Properties

Label 5292.2.j.i.3529.12
Level $5292$
Weight $2$
Character 5292.3529
Analytic conductor $42.257$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5292,2,Mod(1765,5292)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5292, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5292.1765");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5292 = 2^{2} \cdot 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5292.j (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(42.2568327497\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 1764)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 3529.12
Character \(\chi\) \(=\) 5292.3529
Dual form 5292.2.j.i.1765.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.94623 + 3.37097i) q^{5} +O(q^{10})\) \(q+(1.94623 + 3.37097i) q^{5} +(2.18778 - 3.78935i) q^{11} +(-0.792201 - 1.37213i) q^{13} +5.33356 q^{17} -4.64323 q^{19} +(0.183900 + 0.318523i) q^{23} +(-5.07564 + 8.79126i) q^{25} +(5.08750 - 8.81180i) q^{29} +(1.14776 + 1.98798i) q^{31} +10.8803 q^{37} +(0.690443 + 1.19588i) q^{41} +(3.81699 - 6.61122i) q^{43} +(-3.80432 + 6.58928i) q^{47} +0.925693 q^{53} +17.0317 q^{55} +(-0.460475 - 0.797565i) q^{59} +(-3.27780 + 5.67731i) q^{61} +(3.08361 - 5.34097i) q^{65} +(-7.50420 - 12.9976i) q^{67} +4.91059 q^{71} +7.56707 q^{73} +(-0.987715 + 1.71077i) q^{79} +(0.253011 - 0.438227i) q^{83} +(10.3803 + 17.9793i) q^{85} +12.2197 q^{89} +(-9.03679 - 15.6522i) q^{95} +(4.45315 - 7.71308i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q+O(q^{10}) \) Copy content Toggle raw display \( 24 q + 4 q^{11} + 8 q^{23} - 12 q^{25} + 32 q^{29} + 24 q^{37} - 32 q^{53} + 36 q^{65} + 12 q^{67} - 48 q^{71} + 12 q^{79} + 12 q^{85} - 32 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5292\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\) \(2647\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.94623 + 3.37097i 0.870381 + 1.50754i 0.861603 + 0.507583i \(0.169461\pi\)
0.00877856 + 0.999961i \(0.497206\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.18778 3.78935i 0.659642 1.14253i −0.321067 0.947057i \(-0.604041\pi\)
0.980708 0.195476i \(-0.0626253\pi\)
\(12\) 0 0
\(13\) −0.792201 1.37213i −0.219717 0.380561i 0.735004 0.678062i \(-0.237180\pi\)
−0.954721 + 0.297501i \(0.903847\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 5.33356 1.29358 0.646789 0.762669i \(-0.276111\pi\)
0.646789 + 0.762669i \(0.276111\pi\)
\(18\) 0 0
\(19\) −4.64323 −1.06523 −0.532614 0.846358i \(-0.678790\pi\)
−0.532614 + 0.846358i \(0.678790\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.183900 + 0.318523i 0.0383457 + 0.0664167i 0.884561 0.466424i \(-0.154458\pi\)
−0.846216 + 0.532841i \(0.821125\pi\)
\(24\) 0 0
\(25\) −5.07564 + 8.79126i −1.01513 + 1.75825i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 5.08750 8.81180i 0.944724 1.63631i 0.188422 0.982088i \(-0.439663\pi\)
0.756302 0.654222i \(-0.227004\pi\)
\(30\) 0 0
\(31\) 1.14776 + 1.98798i 0.206144 + 0.357052i 0.950497 0.310735i \(-0.100575\pi\)
−0.744353 + 0.667787i \(0.767242\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 10.8803 1.78872 0.894359 0.447351i \(-0.147632\pi\)
0.894359 + 0.447351i \(0.147632\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0.690443 + 1.19588i 0.107829 + 0.186766i 0.914891 0.403702i \(-0.132277\pi\)
−0.807061 + 0.590467i \(0.798943\pi\)
\(42\) 0 0
\(43\) 3.81699 6.61122i 0.582086 1.00820i −0.413146 0.910665i \(-0.635570\pi\)
0.995232 0.0975372i \(-0.0310965\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −3.80432 + 6.58928i −0.554918 + 0.961145i 0.442992 + 0.896525i \(0.353917\pi\)
−0.997910 + 0.0646200i \(0.979416\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0.925693 0.127154 0.0635769 0.997977i \(-0.479749\pi\)
0.0635769 + 0.997977i \(0.479749\pi\)
\(54\) 0 0
\(55\) 17.0317 2.29656
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −0.460475 0.797565i −0.0599487 0.103834i 0.834493 0.551018i \(-0.185760\pi\)
−0.894442 + 0.447184i \(0.852427\pi\)
\(60\) 0 0
\(61\) −3.27780 + 5.67731i −0.419679 + 0.726905i −0.995907 0.0903836i \(-0.971191\pi\)
0.576228 + 0.817289i \(0.304524\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 3.08361 5.34097i 0.382475 0.662466i
\(66\) 0 0
\(67\) −7.50420 12.9976i −0.916783 1.58792i −0.804269 0.594265i \(-0.797443\pi\)
−0.112514 0.993650i \(-0.535890\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 4.91059 0.582780 0.291390 0.956604i \(-0.405882\pi\)
0.291390 + 0.956604i \(0.405882\pi\)
\(72\) 0 0
\(73\) 7.56707 0.885658 0.442829 0.896606i \(-0.353975\pi\)
0.442829 + 0.896606i \(0.353975\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −0.987715 + 1.71077i −0.111127 + 0.192477i −0.916225 0.400665i \(-0.868779\pi\)
0.805098 + 0.593142i \(0.202113\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0.253011 0.438227i 0.0277715 0.0481017i −0.851806 0.523858i \(-0.824492\pi\)
0.879577 + 0.475756i \(0.157826\pi\)
\(84\) 0 0
\(85\) 10.3803 + 17.9793i 1.12591 + 1.95013i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 12.2197 1.29529 0.647645 0.761942i \(-0.275754\pi\)
0.647645 + 0.761942i \(0.275754\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −9.03679 15.6522i −0.927155 1.60588i
\(96\) 0 0
\(97\) 4.45315 7.71308i 0.452149 0.783145i −0.546370 0.837544i \(-0.683991\pi\)
0.998519 + 0.0543987i \(0.0173242\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 5.51180 9.54672i 0.548445 0.949935i −0.449936 0.893061i \(-0.648553\pi\)
0.998381 0.0568740i \(-0.0181133\pi\)
\(102\) 0 0
\(103\) −1.36543 2.36499i −0.134540 0.233029i 0.790882 0.611969i \(-0.209622\pi\)
−0.925421 + 0.378939i \(0.876289\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 10.7921 1.04331 0.521655 0.853156i \(-0.325315\pi\)
0.521655 + 0.853156i \(0.325315\pi\)
\(108\) 0 0
\(109\) −9.98374 −0.956269 −0.478134 0.878287i \(-0.658687\pi\)
−0.478134 + 0.878287i \(0.658687\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 6.12019 + 10.6005i 0.575739 + 0.997209i 0.995961 + 0.0897875i \(0.0286188\pi\)
−0.420222 + 0.907421i \(0.638048\pi\)
\(114\) 0 0
\(115\) −0.715822 + 1.23984i −0.0667508 + 0.115616i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −4.07280 7.05429i −0.370254 0.641299i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −20.0511 −1.79343
\(126\) 0 0
\(127\) −13.2005 −1.17135 −0.585677 0.810544i \(-0.699171\pi\)
−0.585677 + 0.810544i \(0.699171\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 2.54342 + 4.40532i 0.222219 + 0.384895i 0.955482 0.295051i \(-0.0953366\pi\)
−0.733262 + 0.679946i \(0.762003\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 6.67208 11.5564i 0.570034 0.987328i −0.426527 0.904475i \(-0.640263\pi\)
0.996562 0.0828538i \(-0.0264034\pi\)
\(138\) 0 0
\(139\) −4.85642 8.41157i −0.411916 0.713460i 0.583183 0.812341i \(-0.301807\pi\)
−0.995099 + 0.0988809i \(0.968474\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −6.93265 −0.579738
\(144\) 0 0
\(145\) 39.6058 3.28908
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 6.92116 + 11.9878i 0.567004 + 0.982079i 0.996860 + 0.0791820i \(0.0252308\pi\)
−0.429856 + 0.902897i \(0.641436\pi\)
\(150\) 0 0
\(151\) −11.4380 + 19.8112i −0.930809 + 1.61221i −0.148867 + 0.988857i \(0.547563\pi\)
−0.781942 + 0.623352i \(0.785771\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −4.46762 + 7.73815i −0.358848 + 0.621543i
\(156\) 0 0
\(157\) −5.78991 10.0284i −0.462085 0.800355i 0.536980 0.843595i \(-0.319565\pi\)
−0.999065 + 0.0432404i \(0.986232\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 3.41155 0.267213 0.133607 0.991034i \(-0.457344\pi\)
0.133607 + 0.991034i \(0.457344\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 4.69996 + 8.14057i 0.363694 + 0.629936i 0.988566 0.150791i \(-0.0481821\pi\)
−0.624872 + 0.780727i \(0.714849\pi\)
\(168\) 0 0
\(169\) 5.24484 9.08432i 0.403449 0.698794i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −3.20256 + 5.54700i −0.243486 + 0.421730i −0.961705 0.274087i \(-0.911624\pi\)
0.718219 + 0.695817i \(0.244958\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −17.0808 −1.27668 −0.638338 0.769756i \(-0.720378\pi\)
−0.638338 + 0.769756i \(0.720378\pi\)
\(180\) 0 0
\(181\) 1.35988 0.101079 0.0505395 0.998722i \(-0.483906\pi\)
0.0505395 + 0.998722i \(0.483906\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 21.1757 + 36.6773i 1.55687 + 2.69657i
\(186\) 0 0
\(187\) 11.6687 20.2107i 0.853298 1.47796i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −8.94048 + 15.4854i −0.646911 + 1.12048i 0.336946 + 0.941524i \(0.390606\pi\)
−0.983857 + 0.178958i \(0.942727\pi\)
\(192\) 0 0
\(193\) 6.50664 + 11.2698i 0.468358 + 0.811220i 0.999346 0.0361591i \(-0.0115123\pi\)
−0.530988 + 0.847380i \(0.678179\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −6.36486 −0.453478 −0.226739 0.973956i \(-0.572806\pi\)
−0.226739 + 0.973956i \(0.572806\pi\)
\(198\) 0 0
\(199\) 23.1529 1.64126 0.820631 0.571458i \(-0.193622\pi\)
0.820631 + 0.571458i \(0.193622\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −2.68753 + 4.65493i −0.187705 + 0.325114i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −10.1584 + 17.5948i −0.702669 + 1.21706i
\(210\) 0 0
\(211\) −5.67737 9.83349i −0.390846 0.676965i 0.601715 0.798711i \(-0.294484\pi\)
−0.992561 + 0.121745i \(0.961151\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 29.7150 2.02655
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −4.22525 7.31835i −0.284221 0.492285i
\(222\) 0 0
\(223\) −13.3206 + 23.0719i −0.892011 + 1.54501i −0.0545504 + 0.998511i \(0.517373\pi\)
−0.837461 + 0.546498i \(0.815961\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −8.30136 + 14.3784i −0.550981 + 0.954326i 0.447224 + 0.894422i \(0.352413\pi\)
−0.998204 + 0.0599042i \(0.980920\pi\)
\(228\) 0 0
\(229\) 7.25072 + 12.5586i 0.479141 + 0.829897i 0.999714 0.0239205i \(-0.00761485\pi\)
−0.520573 + 0.853817i \(0.674282\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −15.9804 −1.04691 −0.523456 0.852053i \(-0.675357\pi\)
−0.523456 + 0.852053i \(0.675357\pi\)
\(234\) 0 0
\(235\) −29.6164 −1.93196
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 9.58994 + 16.6103i 0.620322 + 1.07443i 0.989426 + 0.145040i \(0.0463312\pi\)
−0.369104 + 0.929388i \(0.620335\pi\)
\(240\) 0 0
\(241\) −11.6785 + 20.2277i −0.752276 + 1.30298i 0.194441 + 0.980914i \(0.437711\pi\)
−0.946717 + 0.322067i \(0.895623\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 3.67837 + 6.37112i 0.234049 + 0.405384i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 30.4619 1.92274 0.961371 0.275257i \(-0.0887631\pi\)
0.961371 + 0.275257i \(0.0887631\pi\)
\(252\) 0 0
\(253\) 1.60933 0.101178
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −3.40438 5.89657i −0.212360 0.367818i 0.740093 0.672505i \(-0.234782\pi\)
−0.952453 + 0.304687i \(0.901448\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −2.30000 + 3.98372i −0.141824 + 0.245647i −0.928184 0.372122i \(-0.878630\pi\)
0.786359 + 0.617769i \(0.211963\pi\)
\(264\) 0 0
\(265\) 1.80161 + 3.12049i 0.110672 + 0.191690i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 8.50179 0.518363 0.259182 0.965829i \(-0.416547\pi\)
0.259182 + 0.965829i \(0.416547\pi\)
\(270\) 0 0
\(271\) 6.58381 0.399938 0.199969 0.979802i \(-0.435916\pi\)
0.199969 + 0.979802i \(0.435916\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 22.2088 + 38.4668i 1.33924 + 2.31963i
\(276\) 0 0
\(277\) 5.63483 9.75982i 0.338564 0.586411i −0.645599 0.763677i \(-0.723392\pi\)
0.984163 + 0.177266i \(0.0567254\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −7.50741 + 13.0032i −0.447854 + 0.775707i −0.998246 0.0592000i \(-0.981145\pi\)
0.550392 + 0.834907i \(0.314478\pi\)
\(282\) 0 0
\(283\) −7.33657 12.7073i −0.436114 0.755371i 0.561272 0.827631i \(-0.310312\pi\)
−0.997386 + 0.0722602i \(0.976979\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 11.4469 0.673344
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 9.38981 + 16.2636i 0.548559 + 0.950132i 0.998374 + 0.0570099i \(0.0181567\pi\)
−0.449815 + 0.893122i \(0.648510\pi\)
\(294\) 0 0
\(295\) 1.79238 3.10449i 0.104356 0.180751i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0.291371 0.504669i 0.0168504 0.0291858i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −25.5174 −1.46112
\(306\) 0 0
\(307\) −28.9425 −1.65184 −0.825919 0.563789i \(-0.809343\pi\)
−0.825919 + 0.563789i \(0.809343\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −6.79681 11.7724i −0.385412 0.667553i 0.606414 0.795149i \(-0.292607\pi\)
−0.991826 + 0.127596i \(0.959274\pi\)
\(312\) 0 0
\(313\) 6.93222 12.0070i 0.391832 0.678673i −0.600859 0.799355i \(-0.705175\pi\)
0.992691 + 0.120682i \(0.0385080\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 11.5428 19.9927i 0.648309 1.12290i −0.335217 0.942141i \(-0.608810\pi\)
0.983527 0.180764i \(-0.0578569\pi\)
\(318\) 0 0
\(319\) −22.2607 38.5566i −1.24636 2.15876i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −24.7649 −1.37796
\(324\) 0 0
\(325\) 16.0837 0.892163
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 7.82647 13.5558i 0.430182 0.745097i −0.566707 0.823920i \(-0.691783\pi\)
0.996889 + 0.0788227i \(0.0251161\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 29.2098 50.5929i 1.59590 2.76418i
\(336\) 0 0
\(337\) 3.56686 + 6.17799i 0.194299 + 0.336537i 0.946671 0.322203i \(-0.104423\pi\)
−0.752371 + 0.658739i \(0.771090\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 10.0442 0.543925
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 2.77827 + 4.81211i 0.149146 + 0.258328i 0.930912 0.365244i \(-0.119014\pi\)
−0.781766 + 0.623571i \(0.785681\pi\)
\(348\) 0 0
\(349\) −5.33296 + 9.23696i −0.285467 + 0.494443i −0.972722 0.231973i \(-0.925482\pi\)
0.687256 + 0.726416i \(0.258815\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −6.42132 + 11.1221i −0.341772 + 0.591967i −0.984762 0.173908i \(-0.944361\pi\)
0.642989 + 0.765875i \(0.277694\pi\)
\(354\) 0 0
\(355\) 9.55715 + 16.5535i 0.507241 + 0.878567i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −25.6835 −1.35552 −0.677761 0.735282i \(-0.737050\pi\)
−0.677761 + 0.735282i \(0.737050\pi\)
\(360\) 0 0
\(361\) 2.55954 0.134713
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 14.7273 + 25.5084i 0.770861 + 1.33517i
\(366\) 0 0
\(367\) 8.49197 14.7085i 0.443277 0.767778i −0.554653 0.832082i \(-0.687149\pi\)
0.997930 + 0.0643031i \(0.0204824\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 4.38503 + 7.59509i 0.227048 + 0.393259i 0.956932 0.290312i \(-0.0937592\pi\)
−0.729884 + 0.683571i \(0.760426\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −16.1213 −0.830288
\(378\) 0 0
\(379\) 11.7002 0.601001 0.300500 0.953782i \(-0.402846\pi\)
0.300500 + 0.953782i \(0.402846\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −4.50360 7.80046i −0.230123 0.398585i 0.727721 0.685873i \(-0.240580\pi\)
−0.957844 + 0.287288i \(0.907246\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −4.89390 + 8.47649i −0.248131 + 0.429775i −0.963007 0.269476i \(-0.913150\pi\)
0.714876 + 0.699251i \(0.246483\pi\)
\(390\) 0 0
\(391\) 0.980839 + 1.69886i 0.0496032 + 0.0859152i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −7.68929 −0.386890
\(396\) 0 0
\(397\) 13.9186 0.698554 0.349277 0.937020i \(-0.386427\pi\)
0.349277 + 0.937020i \(0.386427\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −11.7414 20.3367i −0.586336 1.01556i −0.994707 0.102748i \(-0.967236\pi\)
0.408371 0.912816i \(-0.366097\pi\)
\(402\) 0 0
\(403\) 1.81852 3.14976i 0.0905867 0.156901i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 23.8038 41.2295i 1.17991 2.04367i
\(408\) 0 0
\(409\) 6.81225 + 11.7992i 0.336844 + 0.583431i 0.983837 0.179064i \(-0.0573071\pi\)
−0.646993 + 0.762496i \(0.723974\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 1.96967 0.0966873
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 3.97733 + 6.88894i 0.194305 + 0.336547i 0.946673 0.322197i \(-0.104421\pi\)
−0.752367 + 0.658744i \(0.771088\pi\)
\(420\) 0 0
\(421\) 1.30584 2.26178i 0.0636426 0.110232i −0.832448 0.554102i \(-0.813062\pi\)
0.896091 + 0.443870i \(0.146395\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −27.0712 + 46.8887i −1.31315 + 2.27444i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 1.58213 0.0762086 0.0381043 0.999274i \(-0.487868\pi\)
0.0381043 + 0.999274i \(0.487868\pi\)
\(432\) 0 0
\(433\) 5.17110 0.248507 0.124254 0.992250i \(-0.460346\pi\)
0.124254 + 0.992250i \(0.460346\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −0.853887 1.47898i −0.0408470 0.0707490i
\(438\) 0 0
\(439\) 12.4806 21.6170i 0.595665 1.03172i −0.397788 0.917477i \(-0.630222\pi\)
0.993453 0.114244i \(-0.0364446\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0.542263 0.939227i 0.0257637 0.0446240i −0.852856 0.522146i \(-0.825132\pi\)
0.878620 + 0.477522i \(0.158465\pi\)
\(444\) 0 0
\(445\) 23.7825 + 41.1924i 1.12740 + 1.95271i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −4.23372 −0.199802 −0.0999008 0.994997i \(-0.531853\pi\)
−0.0999008 + 0.994997i \(0.531853\pi\)
\(450\) 0 0
\(451\) 6.04216 0.284514
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 18.1513 31.4390i 0.849083 1.47065i −0.0329453 0.999457i \(-0.510489\pi\)
0.882028 0.471197i \(-0.156178\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 1.71236 2.96589i 0.0797524 0.138135i −0.823391 0.567475i \(-0.807920\pi\)
0.903143 + 0.429340i \(0.141254\pi\)
\(462\) 0 0
\(463\) 2.38499 + 4.13092i 0.110840 + 0.191980i 0.916109 0.400929i \(-0.131313\pi\)
−0.805269 + 0.592909i \(0.797979\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 20.0979 0.930021 0.465010 0.885305i \(-0.346051\pi\)
0.465010 + 0.885305i \(0.346051\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −16.7015 28.9279i −0.767936 1.33010i
\(474\) 0 0
\(475\) 23.5673 40.8198i 1.08134 1.87294i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 8.42528 14.5930i 0.384961 0.666772i −0.606803 0.794852i \(-0.707548\pi\)
0.991764 + 0.128080i \(0.0408816\pi\)
\(480\) 0 0
\(481\) −8.61941 14.9293i −0.393011 0.680716i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 34.6675 1.57417
\(486\) 0 0
\(487\) 23.9831 1.08678 0.543389 0.839481i \(-0.317141\pi\)
0.543389 + 0.839481i \(0.317141\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 1.07281 + 1.85816i 0.0484153 + 0.0838577i 0.889217 0.457485i \(-0.151250\pi\)
−0.840802 + 0.541342i \(0.817916\pi\)
\(492\) 0 0
\(493\) 27.1345 46.9983i 1.22207 2.11670i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 13.8577 + 24.0023i 0.620357 + 1.07449i 0.989419 + 0.145085i \(0.0463455\pi\)
−0.369062 + 0.929405i \(0.620321\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −22.4265 −0.999949 −0.499974 0.866040i \(-0.666657\pi\)
−0.499974 + 0.866040i \(0.666657\pi\)
\(504\) 0 0
\(505\) 42.9090 1.90943
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 14.6844 + 25.4342i 0.650876 + 1.12735i 0.982911 + 0.184083i \(0.0589316\pi\)
−0.332034 + 0.943267i \(0.607735\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 5.31488 9.20563i 0.234201 0.405649i
\(516\) 0 0
\(517\) 16.6461 + 28.8318i 0.732093 + 1.26802i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −16.5078 −0.723219 −0.361610 0.932330i \(-0.617773\pi\)
−0.361610 + 0.932330i \(0.617773\pi\)
\(522\) 0 0
\(523\) −44.6952 −1.95439 −0.977193 0.212352i \(-0.931888\pi\)
−0.977193 + 0.212352i \(0.931888\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 6.12166 + 10.6030i 0.266664 + 0.461875i
\(528\) 0 0
\(529\) 11.4324 19.8014i 0.497059 0.860932i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 1.09394 1.89476i 0.0473838 0.0820711i
\(534\) 0 0
\(535\) 21.0039 + 36.3798i 0.908078 + 1.57284i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −20.0737 −0.863037 −0.431519 0.902104i \(-0.642022\pi\)
−0.431519 + 0.902104i \(0.642022\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −19.4307 33.6549i −0.832319 1.44162i
\(546\) 0 0
\(547\) 6.35012 10.9987i 0.271512 0.470272i −0.697738 0.716353i \(-0.745810\pi\)
0.969249 + 0.246082i \(0.0791432\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −23.6224 + 40.9152i −1.00635 + 1.74305i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −14.6949 −0.622642 −0.311321 0.950305i \(-0.600771\pi\)
−0.311321 + 0.950305i \(0.600771\pi\)
\(558\) 0 0
\(559\) −12.0953 −0.511576
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 13.3930 + 23.1974i 0.564448 + 0.977653i 0.997101 + 0.0760922i \(0.0242443\pi\)
−0.432653 + 0.901561i \(0.642422\pi\)
\(564\) 0 0
\(565\) −23.8226 + 41.2620i −1.00222 + 1.73590i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 3.24168 5.61475i 0.135898 0.235383i −0.790042 0.613053i \(-0.789941\pi\)
0.925940 + 0.377670i \(0.123275\pi\)
\(570\) 0 0
\(571\) −7.81632 13.5383i −0.327103 0.566559i 0.654833 0.755774i \(-0.272739\pi\)
−0.981936 + 0.189215i \(0.939406\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −3.73363 −0.155703
\(576\) 0 0
\(577\) −29.1600 −1.21395 −0.606974 0.794722i \(-0.707617\pi\)
−0.606974 + 0.794722i \(0.707617\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 2.02522 3.50778i 0.0838759 0.145277i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 2.33110 4.03758i 0.0962146 0.166649i −0.813900 0.581005i \(-0.802660\pi\)
0.910115 + 0.414356i \(0.135993\pi\)
\(588\) 0 0
\(589\) −5.32932 9.23065i −0.219591 0.380342i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −31.6644 −1.30030 −0.650150 0.759805i \(-0.725294\pi\)
−0.650150 + 0.759805i \(0.725294\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −5.15268 8.92470i −0.210533 0.364653i 0.741349 0.671120i \(-0.234187\pi\)
−0.951881 + 0.306467i \(0.900853\pi\)
\(600\) 0 0
\(601\) −4.64993 + 8.05391i −0.189674 + 0.328526i −0.945142 0.326661i \(-0.894077\pi\)
0.755467 + 0.655186i \(0.227410\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 15.8532 27.4586i 0.644525 1.11635i
\(606\) 0 0
\(607\) −10.2484 17.7507i −0.415969 0.720480i 0.579561 0.814929i \(-0.303224\pi\)
−0.995530 + 0.0944495i \(0.969891\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 12.0551 0.487699
\(612\) 0 0
\(613\) −14.3448 −0.579381 −0.289691 0.957120i \(-0.593552\pi\)
−0.289691 + 0.957120i \(0.593552\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 6.47499 + 11.2150i 0.260673 + 0.451499i 0.966421 0.256964i \(-0.0827221\pi\)
−0.705748 + 0.708463i \(0.749389\pi\)
\(618\) 0 0
\(619\) 17.6990 30.6556i 0.711383 1.23215i −0.252955 0.967478i \(-0.581402\pi\)
0.964338 0.264674i \(-0.0852642\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −13.6460 23.6355i −0.545839 0.945422i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 58.0310 2.31385
\(630\) 0 0
\(631\) 33.1936 1.32141 0.660707 0.750644i \(-0.270256\pi\)
0.660707 + 0.750644i \(0.270256\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −25.6912 44.4985i −1.01952 1.76587i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −0.119634 + 0.207213i −0.00472528 + 0.00818442i −0.868378 0.495902i \(-0.834837\pi\)
0.863653 + 0.504087i \(0.168171\pi\)
\(642\) 0 0
\(643\) −4.57211 7.91913i −0.180307 0.312300i 0.761678 0.647955i \(-0.224376\pi\)
−0.941985 + 0.335655i \(0.891042\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −6.31214 −0.248156 −0.124078 0.992272i \(-0.539597\pi\)
−0.124078 + 0.992272i \(0.539597\pi\)
\(648\) 0 0
\(649\) −4.02968 −0.158179
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −2.27888 3.94713i −0.0891793 0.154463i 0.817985 0.575239i \(-0.195091\pi\)
−0.907164 + 0.420776i \(0.861758\pi\)
\(654\) 0 0
\(655\) −9.90015 + 17.1476i −0.386831 + 0.670011i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 16.4631 28.5149i 0.641311 1.11078i −0.343829 0.939032i \(-0.611724\pi\)
0.985140 0.171751i \(-0.0549425\pi\)
\(660\) 0 0
\(661\) −0.270668 0.468811i −0.0105278 0.0182346i 0.860714 0.509090i \(-0.170018\pi\)
−0.871241 + 0.490855i \(0.836684\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 3.74235 0.144905
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 14.3422 + 24.8415i 0.553676 + 0.958994i
\(672\) 0 0
\(673\) −11.8205 + 20.4737i −0.455647 + 0.789204i −0.998725 0.0504780i \(-0.983926\pi\)
0.543078 + 0.839682i \(0.317259\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −1.36494 + 2.36415i −0.0524591 + 0.0908618i −0.891062 0.453881i \(-0.850039\pi\)
0.838603 + 0.544742i \(0.183373\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 31.9279 1.22169 0.610844 0.791751i \(-0.290830\pi\)
0.610844 + 0.791751i \(0.290830\pi\)
\(684\) 0 0
\(685\) 51.9417 1.98459
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −0.733335 1.27017i −0.0279378 0.0483897i
\(690\) 0 0
\(691\) 1.19103 2.06292i 0.0453089 0.0784773i −0.842482 0.538725i \(-0.818906\pi\)
0.887790 + 0.460248i \(0.152239\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 18.9034 32.7417i 0.717048 1.24196i
\(696\) 0 0
\(697\) 3.68252 + 6.37831i 0.139485 + 0.241596i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −50.3767 −1.90270 −0.951350 0.308111i \(-0.900303\pi\)
−0.951350 + 0.308111i \(0.900303\pi\)
\(702\) 0 0
\(703\) −50.5199 −1.90539
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −20.1600 + 34.9182i −0.757126 + 1.31138i 0.187184 + 0.982325i \(0.440064\pi\)
−0.944310 + 0.329056i \(0.893269\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −0.422146 + 0.731178i −0.0158095 + 0.0273828i
\(714\) 0 0
\(715\) −13.4926 23.3698i −0.504593 0.873981i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 34.0893 1.27132 0.635658 0.771971i \(-0.280729\pi\)
0.635658 + 0.771971i \(0.280729\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 51.6446 + 89.4510i 1.91803 + 3.32213i
\(726\) 0 0
\(727\) 10.9453 18.9578i 0.405938 0.703105i −0.588492 0.808503i \(-0.700278\pi\)
0.994430 + 0.105398i \(0.0336117\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 20.3581 35.2613i 0.752973 1.30419i
\(732\) 0 0
\(733\) 4.34416 + 7.52430i 0.160455 + 0.277916i 0.935032 0.354563i \(-0.115370\pi\)
−0.774577 + 0.632480i \(0.782037\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −65.6702 −2.41899
\(738\) 0 0
\(739\) 6.69385 0.246237 0.123119 0.992392i \(-0.460710\pi\)
0.123119 + 0.992392i \(0.460710\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −21.5001 37.2392i −0.788761 1.36617i −0.926726 0.375737i \(-0.877389\pi\)
0.137965 0.990437i \(-0.455944\pi\)
\(744\) 0 0
\(745\) −26.9404 + 46.6621i −0.987019 + 1.70957i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 8.36369 + 14.4863i 0.305196 + 0.528614i 0.977305 0.211838i \(-0.0679448\pi\)
−0.672109 + 0.740452i \(0.734612\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −89.0438 −3.24064
\(756\) 0 0
\(757\) −4.68561 −0.170301 −0.0851507 0.996368i \(-0.527137\pi\)
−0.0851507 + 0.996368i \(0.527137\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −25.8242 44.7288i −0.936127 1.62142i −0.772613 0.634878i \(-0.781050\pi\)
−0.163514 0.986541i \(-0.552283\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −0.729576 + 1.26366i −0.0263435 + 0.0456282i
\(768\) 0 0
\(769\) 15.3910 + 26.6580i 0.555014 + 0.961313i 0.997902 + 0.0647361i \(0.0206205\pi\)
−0.442888 + 0.896577i \(0.646046\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −27.0517 −0.972982 −0.486491 0.873686i \(-0.661723\pi\)
−0.486491 + 0.873686i \(0.661723\pi\)
\(774\) 0 0
\(775\) −23.3025 −0.837050
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −3.20588 5.55275i −0.114863 0.198948i
\(780\) 0 0
\(781\) 10.7433 18.6080i 0.384426 0.665845i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 22.5370 39.0352i 0.804380 1.39323i
\(786\) 0 0
\(787\) 17.5997 + 30.4837i 0.627363 + 1.08662i 0.988079 + 0.153949i \(0.0491992\pi\)
−0.360716 + 0.932676i \(0.617468\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 10.3867 0.368842
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 23.8268 + 41.2692i 0.843988 + 1.46183i 0.886497 + 0.462735i \(0.153132\pi\)
−0.0425084 + 0.999096i \(0.513535\pi\)
\(798\) 0 0
\(799\) −20.2906 + 35.1443i −0.717829 + 1.24332i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 16.5551 28.6743i 0.584217 1.01189i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −19.7542 −0.694521 −0.347261 0.937769i \(-0.612888\pi\)
−0.347261 + 0.937769i \(0.612888\pi\)
\(810\) 0 0
\(811\) −49.2424 −1.72913 −0.864567 0.502518i \(-0.832407\pi\)
−0.864567 + 0.502518i \(0.832407\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 6.63967 + 11.5002i 0.232577 + 0.402836i
\(816\) 0 0
\(817\) −17.7231 + 30.6974i −0.620054 + 1.07397i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 5.00013 8.66048i 0.174506 0.302253i −0.765484 0.643455i \(-0.777501\pi\)
0.939990 + 0.341202i \(0.110834\pi\)
\(822\) 0 0
\(823\) 17.5138 + 30.3348i 0.610493 + 1.05741i 0.991157 + 0.132692i \(0.0423621\pi\)
−0.380664 + 0.924713i \(0.624305\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 22.7079 0.789631 0.394816 0.918760i \(-0.370808\pi\)
0.394816 + 0.918760i \(0.370808\pi\)
\(828\) 0 0
\(829\) −12.4417 −0.432117 −0.216058 0.976380i \(-0.569320\pi\)
−0.216058 + 0.976380i \(0.569320\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −18.2944 + 31.6869i −0.633105 + 1.09657i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 13.8249 23.9455i 0.477290 0.826690i −0.522372 0.852718i \(-0.674953\pi\)
0.999661 + 0.0260281i \(0.00828595\pi\)
\(840\) 0 0
\(841\) −37.2652 64.5453i −1.28501 2.22570i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 40.8307 1.40462
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 2.00089 + 3.46564i 0.0685896 + 0.118801i
\(852\) 0 0
\(853\) −22.0459 + 38.1847i −0.754839 + 1.30742i 0.190616 + 0.981665i \(0.438952\pi\)
−0.945454 + 0.325754i \(0.894382\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −13.3838 + 23.1814i −0.457182 + 0.791862i −0.998811 0.0487557i \(-0.984474\pi\)
0.541629 + 0.840618i \(0.317808\pi\)
\(858\) 0 0
\(859\) 10.0951 + 17.4852i 0.344439 + 0.596587i 0.985252 0.171111i \(-0.0547357\pi\)
−0.640812 + 0.767698i \(0.721402\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −9.49075 −0.323069 −0.161534 0.986867i \(-0.551644\pi\)
−0.161534 + 0.986867i \(0.551644\pi\)
\(864\) 0 0
\(865\) −24.9317 −0.847703
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 4.32182 + 7.48560i 0.146608 + 0.253932i
\(870\) 0 0
\(871\) −11.8897 + 20.5935i −0.402866 + 0.697784i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −14.6227 25.3273i −0.493774 0.855242i 0.506200 0.862416i \(-0.331050\pi\)
−0.999974 + 0.00717380i \(0.997716\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −37.2768 −1.25589 −0.627944 0.778259i \(-0.716103\pi\)
−0.627944 + 0.778259i \(0.716103\pi\)
\(882\) 0 0
\(883\) −56.9436 −1.91630 −0.958152 0.286260i \(-0.907588\pi\)
−0.958152 + 0.286260i \(0.907588\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −4.96127 8.59316i −0.166583 0.288530i 0.770633 0.637279i \(-0.219940\pi\)
−0.937216 + 0.348749i \(0.886607\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 17.6643 30.5955i 0.591114 1.02384i
\(894\) 0 0
\(895\) −33.2431 57.5787i −1.11119 1.92465i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 23.3569 0.778997
\(900\) 0 0
\(901\) 4.93724 0.164483
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 2.64664 + 4.58412i 0.0879774 + 0.152381i
\(906\) 0 0
\(907\) 12.2887 21.2847i 0.408040 0.706747i −0.586630 0.809855i \(-0.699546\pi\)
0.994670 + 0.103109i \(0.0328789\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −9.73496 + 16.8614i −0.322534 + 0.558645i −0.981010 0.193957i \(-0.937868\pi\)
0.658476 + 0.752601i \(0.271201\pi\)
\(912\) 0 0
\(913\) −1.10707 1.91749i −0.0366385 0.0634598i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −13.2398 −0.436742 −0.218371 0.975866i \(-0.570074\pi\)
−0.218371 + 0.975866i \(0.570074\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −3.89017 6.73798i −0.128047 0.221783i
\(924\) 0 0
\(925\) −55.2247 + 95.6519i −1.81578 + 3.14502i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 15.8682 27.4845i 0.520618 0.901737i −0.479095 0.877763i \(-0.659035\pi\)
0.999713 0.0239734i \(-0.00763170\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 90.8398 2.97078
\(936\) 0 0
\(937\) −13.5019 −0.441087 −0.220543 0.975377i \(-0.570783\pi\)
−0.220543 + 0.975377i \(0.570783\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −19.8286 34.3441i −0.646394 1.11959i −0.983978 0.178291i \(-0.942943\pi\)
0.337584 0.941295i \(-0.390390\pi\)
\(942\) 0 0
\(943\) −0.253944 + 0.439845i −0.00826957 + 0.0143233i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −30.5172 + 52.8573i −0.991675 + 1.71763i −0.384325 + 0.923198i \(0.625566\pi\)
−0.607350 + 0.794434i \(0.707768\pi\)
\(948\) 0 0
\(949\) −5.99464 10.3830i −0.194594 0.337047i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −5.22726 −0.169328 −0.0846638 0.996410i \(-0.526982\pi\)
−0.0846638 + 0.996410i \(0.526982\pi\)
\(954\) 0 0
\(955\) −69.6010 −2.25224
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 12.8653 22.2833i 0.415009 0.718817i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −25.3269 + 43.8674i −0.815301 + 1.41214i
\(966\) 0 0
\(967\) 10.2035 + 17.6729i 0.328121 + 0.568323i 0.982139 0.188156i \(-0.0602511\pi\)
−0.654018 + 0.756479i \(0.726918\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −1.17880 −0.0378296 −0.0189148 0.999821i \(-0.506021\pi\)
−0.0189148 + 0.999821i \(0.506021\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 4.10487 + 7.10984i 0.131326 + 0.227464i 0.924188 0.381938i \(-0.124743\pi\)
−0.792862 + 0.609402i \(0.791410\pi\)
\(978\) 0 0
\(979\) 26.7342 46.3049i 0.854427 1.47991i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −0.753481 + 1.30507i −0.0240323 + 0.0416252i −0.877791 0.479043i \(-0.840984\pi\)
0.853759 + 0.520668i \(0.174317\pi\)
\(984\) 0 0
\(985\) −12.3875 21.4558i −0.394698 0.683638i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 2.80777 0.0892820
\(990\) 0 0
\(991\) 32.4459 1.03068 0.515339 0.856987i \(-0.327666\pi\)
0.515339 + 0.856987i \(0.327666\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 45.0608 + 78.0476i 1.42852 + 2.47428i
\(996\) 0 0
\(997\) 6.26198 10.8461i 0.198319 0.343498i −0.749665 0.661818i \(-0.769785\pi\)
0.947983 + 0.318320i \(0.103119\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5292.2.j.i.3529.12 24
3.2 odd 2 1764.2.j.i.1177.10 yes 24
7.2 even 3 5292.2.i.j.2125.12 24
7.3 odd 6 5292.2.l.j.3313.12 24
7.4 even 3 5292.2.l.j.3313.1 24
7.5 odd 6 5292.2.i.j.2125.1 24
7.6 odd 2 inner 5292.2.j.i.3529.1 24
9.4 even 3 inner 5292.2.j.i.1765.12 24
9.5 odd 6 1764.2.j.i.589.10 yes 24
21.2 odd 6 1764.2.i.j.1537.7 24
21.5 even 6 1764.2.i.j.1537.6 24
21.11 odd 6 1764.2.l.j.961.2 24
21.17 even 6 1764.2.l.j.961.11 24
21.20 even 2 1764.2.j.i.1177.3 yes 24
63.4 even 3 5292.2.i.j.1549.12 24
63.5 even 6 1764.2.l.j.949.11 24
63.13 odd 6 inner 5292.2.j.i.1765.1 24
63.23 odd 6 1764.2.l.j.949.2 24
63.31 odd 6 5292.2.i.j.1549.1 24
63.32 odd 6 1764.2.i.j.373.7 24
63.40 odd 6 5292.2.l.j.361.12 24
63.41 even 6 1764.2.j.i.589.3 24
63.58 even 3 5292.2.l.j.361.1 24
63.59 even 6 1764.2.i.j.373.6 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1764.2.i.j.373.6 24 63.59 even 6
1764.2.i.j.373.7 24 63.32 odd 6
1764.2.i.j.1537.6 24 21.5 even 6
1764.2.i.j.1537.7 24 21.2 odd 6
1764.2.j.i.589.3 24 63.41 even 6
1764.2.j.i.589.10 yes 24 9.5 odd 6
1764.2.j.i.1177.3 yes 24 21.20 even 2
1764.2.j.i.1177.10 yes 24 3.2 odd 2
1764.2.l.j.949.2 24 63.23 odd 6
1764.2.l.j.949.11 24 63.5 even 6
1764.2.l.j.961.2 24 21.11 odd 6
1764.2.l.j.961.11 24 21.17 even 6
5292.2.i.j.1549.1 24 63.31 odd 6
5292.2.i.j.1549.12 24 63.4 even 3
5292.2.i.j.2125.1 24 7.5 odd 6
5292.2.i.j.2125.12 24 7.2 even 3
5292.2.j.i.1765.1 24 63.13 odd 6 inner
5292.2.j.i.1765.12 24 9.4 even 3 inner
5292.2.j.i.3529.1 24 7.6 odd 2 inner
5292.2.j.i.3529.12 24 1.1 even 1 trivial
5292.2.l.j.361.1 24 63.58 even 3
5292.2.l.j.361.12 24 63.40 odd 6
5292.2.l.j.3313.1 24 7.4 even 3
5292.2.l.j.3313.12 24 7.3 odd 6