(672\) −4.49637 + 1.31797i −0.173451 + 0.0508417i
\(673\) 7.90952 + 39.7638i 0.304890 + 1.53278i 0.764477 + 0.644651i \(0.222997\pi\)
−0.459587 + 0.888133i \(0.652003\pi\)
\(674\) 14.6100 + 9.76206i 0.562755 + 0.376021i
\(675\) −24.9654 + 6.81126i −0.960919 + 0.262165i
\(676\) 2.50037 + 2.50037i 0.0961681 + 0.0961681i
\(677\) 5.69882 3.80783i 0.219024 0.146347i −0.441219 0.897400i \(-0.645454\pi\)
0.660242 + 0.751053i \(0.270454\pi\)
\(678\) 14.7984 27.0710i 0.568327 1.03966i
\(679\) 8.11552i 0.311445i
\(680\) 0 0
\(681\) −2.31378 2.87398i −0.0886644 0.110131i
\(682\) −16.4024 39.5988i −0.628079 1.51632i
\(683\) 5.48609 + 8.21052i 0.209919 + 0.314167i 0.921456 0.388482i \(-0.127001\pi\)
−0.711537 + 0.702649i \(0.752001\pi\)
\(684\) 2.96073 + 4.61649i 0.113206 + 0.176516i
\(685\) 0.442271 + 0.0879732i 0.0168983 + 0.00336128i
\(686\) −14.0435 + 21.0176i −0.536184 + 0.802457i
\(687\) 19.2081 22.9619i 0.732836 0.876052i
\(688\) −6.58752 2.72864i −0.251147 0.104028i
\(689\) −0.690676 0.286087i −0.0263127 0.0108991i
\(690\) −1.29063 + 1.54285i −0.0491333 + 0.0587353i
\(691\) −7.70668 + 11.5339i −0.293176 + 0.438769i −0.948593 0.316498i \(-0.897493\pi\)
0.655417 + 0.755267i \(0.272493\pi\)
\(692\) 3.28867 + 0.654157i 0.125016 + 0.0248673i
\(693\) −10.4349 16.2705i −0.396389 0.618065i
\(694\) 24.4439 + 36.5828i 0.927876 + 1.38867i
\(695\) 0.274306 + 0.662233i 0.0104050 + 0.0251199i
\(696\) −12.7699 15.8617i −0.484044 0.601237i
\(697\) 0 0
\(698\) 36.5813i 1.38462i
\(699\) 8.13525 14.8820i 0.307703 0.562890i
\(700\) 1.99479 1.33288i 0.0753960 0.0503780i
\(701\) 7.15325 + 7.15325i 0.270175 + 0.270175i 0.829170 0.558996i \(-0.188813\pi\)
−0.558996 + 0.829170i \(0.688813\pi\)
\(702\) 0.769060 0.209821i 0.0290263 0.00791917i
\(703\) −2.07888 1.38907i −0.0784066 0.0523896i
\(704\) 6.23266 + 31.3337i 0.234902 + 1.18093i
\(705\) −0.698307 + 0.204687i −0.0262998 + 0.00770894i
\(706\) 3.63353 8.77211i 0.136750 0.330143i
\(707\) −8.79269 + 1.74897i −0.330683 + 0.0657770i
\(708\) −4.49251 + 0.399904i −0.168839 + 0.0150293i
\(709\) −8.78850 + 44.1828i −0.330059 + 1.65932i 0.358043 + 0.933705i \(0.383444\pi\)
−0.688102 + 0.725614i \(0.741556\pi\)
\(710\) −1.69951 + 1.69951i −0.0637814 + 0.0637814i
\(711\) 6.83078 2.68020i 0.256174 0.100516i
\(712\) 11.3075 4.68374i 0.423768 0.175531i
\(713\) 56.2259 2.10568
\(714\) 0 0
\(715\) −0.0598067 −0.00223664
\(716\) 4.65061 1.92635i 0.173801 0.0719909i
\(717\) −37.0805 11.6297i −1.38480 0.434319i
\(718\) 25.6111 25.6111i 0.955796 0.955796i
\(719\) 5.61120 28.2094i 0.209263 1.05203i −0.723165 0.690676i \(-0.757313\pi\)
0.932427 0.361358i \(-0.117687\pi\)
\(720\) −0.990082 1.02800i −0.0368982 0.0383112i
\(721\) 27.7213 5.51411i 1.03240 0.205356i
\(722\) 13.1163 31.6655i 0.488138 1.17847i
\(723\) 0.197556 + 0.673981i 0.00734719 + 0.0250656i
\(724\) 0.113079 + 0.568488i 0.00420256 + 0.0211277i
\(725\) 16.2998 + 10.8912i 0.605360 + 0.404489i
\(726\) −4.56610 + 2.38576i −0.169464 + 0.0885439i
\(727\) 1.86673 + 1.86673i 0.0692331 + 0.0692331i 0.740876 0.671642i \(-0.234411\pi\)
−0.671642 + 0.740876i \(0.734411\pi\)
\(728\) −0.512803 + 0.342644i −0.0190058 + 0.0126992i
\(729\) 6.75071 26.1425i 0.250026 0.968239i
\(730\) 0.826242i 0.0305806i
\(731\) 0 0
\(732\) −1.45990 + 1.17533i −0.0539593 + 0.0434415i
\(733\) −11.9956 28.9600i −0.443068 1.06966i −0.974866 0.222790i \(-0.928484\pi\)
0.531798 0.846871i \(-0.321516\pi\)
\(734\) −8.20346 12.2773i −0.302795 0.453165i
\(735\) 0.937673 + 0.101254i 0.0345866 + 0.00373482i
\(736\) −9.41729 1.87322i −0.347126 0.0690477i
\(737\) 11.7724 17.6186i 0.433642 0.648991i
\(738\) −0.325743 + 17.3377i −0.0119907 + 0.638209i
\(739\) 4.41201 + 1.82751i 0.162298 + 0.0672262i 0.462354 0.886696i \(-0.347005\pi\)
−0.300055 + 0.953922i \(0.597005\pi\)
\(740\) −0.0131813 0.00545986i −0.000484553 0.000200708i
\(741\) 1.04105 + 0.870857i 0.0382438 + 0.0319917i
\(742\) −8.27510 + 12.3846i −0.303788 + 0.454651i
\(743\) −20.6527 4.10808i −0.757674 0.150711i −0.198888 0.980022i \(-0.563733\pi\)
−0.558787 + 0.829312i \(0.688733\pi\)
\(744\) −4.97297 + 46.0526i −0.182318 + 1.68837i
\(745\) 1.73712 + 2.59978i 0.0636431 + 0.0952486i
\(746\) 2.76818 + 6.68298i 0.101350 + 0.244681i
\(747\) 3.54792 16.2364i 0.129812 0.594058i
\(748\) 0 0
\(749\) 2.41058i 0.0880806i
\(750\) 2.80516 + 1.53344i 0.102430 + 0.0559933i
\(751\) −19.2693 + 12.8753i −0.703145 + 0.469827i −0.855035 0.518571i \(-0.826464\pi\)
0.151889 + 0.988397i \(0.451464\pi\)
\(752\) 7.13925 + 7.13925i 0.260342 + 0.260342i
\(753\) 0.850699 + 1.62815i 0.0310012 + 0.0593330i
\(754\) −0.502116 0.335503i −0.0182860 0.0122183i
\(755\) 0.113229 + 0.569241i 0.00412083 + 0.0207168i
\(756\) 0.175067 + 2.49701i 0.00636711 + 0.0908155i
\(757\) 9.85760 23.7983i 0.358280 0.864965i −0.637262 0.770647i \(-0.719933\pi\)
0.995542 0.0943180i \(-0.0300670\pi\)
\(758\) 6.78999 1.35061i 0.246623 0.0490564i
\(759\) −3.51203 39.4540i −0.127478 1.43209i
\(760\) 0.550432 2.76721i 0.0199663 0.100377i
\(761\) −15.9336 + 15.9336i −0.577594 + 0.577594i −0.934240 0.356646i \(-0.883920\pi\)
0.356646 + 0.934240i \(0.383920\pi\)
\(762\) −6.73753 + 21.4822i −0.244075 + 0.778217i
\(763\) −18.7613 + 7.77120i −0.679206 + 0.281336i
\(764\) −4.72118 −0.170806
\(765\) 0 0
\(766\) −27.8109 −1.00485
\(767\) −1.03124 + 0.427153i −0.0372359 + 0.0154236i
\(768\) 3.32165 10.5909i 0.119860 0.382165i
\(769\) −10.2112 + 10.2112i −0.368226 + 0.368226i −0.866830 0.498604i \(-0.833846\pi\)
0.498604 + 0.866830i \(0.333846\pi\)
\(770\) −0.232466 + 1.16869i −0.00837751 + 0.0421166i
\(771\) −3.09175 34.7326i −0.111347 1.25086i
\(772\) 4.33606 0.862495i 0.156058 0.0310419i
\(773\) 0.930920 2.24744i 0.0334829 0.0808348i −0.906254 0.422734i \(-0.861070\pi\)
0.939736 + 0.341900i \(0.111070\pi\)
\(774\) −4.74884 + 6.82599i −0.170694 + 0.245355i
\(775\) −8.69951 43.7354i −0.312496 1.57102i
\(776\) −11.3917 7.61171i −0.408939 0.273245i
\(777\) −0.528461 1.01142i −0.0189584 0.0362845i
\(778\) 11.6153 + 11.6153i 0.416429 + 0.416429i
\(779\) −24.5487 + 16.4029i −0.879549 + 0.587696i
\(780\) 0.00679590 + 0.00371497i 0.000243332 + 0.000133017i
\(781\) 47.3287i 1.69355i
\(782\) 0 0
\(783\) −18.3030 + 9.12973i −0.654097 + 0.326270i
\(784\) −5.00762 12.0895i −0.178844 0.431766i
\(785\) −1.09121 1.63312i −0.0389471 0.0582885i
\(786\) 3.18464 29.4916i 0.113592 1.05193i
\(787\) −31.1021 6.18658i −1.10867 0.220528i −0.393393 0.919370i \(-0.628699\pi\)
−0.715276 + 0.698843i \(0.753699\pi\)
\(788\) −1.18766 + 1.77746i −0.0423086 + 0.0633194i
\(789\) −7.33533 6.13615i −0.261145 0.218453i
\(790\) −0.417919 0.173108i −0.0148689 0.00615889i
\(791\) 22.1499 + 9.17479i 0.787560 + 0.326218i
\(792\) 32.6259 + 0.612980i 1.15931 + 0.0217813i
\(793\) −0.257692 + 0.385663i −0.00915090 + 0.0136953i
\(794\) −50.1481 9.97507i −1.77969 0.354002i
\(795\) 1.55191 + 0.167583i 0.0550407 + 0.00594354i
\(796\) −1.93626 2.89781i −0.0686288 0.102710i
\(797\) 17.3442 + 41.8726i 0.614363 + 1.48320i 0.858163 + 0.513377i \(0.171606\pi\)
−0.243800 + 0.969825i \(0.578394\pi\)
\(798\) 21.0640 16.9582i 0.745658 0.600314i
\(799\) 0 0
\(800\) 7.61508i 0.269234i
\(801\) −2.17142 12.1002i −0.0767235 0.427539i
\(802\) 29.7572 19.8832i 1.05076 0.702099i
\(803\) 11.5048 + 11.5048i 0.405995 + 0.405995i
\(804\) −2.43212 + 1.27077i −0.0857741 + 0.0448165i
\(805\) −1.29969 0.868428i −0.0458082 0.0306081i
\(806\) 0.267988 + 1.34727i 0.00943949 + 0.0474555i
\(807\) −4.45280 15.1911i −0.156746 0.534753i
\(808\) 5.79181 13.9827i 0.203755 0.491908i
\(809\) 24.6676 4.90669i 0.867266 0.172510i 0.258646 0.965972i \(-0.416724\pi\)
0.608620 + 0.793462i \(0.291724\pi\)
\(810\) −1.41771 + 0.872091i −0.0498134 + 0.0306422i
\(811\) −4.54032 + 22.8258i −0.159432 + 0.801521i 0.815455 + 0.578821i \(0.196487\pi\)
−0.974887 + 0.222700i \(0.928513\pi\)
\(812\) 1.34084 1.34084i 0.0470544 0.0470544i
\(813\) −4.37664 1.37266i −0.153496 0.0481413i
\(814\) −1.64696 + 0.682192i −0.0577259 + 0.0239108i
\(815\) −1.56942 −0.0549743
\(816\) 0 0
\(817\) −14.1578 −0.495320
\(818\) −34.2732 + 14.1964i −1.19834 + 0.496367i
\(819\) 0.226271 + 0.576676i 0.00790656 + 0.0201507i
\(820\) −0.119131 + 0.119131i −0.00416024 + 0.00416024i
\(821\) −8.43190 + 42.3900i −0.294275 + 1.47942i 0.496887 + 0.867815i \(0.334476\pi\)
−0.791162 + 0.611607i \(0.790524\pi\)
\(822\) −7.26774 + 0.646944i −0.253492 + 0.0225648i
\(823\) −16.5420 + 3.29041i −0.576617 + 0.114696i −0.474780 0.880105i \(-0.657472\pi\)
−0.101838 + 0.994801i \(0.532472\pi\)
\(824\) −18.2602 + 44.0841i −0.636125 + 1.53574i
\(825\) −30.1459 + 8.83631i −1.04955 + 0.307641i
\(826\) 4.33865 + 21.8119i 0.150961 + 0.758931i
\(827\) −18.4337 12.3170i −0.641002 0.428304i 0.192136 0.981368i \(-0.438458\pi\)
−0.833139 + 0.553064i \(0.813458\pi\)
\(828\) −2.05166 + 4.70135i −0.0713001 + 0.163383i
\(829\) −19.3451 19.3451i −0.671883 0.671883i 0.286267 0.958150i \(-0.407585\pi\)
−0.958150 + 0.286267i \(0.907585\pi\)
\(830\) −0.851875 + 0.569205i −0.0295690 + 0.0197574i
\(831\) −17.1888 + 31.4440i −0.596274 + 1.09078i
\(832\) 1.02389i 0.0354968i
\(833\) 0 0
\(834\) −7.27334 9.03431i −0.251855 0.312833i
\(835\) 0.113070 + 0.272976i 0.00391296 + 0.00944672i
\(836\) 3.69880 + 5.53564i 0.127926 + 0.191454i
\(837\) 44.1242 + 14.7548i 1.52516 + 0.510000i
\(838\) 12.0414 + 2.39518i 0.415962 + 0.0827400i
\(839\) 13.7956 20.6465i 0.476276 0.712798i −0.513075 0.858344i \(-0.671494\pi\)
0.989352 + 0.145546i \(0.0464938\pi\)
\(840\) 0.826251 0.987723i 0.0285084 0.0340797i
\(841\) −12.4774 5.16832i −0.430256 0.178218i
\(842\) −16.1539 6.69119i −0.556702 0.230593i
\(843\) −11.4341 + 13.6686i −0.393810 + 0.470771i
\(844\) 0.774551 1.15920i 0.0266611 0.0399012i
\(845\) −1.79209 0.356469i −0.0616498 0.0122629i
\(846\) 9.91131 6.35651i 0.340758 0.218541i
\(847\) −2.22420 3.32876i −0.0764246 0.114377i
\(848\) −8.28795 20.0089i −0.284609 0.687107i
\(849\) 13.9495 + 17.3269i 0.478745 + 0.594656i
\(850\) 0 0
\(851\) 2.33850i 0.0801628i
\(852\) −2.93989 + 5.37801i −0.100719 + 0.184248i
\(853\) −24.8055 + 16.5745i −0.849323 + 0.567499i −0.902306 0.431096i \(-0.858127\pi\)
0.0529834 + 0.998595i \(0.483127\pi\)
\(854\) 6.53464 + 6.53464i 0.223611 + 0.223611i
\(855\) −2.59738 1.13349i −0.0888286 0.0387646i
\(856\) 3.38372 + 2.26093i 0.115653 + 0.0772770i
\(857\) −6.63871 33.3750i −0.226774 1.14007i −0.911510 0.411279i \(-0.865082\pi\)
0.684736 0.728791i \(-0.259918\pi\)
\(858\) 0.928644 0.272203i 0.0317034 0.00929284i
\(859\) −7.54327 + 18.2111i −0.257373 + 0.621354i −0.998763 0.0497206i \(-0.984167\pi\)
0.741390 + 0.671074i \(0.234167\pi\)
\(860\) −0.0792371 + 0.0157612i −0.00270196 + 0.000537454i
\(861\) −13.4224 + 1.19481i −0.457434 + 0.0407189i
\(862\) 3.74660 18.8354i 0.127610 0.641538i
\(863\) −4.36492 + 4.36492i −0.148584 + 0.148584i −0.777485 0.628901i \(-0.783505\pi\)
0.628901 + 0.777485i \(0.283505\pi\)
\(864\) −6.89880 3.94132i −0.234702 0.134086i
\(865\) −1.60077 + 0.663059i −0.0544277 + 0.0225447i
\(866\) 23.4504 0.796876
\(867\) 0 0
\(868\) −4.31336 −0.146405
\(869\) 8.22958 3.40880i 0.279169 0.115636i
\(870\) 1.20312 + 0.377339i 0.0407897 + 0.0127930i
\(871\) −0.480203 + 0.480203i −0.0162710 + 0.0162710i
\(872\) 6.68823 33.6240i 0.226492 1.13865i
\(873\) −9.91192 + 9.54633i −0.335468 + 0.323094i
\(874\) 54.3507 10.8110i 1.83844 0.365689i
\(875\) −0.950712 + 2.29522i −0.0321399 + 0.0775927i
\(876\) −0.592666 2.02194i −0.0200243 0.0683149i
\(877\) −1.85986 9.35016i −0.0628031 0.315732i 0.936595 0.350413i \(-0.113959\pi\)
−0.999398 + 0.0346804i \(0.988959\pi\)
\(878\) −28.8088 19.2494i −0.972248 0.649636i
\(879\) −1.73180 + 0.904859i −0.0584123 + 0.0305201i
\(880\) −1.22513 1.22513i −0.0412992 0.0412992i
\(881\) −35.7652 + 23.8975i −1.20496 + 0.805128i −0.985364 0.170464i \(-0.945473\pi\)
−0.219595 + 0.975591i \(0.570473\pi\)
\(882\) −15.0205 + 2.69548i −0.505767 + 0.0907617i
\(883\) 41.3162i 1.39040i −0.718816 0.695200i \(-0.755316\pi\)
0.718816 0.695200i \(-0.244684\pi\)
\(884\) 0 0
\(885\) 1.81539 1.46153i 0.0610237 0.0491289i
\(886\) −4.86427 11.7434i −0.163418 0.394527i
\(887\) 8.24630 + 12.3415i 0.276884 + 0.414386i 0.943683 0.330852i \(-0.107336\pi\)
−0.666799 + 0.745238i \(0.732336\pi\)
\(888\) 1.91538 + 0.206831i 0.0642760 + 0.00694081i
\(889\) −17.1594 3.41322i −0.575508 0.114476i
\(890\) −0.421042 + 0.630135i −0.0141134 + 0.0211222i
\(891\) 7.59737 31.8838i 0.254522 1.06815i
\(892\) 0.0475120 + 0.0196801i 0.00159082 + 0.000658939i
\(893\) 18.5214 + 7.67180i 0.619794 + 0.256727i
\(894\) −38.8056 32.4617i −1.29785 1.08568i
\(895\) −1.44511 + 2.16276i −0.0483046 + 0.0722930i
\(896\) −14.7014 2.92429i −0.491139 0.0976937i
\(897\) −0.136289 + 1.26212i −0.00455057 + 0.0421410i
\(898\) −0.771672 1.15489i −0.0257510 0.0385391i
\(899\) −13.4878 32.5624i −0.449843 1.08602i
\(900\) 3.97439 + 0.868473i 0.132480 + 0.0289491i
\(901\) 0 0
\(902\) 21.0507i 0.700910i
\(903\) −5.67001 3.09950i −0.188686 0.103145i
\(904\) −33.6535 + 22.4865i −1.11930 + 0.747890i
\(905\) −0.211787 0.211787i −0.00704002 0.00704002i
\(906\) −4.34899 8.32350i −0.144485 0.276530i
\(907\) −14.2246 9.50457i −0.472320 0.315594i 0.296530 0.955024i \(-0.404171\pi\)
−0.768850 + 0.639429i \(0.779171\pi\)
\(908\) 0.113159 + 0.568889i 0.00375531 + 0.0188792i
\(909\) −12.4790 8.68165i −0.413902 0.287952i
\(910\) 0.0146143 0.0352820i 0.000484459 0.00116959i
\(911\) 54.2580 10.7926i 1.79765 0.357574i 0.820751 0.571286i \(-0.193555\pi\)
0.976897 + 0.213712i \(0.0685554\pi\)
\(912\) 3.48631 + 39.1651i 0.115443 + 1.29689i
\(913\) 3.93596 19.7874i 0.130261 0.654868i
\(914\) −19.9143 + 19.9143i −0.658705 + 0.658705i
\(915\) 0.289825 0.924088i 0.00958132 0.0305494i
\(916\) −4.34800 + 1.80100i −0.143662 + 0.0595067i
\(917\) 23.0511 0.761216
\(918\) 0 0
\(919\) −57.0283 −1.88119 −0.940595 0.339530i \(-0.889732\pi\)
−0.940595 + 0.339530i \(0.889732\pi\)
\(920\) 2.43802 1.00986i 0.0803791 0.0332941i
\(921\) −10.1497 + 32.3617i −0.334445 + 1.06635i
\(922\) 22.9019 22.9019i 0.754233 0.754233i
\(923\) −0.295920 + 1.48769i −0.00974032 + 0.0489679i
\(924\) 0.269424 + 3.02670i 0.00886341 + 0.0995711i
\(925\) −1.81900 + 0.361822i −0.0598085 + 0.0118966i
\(926\) 9.70769 23.4364i 0.319014 0.770169i
\(927\) 39.3434 + 27.3712i 1.29221 + 0.898989i
\(928\) 1.17423 + 5.90324i 0.0385459 + 0.193783i
\(929\) 29.7790 + 19.8977i 0.977016 + 0.652822i 0.938079 0.346420i \(-0.112603\pi\)
0.0389370 + 0.999242i \(0.487603\pi\)
\(930\) −1.32823 2.54209i −0.0435544 0.0833585i
\(931\) −18.3724 18.3724i −0.602132 0.602132i
\(932\) −2.21694 + 1.48131i −0.0726184 + 0.0485220i
\(933\) 44.6440 + 24.4046i 1.46158 + 0.798971i
\(934\) 16.3585i 0.535267i
\(935\) 0 0
\(936\) −1.02170 0.223259i −0.0333954 0.00729746i
\(937\) 7.73785 + 18.6808i 0.252785 + 0.610276i 0.998427 0.0560704i \(-0.0178571\pi\)
−0.745642 + 0.666347i \(0.767857\pi\)
\(938\) 7.51715 + 11.2502i 0.245444 + 0.367333i
\(939\) −3.31375 + 30.6873i −0.108140 + 1.00144i
\(940\) 0.112199 + 0.0223178i 0.00365953 + 0.000727926i
\(941\) −4.31354 + 6.45567i −0.140618 + 0.210449i −0.895093 0.445879i \(-0.852891\pi\)
0.754476 + 0.656328i \(0.227891\pi\)
\(942\) 24.3767 + 20.3916i 0.794236 + 0.664394i
\(943\) −25.5124 10.5676i −0.830798 0.344128i
\(944\) −29.8749 12.3746i −0.972347 0.402759i
\(945\) −0.792064 1.02258i −0.0257658 0.0332645i
\(946\) −5.60815 + 8.39318i −0.182337 + 0.272886i
\(947\) −3.53370 0.702897i −0.114830 0.0228411i 0.137341 0.990524i \(-0.456144\pi\)
−0.252171 + 0.967683i \(0.581144\pi\)
\(948\) −1.14688 0.123845i −0.0372489 0.00402231i
\(949\) −0.289698 0.433564i −0.00940400 0.0140741i
\(950\) −16.8187 40.6040i −0.545672 1.31737i
\(951\) 19.0515 15.3379i 0.617786 0.497367i
\(952\) 0 0
\(953\) 22.5397i 0.730132i 0.930982 + 0.365066i \(0.118954\pi\)
−0.930982 + 0.365066i \(0.881046\pi\)
\(954\) −24.8600 + 4.46121i −0.804871 + 0.144437i
\(955\) 2.02845 1.35536i 0.0656389 0.0438585i
\(956\) 4.31991 + 4.31991i 0.139716 + 0.139716i
\(957\) −22.0067 + 11.4984i −0.711375 + 0.371690i
\(958\) −24.8079 16.5761i −0.801507 0.535550i
\(959\) −1.10618 5.56114i −0.0357204 0.179578i
\(960\) 0.601342 + 2.05153i 0.0194082 + 0.0662129i
\(961\) −18.8174 + 45.4292i −0.607013 + 1.46546i
\(962\) 0.0560344 0.0111459i 0.00180662 0.000359360i
\(963\) 2.94417 2.83558i 0.0948744 0.0913751i
\(964\) 0.0215404 0.108291i 0.000693768 0.00348781i
\(965\) −1.61537 + 1.61537i −0.0520007 + 0.0520007i
\(966\) 24.1335 + 7.56906i 0.776481 + 0.243531i
\(967\) 20.7527 8.59605i 0.667362 0.276430i −0.0231709 0.999732i \(-0.507376\pi\)
0.690533 + 0.723301i \(0.257376\pi\)
\(968\) 6.75869 0.217233
\(969\) 0 0
\(970\) 0.848355 0.0272390
\(971\) 31.6660 13.1165i 1.01621 0.420928i 0.188493 0.982075i \(-0.439640\pi\)
0.827716 + 0.561147i \(0.189640\pi\)
\(972\) −2.84380 + 3.15107i −0.0912150 + 0.101071i
\(973\) 6.37317 6.37317i 0.204314 0.204314i
\(974\) 5.89415 29.6319i 0.188861 0.949468i
\(975\) 1.00283 0.0892676i 0.0321162 0.00285885i
\(976\) −13.1790 + 2.62147i −0.421851 + 0.0839113i
\(977\) −10.7764 + 26.0166i −0.344769 + 0.832345i 0.652451 + 0.757831i \(0.273741\pi\)
−0.997220 + 0.0745143i \(0.976259\pi\)
\(978\) 24.3690 7.14301i 0.779235 0.228408i
\(979\) −2.91144 14.6368i −0.0930502 0.467795i
\(980\) −0.123278 0.0823718i −0.00393798 0.00263127i
\(981\) −31.5604 13.7729i −1.00765 0.439735i
\(982\) 18.9356 + 18.9356i 0.604261 + 0.604261i
\(983\) 34.6933 23.1813i 1.10654 0.739370i 0.138554 0.990355i \(-0.455755\pi\)
0.967991 + 0.250985i \(0.0807546\pi\)
\(984\) 10.9120 19.9616i 0.347862 0.636353i
\(985\) 1.10464i 0.0351967i
\(986\) 0 0
\(987\) 5.73799 + 7.12723i 0.182642 + 0.226862i
\(988\) −0.0816535 0.197129i −0.00259774 0.00627151i
\(989\) −7.35681 11.0102i −0.233933 0.350105i
\(990\) −1.70083 + 1.09081i −0.0540560 + 0.0346682i
\(991\) 9.95379 + 1.97993i 0.316193 + 0.0628946i 0.350635 0.936512i \(-0.385966\pi\)
−0.0344428 + 0.999407i \(0.510966\pi\)
\(992\) 7.60639 11.3838i 0.241503 0.361435i
\(993\) −8.03828 + 9.60918i −0.255087 + 0.304938i
\(994\) 27.9208 + 11.5652i 0.885595 + 0.366826i
\(995\) 1.66382 + 0.689176i 0.0527466 + 0.0218483i
\(996\) −1.67637 + 2.00398i −0.0531179 + 0.0634986i
\(997\) 22.1815 33.1970i 0.702496 1.05136i −0.292958 0.956125i \(-0.594640\pi\)
0.995455 0.0952350i \(-0.0303602\pi\)
\(998\) −1.39122 0.276730i −0.0440382 0.00875974i
\(999\) 0.613668 1.83518i 0.0194156 0.0580624i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 867.2.i.g.131.2 32
3.2 odd 2 inner 867.2.i.g.131.3 32
17.2 even 8 867.2.i.h.65.2 32
17.3 odd 16 867.2.i.d.329.2 32
17.4 even 4 867.2.i.i.158.3 32
17.5 odd 16 867.2.i.h.827.3 32
17.6 odd 16 867.2.i.b.653.2 32
17.7 odd 16 867.2.i.f.503.3 32
17.8 even 8 867.2.i.c.224.3 32
17.9 even 8 867.2.i.d.224.3 32
17.10 odd 16 inner 867.2.i.g.503.3 32
17.11 odd 16 867.2.i.i.653.2 32
17.12 odd 16 51.2.i.a.11.3 yes 32
17.13 even 4 867.2.i.b.158.3 32
17.14 odd 16 867.2.i.c.329.2 32
17.15 even 8 51.2.i.a.14.2 yes 32
17.16 even 2 867.2.i.f.131.2 32
51.2 odd 8 867.2.i.h.65.3 32
51.5 even 16 867.2.i.h.827.2 32
51.8 odd 8 867.2.i.c.224.2 32
51.11 even 16 867.2.i.i.653.3 32
51.14 even 16 867.2.i.c.329.3 32
51.20 even 16 867.2.i.d.329.3 32
51.23 even 16 867.2.i.b.653.3 32
51.26 odd 8 867.2.i.d.224.2 32
51.29 even 16 51.2.i.a.11.2 32
51.32 odd 8 51.2.i.a.14.3 yes 32
51.38 odd 4 867.2.i.i.158.2 32
51.41 even 16 867.2.i.f.503.2 32
51.44 even 16 inner 867.2.i.g.503.2 32
51.47 odd 4 867.2.i.b.158.2 32
51.50 odd 2 867.2.i.f.131.3 32
68.15 odd 8 816.2.cj.c.65.1 32
68.63 even 16 816.2.cj.c.113.4 32
204.83 even 8 816.2.cj.c.65.4 32
204.131 odd 16 816.2.cj.c.113.1 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.2.i.a.11.2 32 51.29 even 16
51.2.i.a.11.3 yes 32 17.12 odd 16
51.2.i.a.14.2 yes 32 17.15 even 8
51.2.i.a.14.3 yes 32 51.32 odd 8
816.2.cj.c.65.1 32 68.15 odd 8
816.2.cj.c.65.4 32 204.83 even 8
816.2.cj.c.113.1 32 204.131 odd 16
816.2.cj.c.113.4 32 68.63 even 16
867.2.i.b.158.2 32 51.47 odd 4
867.2.i.b.158.3 32 17.13 even 4
867.2.i.b.653.2 32 17.6 odd 16
867.2.i.b.653.3 32 51.23 even 16
867.2.i.c.224.2 32 51.8 odd 8
867.2.i.c.224.3 32 17.8 even 8
867.2.i.c.329.2 32 17.14 odd 16
867.2.i.c.329.3 32 51.14 even 16
867.2.i.d.224.2 32 51.26 odd 8
867.2.i.d.224.3 32 17.9 even 8
867.2.i.d.329.2 32 17.3 odd 16
867.2.i.d.329.3 32 51.20 even 16
867.2.i.f.131.2 32 17.16 even 2
867.2.i.f.131.3 32 51.50 odd 2
867.2.i.f.503.2 32 51.41 even 16
867.2.i.f.503.3 32 17.7 odd 16
867.2.i.g.131.2 32 1.1 even 1 trivial
867.2.i.g.131.3 32 3.2 odd 2 inner
867.2.i.g.503.2 32 51.44 even 16 inner
867.2.i.g.503.3 32 17.10 odd 16 inner
867.2.i.h.65.2 32 17.2 even 8
867.2.i.h.65.3 32 51.2 odd 8
867.2.i.h.827.2 32 51.5 even 16
867.2.i.h.827.3 32 17.5 odd 16
867.2.i.i.158.2 32 51.38 odd 4
867.2.i.i.158.3 32 17.4 even 4
867.2.i.i.653.2 32 17.11 odd 16
867.2.i.i.653.3 32 51.11 even 16