Label |
Polynomial |
Degree |
Signature |
Discriminant |
Ram. prime count |
Root discriminant |
Galois root discriminant |
CM field |
Galois |
Monogenic |
Galois group |
Class group |
Unit group torsion |
Unit group rank |
Regulator |
12.6.10513415548928.1 |
$x^{12} - 2 x^{11} - x^{10} + 4 x^{9} - 11 x^{8} + 20 x^{7} - 12 x^{6} + 8 x^{4} - 4 x^{3} - x^{2} - 2 x + 1$ |
$12$ |
[6,3] |
$-\,2^{12}\cdot 67^{2}\cdot 83^{3}$ |
$3$ |
$12.1659301654$ |
$300.5745763472249$ |
|
|
? |
$C_3\wr S_4$ (as 12T231) |
trivial |
$2$ |
$8$ |
$69.1711510134$ |
12.6.158072000000000.1 |
$x^{12} - 4 x^{9} - 5 x^{8} + 6 x^{6} + 10 x^{5} + 5 x^{4} - 4 x^{3} - 5 x^{2} + 1$ |
$12$ |
[6,3] |
$-\,2^{12}\cdot 5^{9}\cdot 19759$ |
$3$ |
$15.248878791$ |
$940.0262460954837$ |
|
|
✓ |
$S_3\wr C_4$ (as 12T264) |
trivial |
$2$ |
$8$ |
$356.187361644$ |
12.2.3792912694161408.1 |
$x^{12} - 11 x^{6} - 18 x^{3} + 1$ |
$12$ |
[2,5] |
$-\,2^{12}\cdot 3^{9}\cdot 19^{6}$ |
$3$ |
$19.8722818047$ |
$51.306673774406136$ |
|
|
? |
$C_3^3:S_4$ (as 12T178) |
trivial |
$2$ |
$6$ |
$1280.93521147$ |
12.12.7340688973975552.1 |
$x^{12} - 13 x^{10} + 65 x^{8} - 156 x^{6} + 182 x^{4} - 91 x^{2} + 13$ |
$12$ |
[12,0] |
$2^{12}\cdot 13^{11}$ |
$2$ |
$20.9963950402$ |
$20.99639504015924$ |
|
✓ |
✓ |
$C_{12}$ (as 12T1) |
trivial |
$2$ |
$11$ |
$7070.23231014$ |
12.12.13086728000000000.1 |
$x^{12} - 2 x^{11} - 15 x^{10} + 36 x^{9} + 62 x^{8} - 206 x^{7} + 2 x^{6} + 366 x^{5} - 298 x^{4} + 28 x^{3} + 38 x^{2} - 12 x + 1$ |
$12$ |
[12,0] |
$2^{12}\cdot 5^{9}\cdot 1279^{2}$ |
$3$ |
$22.0327778864$ |
$787.960647800511$ |
|
|
? |
$C_3\wr C_4$ (as 12T131) |
trivial |
$2$ |
$11$ |
$9881.73314061$ |
12.12.46118408000000000.1 |
$x^{12} - 4 x^{11} - 17 x^{10} + 74 x^{9} + 74 x^{8} - 412 x^{7} - 23 x^{6} + 734 x^{5} - 175 x^{4} - 324 x^{3} + 90 x^{2} + 22 x + 1$ |
$12$ |
[12,0] |
$2^{12}\cdot 5^{9}\cdot 7^{8}$ |
$3$ |
$24.4712521652$ |
$24.471252165227245$ |
|
✓ |
? |
$C_{12}$ (as 12T1) |
trivial |
$2$ |
$11$ |
$17863.7216242$ |
12.12.344...000.1 |
$x^{12} - 27 x^{10} - 4 x^{9} + 234 x^{8} + 36 x^{7} - 737 x^{6} + 72 x^{5} + 795 x^{4} - 336 x^{3} - 96 x^{2} + 42 x + 1$ |
$12$ |
[12,0] |
$2^{12}\cdot 3^{16}\cdot 5^{9}$ |
$3$ |
$28.934712525$ |
$28.934712524984697$ |
|
✓ |
? |
$C_{12}$ (as 12T1) |
trivial |
$2$ |
$11$ |
$66792.5779024$ |
12.0.225...000.1 |
$x^{12} + 35 x^{10} + 455 x^{8} + 2800 x^{6} + 8575 x^{4} + 12250 x^{2} + 6125$ |
$12$ |
[0,6] |
$2^{12}\cdot 5^{9}\cdot 7^{10}$ |
$3$ |
$33.8458843071$ |
$33.8458843070916$ |
✓ |
✓ |
? |
$C_{12}$ (as 12T1) |
$[2, 26]$ |
$2$ |
$5$ |
$104.882003477$ |
12.0.309...000.1 |
$x^{12} + 30 x^{10} + 315 x^{8} + 1500 x^{6} + 3375 x^{4} + 3375 x^{2} + 1125$ |
$12$ |
[0,6] |
$2^{12}\cdot 3^{18}\cdot 5^{9}$ |
$3$ |
$34.7487655586$ |
$34.748765558648074$ |
✓ |
✓ |
? |
$C_{12}$ (as 12T1) |
$[10, 10]$ |
$2$ |
$5$ |
$201.000834787$ |
12.0.535...408.1 |
$x^{12} + 39 x^{10} + 585 x^{8} + 4212 x^{6} + 14742 x^{4} + 22113 x^{2} + 9477$ |
$12$ |
[0,6] |
$2^{12}\cdot 3^{6}\cdot 13^{11}$ |
$3$ |
$36.3668229853$ |
$36.36682298534298$ |
✓ |
✓ |
? |
$C_{12}$ (as 12T1) |
$[2, 2, 26]$ |
$2$ |
$5$ |
$120.784031363$ |
12.12.652...000.1 |
$x^{12} - 4 x^{11} - 25 x^{10} + 90 x^{9} + 206 x^{8} - 660 x^{7} - 511 x^{6} + 2010 x^{5} - 219 x^{4} - 2040 x^{3} + 1290 x^{2} - 54 x - 79$ |
$12$ |
[12,0] |
$2^{12}\cdot 5^{9}\cdot 13^{8}$ |
$3$ |
$36.9731455505$ |
$36.9731455504557$ |
|
✓ |
? |
$C_{12}$ (as 12T1) |
trivial |
$2$ |
$11$ |
$344057.048857$ |
12.4.652...000.1 |
$x^{12} + 10 x^{10} - 25 x^{8} - 400 x^{6} - 525 x^{4} + 1875 x^{2} + 3125$ |
$12$ |
[4,4] |
$2^{12}\cdot 5^{9}\cdot 13^{8}$ |
$3$ |
$36.9731455504557$ |
$36.9731455504557$ |
|
|
? |
$C_4\times A_4$ (as 12T29) |
$[2, 2]$ |
$2$ |
$7$ |
$19129.88218219619$ |
12.0.336...000.1 |
$x^{12} - 4 x^{11} + 43 x^{10} - 126 x^{9} + 814 x^{8} - 1852 x^{7} + 8517 x^{6} - 14386 x^{5} + 51505 x^{4} - 61084 x^{3} + 200870 x^{2} - 138098 x + 354061$ |
$12$ |
[0,6] |
$2^{12}\cdot 3^{6}\cdot 5^{9}\cdot 7^{8}$ |
$4$ |
$42.385452075$ |
$42.385452075003485$ |
✓ |
✓ |
? |
$C_{12}$ (as 12T1) |
$[2, 194]$ |
$2$ |
$5$ |
$104.882003477$ |
12.12.114...000.1 |
$x^{12} - 65 x^{10} + 1625 x^{8} - 19500 x^{6} + 113750 x^{4} - 284375 x^{2} + 203125$ |
$12$ |
[12,0] |
$2^{12}\cdot 5^{6}\cdot 13^{11}$ |
$3$ |
$46.9493665922$ |
$46.949366592235485$ |
|
✓ |
? |
$C_{12}$ (as 12T1) |
$[2]$ |
$2$ |
$11$ |
$398284.40925$ |
12.12.135...000.1 |
$x^{12} - 4 x^{11} - 33 x^{10} + 146 x^{9} + 266 x^{8} - 1508 x^{7} + x^{6} + 3766 x^{5} - 487 x^{4} - 2748 x^{3} - 38 x^{2} + 418 x - 19$ |
$12$ |
[12,0] |
$2^{12}\cdot 5^{9}\cdot 19^{8}$ |
$3$ |
$47.6167663914$ |
$47.6167663913628$ |
|
✓ |
? |
$C_{12}$ (as 12T1) |
trivial |
$2$ |
$11$ |
$805764.871501$ |
12.12.250...208.1 |
$x^{12} - 4 x^{11} - 41 x^{10} + 154 x^{9} + 522 x^{8} - 1820 x^{7} - 2623 x^{6} + 8286 x^{5} + 5033 x^{4} - 13524 x^{3} - 2814 x^{2} + 4646 x + 937$ |
$12$ |
[12,0] |
$2^{12}\cdot 7^{8}\cdot 13^{9}$ |
$3$ |
$50.1055926379$ |
$50.105592637896386$ |
|
✓ |
? |
$C_{12}$ (as 12T1) |
trivial |
$2$ |
$11$ |
$2340092.99799$ |
12.12.728...648.1 |
$x^{12} - 37 x^{10} + 407 x^{8} - 1628 x^{6} + 2035 x^{4} - 518 x^{2} + 37$ |
$12$ |
[12,0] |
$2^{12}\cdot 37^{11}$ |
$2$ |
$54.7706938502$ |
$54.77069385019034$ |
|
✓ |
|
$C_{12}$ (as 12T1) |
trivial |
$2$ |
$11$ |
$6018405.60863$ |
12.0.863...248.1 |
$x^{12} + 91 x^{10} + 3185 x^{8} + 53508 x^{6} + 436982 x^{4} + 1529437 x^{2} + 1529437$ |
$12$ |
[0,6] |
$2^{12}\cdot 7^{6}\cdot 13^{11}$ |
$3$ |
$55.5512397051$ |
$55.55123970513137$ |
✓ |
✓ |
? |
$C_{12}$ (as 12T1) |
$[10, 130]$ |
$2$ |
$5$ |
$120.784031363$ |
12.12.110...000.1 |
$x^{12} - 65 x^{10} + 1235 x^{8} - 9100 x^{6} + 29575 x^{4} - 42250 x^{2} + 21125$ |
$12$ |
[12,0] |
$2^{12}\cdot 5^{9}\cdot 13^{10}$ |
$3$ |
$56.6948519892$ |
$56.69485198918346$ |
|
✓ |
? |
$C_{12}$ (as 12T1) |
$[2]$ |
$2$ |
$11$ |
$3376001.19524$ |
12.12.164...000.1 |
$x^{12} - 105 x^{10} + 4095 x^{8} - 75600 x^{6} + 694575 x^{4} - 2976750 x^{2} + 4465125$ |
$12$ |
[12,0] |
$2^{12}\cdot 3^{6}\cdot 5^{9}\cdot 7^{10}$ |
$4$ |
$58.622791247$ |
$58.6227912469808$ |
|
✓ |
? |
$C_{12}$ (as 12T1) |
$[2, 2]$ |
$2$ |
$11$ |
$1302741.02442$ |
12.12.186...568.1 |
$x^{12} - 51 x^{10} - 4 x^{9} + 834 x^{8} + 36 x^{7} - 5497 x^{6} - 264 x^{5} + 14475 x^{4} + 832 x^{3} - 13128 x^{2} + 714 x + 2809$ |
$12$ |
[12,0] |
$2^{12}\cdot 3^{16}\cdot 13^{9}$ |
$3$ |
$59.2446561003$ |
$59.244656100255526$ |
|
✓ |
? |
$C_{12}$ (as 12T1) |
trivial |
$2$ |
$11$ |
$4472033.79189$ |
12.0.475...000.1 |
$x^{12} - 4 x^{11} + 35 x^{10} - 110 x^{9} + 706 x^{8} - 1460 x^{7} + 7389 x^{6} - 12230 x^{5} + 51061 x^{4} - 30480 x^{3} + 303670 x^{2} + 57346 x + 710221$ |
$12$ |
[0,6] |
$2^{12}\cdot 3^{6}\cdot 5^{9}\cdot 13^{8}$ |
$4$ |
$64.039366609$ |
$64.03936660902843$ |
✓ |
✓ |
? |
$C_{12}$ (as 12T1) |
$[2, 2, 2, 122]$ |
$2$ |
$5$ |
$615.54450504$ |
12.0.122...192.1 |
$x^{12} + 91 x^{10} + 2639 x^{8} + 28392 x^{6} + 124215 x^{4} + 215306 x^{2} + 107653$ |
$12$ |
[0,6] |
$2^{12}\cdot 7^{10}\cdot 13^{9}$ |
$3$ |
$69.3004215767$ |
$69.30042157672129$ |
✓ |
✓ |
? |
$C_{12}$ (as 12T1) |
$[2, 2, 26, 26]$ |
$2$ |
$5$ |
$562.775330001$ |
12.0.130...672.1 |
$x^{12} + 143 x^{10} + 7865 x^{8} + 207636 x^{6} + 2664662 x^{4} + 14655641 x^{2} + 23030293$ |
$12$ |
[0,6] |
$2^{12}\cdot 11^{6}\cdot 13^{11}$ |
$3$ |
$69.6371642983$ |
$69.63716429828729$ |
✓ |
✓ |
? |
$C_{12}$ (as 12T1) |
$[38, 190]$ |
$2$ |
$5$ |
$120.784031363$ |
12.0.168...112.1 |
$x^{12} + 78 x^{10} + 1755 x^{8} + 14196 x^{6} + 47151 x^{4} + 59319 x^{2} + 19773$ |
$12$ |
[0,6] |
$2^{12}\cdot 3^{18}\cdot 13^{9}$ |
$3$ |
$71.1490969075$ |
$71.14909690749026$ |
✓ |
✓ |
? |
$C_{12}$ (as 12T1) |
$[2, 2, 362]$ |
$2$ |
$5$ |
$1744.53950676$ |
12.12.280...000.1 |
$x^{12} - 4 x^{11} - 57 x^{10} + 146 x^{9} + 1238 x^{8} - 1388 x^{7} - 11111 x^{6} + 2146 x^{5} + 36221 x^{4} + 11712 x^{3} - 19262 x^{2} - 5282 x + 101$ |
$12$ |
[12,0] |
$2^{12}\cdot 5^{9}\cdot 37^{8}$ |
$3$ |
$74.2549337521$ |
$74.25493375210176$ |
|
✓ |
? |
$C_{12}$ (as 12T1) |
trivial |
$2$ |
$11$ |
$10882467.7706$ |
12.0.405...000.1 |
$x^{12} + 93 x^{10} - 4 x^{9} + 3834 x^{8} + 36 x^{7} + 86663 x^{6} + 3672 x^{5} + 1136355 x^{4} + 125824 x^{3} + 8904264 x^{2} + 1547082 x + 31597721$ |
$12$ |
[0,6] |
$2^{12}\cdot 3^{16}\cdot 5^{9}\cdot 7^{6}$ |
$4$ |
$76.5540535983$ |
$76.5540535982553$ |
✓ |
✓ |
? |
$C_{12}$ (as 12T1) |
$[2, 2306]$ |
$2$ |
$5$ |
$201.000834787$ |
12.12.423...152.2 |
$x^{12} - 65 x^{10} + 1365 x^{8} - 10400 x^{6} + 31486 x^{4} - 36387 x^{2} + 9477$ |
$12$ |
[12,0] |
$2^{12}\cdot 7^{8}\cdot 13^{11}$ |
$3$ |
$76.8322282604$ |
$76.83222826035271$ |
|
✓ |
|
$C_{12}$ (as 12T1) |
$[3]$ |
$2$ |
$11$ |
$9476244.81775$ |
12.0.490...000.1 |
$x^{12} + 95 x^{10} + 2375 x^{8} + 19000 x^{6} + 63175 x^{4} + 90250 x^{2} + 45125$ |
$12$ |
[0,6] |
$2^{12}\cdot 5^{9}\cdot 19^{10}$ |
$3$ |
$77.7831451339$ |
$77.78314513392147$ |
✓ |
✓ |
? |
$C_{12}$ (as 12T1) |
$[2, 2, 292]$ |
$2$ |
$5$ |
$1234.55163261$ |
12.0.817...000.1 |
$x^{12} - 4 x^{11} + 163 x^{10} - 526 x^{9} + 10934 x^{8} - 27772 x^{7} + 382237 x^{6} - 724306 x^{5} + 7349105 x^{4} - 9390924 x^{3} + 76289310 x^{2} - 50833538 x + 338937061$ |
$12$ |
[0,6] |
$2^{12}\cdot 5^{9}\cdot 7^{8}\cdot 11^{6}$ |
$4$ |
$81.1619615822$ |
$81.16196158223093$ |
✓ |
✓ |
? |
$C_{12}$ (as 12T1) |
$[2, 2, 4034]$ |
$2$ |
$5$ |
$104.882003477$ |
12.0.836...000.1 |
$x^{12} + 195 x^{10} + 14625 x^{8} + 526500 x^{6} + 9213750 x^{4} + 69103125 x^{2} + 148078125$ |
$12$ |
[0,6] |
$2^{12}\cdot 3^{6}\cdot 5^{6}\cdot 13^{11}$ |
$4$ |
$81.3186883209$ |
$81.31868832092874$ |
✓ |
✓ |
? |
$C_{12}$ (as 12T1) |
$[2, 2, 2, 2, 2, 436]$ |
$2$ |
$5$ |
$120.784031363$ |
12.0.990...000.1 |
$x^{12} - 4 x^{11} + 27 x^{10} - 54 x^{9} + 526 x^{8} - 1668 x^{7} + 7901 x^{6} - 11754 x^{5} + 47433 x^{4} - 126788 x^{3} + 653942 x^{2} - 1181382 x + 1874521$ |
$12$ |
[0,6] |
$2^{12}\cdot 3^{6}\cdot 5^{9}\cdot 19^{8}$ |
$4$ |
$82.474658682$ |
$82.47465868197851$ |
✓ |
✓ |
|
$C_{12}$ (as 12T1) |
$[6, 582]$ |
$2$ |
$5$ |
$1234.55163261$ |
12.12.177...088.1 |
$x^{12} - 221 x^{10} + 18785 x^{8} - 766428 x^{6} + 15200822 x^{4} - 129206987 x^{2} + 313788397$ |
$12$ |
[12,0] |
$2^{12}\cdot 13^{11}\cdot 17^{6}$ |
$3$ |
$86.5703545078$ |
$86.5703545077713$ |
|
✓ |
? |
$C_{12}$ (as 12T1) |
$[2, 2]$ |
$2$ |
$11$ |
$13359911.8716$ |
12.12.178...456.1 |
$x^{12} - 61 x^{10} + 915 x^{8} - 5368 x^{6} + 13603 x^{4} - 14274 x^{2} + 4941$ |
$12$ |
[12,0] |
$2^{12}\cdot 61^{11}$ |
$2$ |
$86.6128530129$ |
$86.61285301294268$ |
|
✓ |
|
$C_{12}$ (as 12T1) |
trivial |
$2$ |
$11$ |
$3137114998.37$ |
12.0.182...632.1 |
$x^{12} - 4 x^{11} + 115 x^{10} - 366 x^{9} + 4942 x^{8} - 12220 x^{7} + 89469 x^{6} - 159154 x^{5} + 549577 x^{4} - 617452 x^{3} + 2636654 x^{2} - 1957730 x + 5710069$ |
$12$ |
[0,6] |
$2^{12}\cdot 3^{6}\cdot 7^{8}\cdot 13^{9}$ |
$4$ |
$86.7854321922$ |
$86.78543219218562$ |
✓ |
✓ |
? |
$C_{12}$ (as 12T1) |
$[2, 2, 2, 2, 314]$ |
$2$ |
$5$ |
$562.775330001$ |
12.12.222...000.1 |
$x^{12} - 4 x^{11} - 197 x^{10} + 674 x^{9} + 15134 x^{8} - 42172 x^{7} - 579563 x^{6} + 1221134 x^{5} + 11583665 x^{4} - 16161084 x^{3} - 112575690 x^{2} + 75831982 x + 400281181$ |
$12$ |
[12,0] |
$2^{12}\cdot 5^{9}\cdot 7^{8}\cdot 13^{6}$ |
$4$ |
$88.2323544565$ |
$88.232354456536$ |
|
✓ |
? |
$C_{12}$ (as 12T1) |
$[2]$ |
$2$ |
$11$ |
$16251567.361$ |
12.12.315...992.2 |
$x^{12} - 78 x^{10} + 1755 x^{8} - 15496 x^{6} + 55731 x^{4} - 74529 x^{2} + 31213$ |
$12$ |
[12,0] |
$2^{12}\cdot 3^{16}\cdot 13^{11}$ |
$3$ |
$90.846125174$ |
$90.84612517402279$ |
|
✓ |
? |
$C_{12}$ (as 12T1) |
$[3]$ |
$2$ |
$11$ |
$41837907.2642$ |
12.12.342...624.1 |
$x^{12} - 4 x^{11} - 89 x^{10} + 314 x^{9} + 2570 x^{8} - 7708 x^{7} - 28175 x^{6} + 69470 x^{5} + 102233 x^{4} - 198132 x^{3} - 53166 x^{2} + 75334 x + 17401$ |
$12$ |
[12,0] |
$2^{12}\cdot 7^{8}\cdot 29^{9}$ |
$3$ |
$91.4591556016$ |
$91.45915560159122$ |
|
✓ |
? |
$C_{12}$ (as 12T1) |
trivial |
$2$ |
$11$ |
$50981026.6185$ |
12.0.345...312.1 |
$x^{12} + 247 x^{10} + 23465 x^{8} + 1070004 x^{6} + 23718422 x^{4} + 225325009 x^{2} + 611596453$ |
$12$ |
[0,6] |
$2^{12}\cdot 13^{11}\cdot 19^{6}$ |
$3$ |
$91.5211641587$ |
$91.52116415871275$ |
✓ |
✓ |
? |
$C_{12}$ (as 12T1) |
$[170, 170]$ |
$2$ |
$5$ |
$120.784031363$ |
12.12.364...000.1 |
$x^{12} - 210 x^{10} + 15435 x^{8} - 514500 x^{6} + 8103375 x^{4} - 56723625 x^{2} + 132355125$ |
$12$ |
[12,0] |
$2^{12}\cdot 3^{18}\cdot 5^{9}\cdot 7^{6}$ |
$4$ |
$91.9365920347$ |
$91.93659203466923$ |
|
✓ |
? |
$C_{12}$ (as 12T1) |
$[2, 2]$ |
$2$ |
$11$ |
$10795763.9489$ |
12.0.531...392.1 |
$x^{12} + 111 x^{10} + 3663 x^{8} + 43956 x^{6} + 164835 x^{4} + 125874 x^{2} + 26973$ |
$12$ |
[0,6] |
$2^{12}\cdot 3^{6}\cdot 37^{11}$ |
$3$ |
$94.8656245143$ |
$94.86562451432992$ |
✓ |
✓ |
? |
$C_{12}$ (as 12T1) |
$[2, 2, 436]$ |
$2$ |
$5$ |
$2518.23324049$ |
12.0.610...000.1 |
$x^{12} + 153 x^{10} - 4 x^{9} + 9954 x^{8} + 36 x^{7} + 346123 x^{6} + 9792 x^{5} + 6801015 x^{4} + 478824 x^{3} + 75200124 x^{2} + 8319642 x + 367216741$ |
$12$ |
[0,6] |
$2^{12}\cdot 3^{16}\cdot 5^{9}\cdot 11^{6}$ |
$4$ |
$95.9655848622$ |
$95.96558486217113$ |
✓ |
✓ |
? |
$C_{12}$ (as 12T1) |
$[2, 2, 4394]$ |
$2$ |
$5$ |
$201.000834787$ |
12.12.629...792.1 |
$x^{12} - 273 x^{10} + 28665 x^{8} - 1444716 x^{6} + 35395542 x^{4} - 371653191 x^{2} + 1114959573$ |
$12$ |
[12,0] |
$2^{12}\cdot 3^{6}\cdot 7^{6}\cdot 13^{11}$ |
$4$ |
$96.2175695927$ |
$96.21756959272508$ |
|
✓ |
? |
$C_{12}$ (as 12T1) |
$[2, 2]$ |
$2$ |
$11$ |
$13423777.933$ |
12.12.737...128.1 |
$x^{12} - 4 x^{11} - 57 x^{10} + 226 x^{9} + 906 x^{8} - 3428 x^{7} - 5159 x^{6} + 18006 x^{5} + 10833 x^{4} - 34220 x^{3} - 4958 x^{2} + 20914 x - 3371$ |
$12$ |
[12,0] |
$2^{12}\cdot 13^{9}\cdot 19^{8}$ |
$3$ |
$97.4966987153$ |
$97.49669871530843$ |
|
✓ |
? |
$C_{12}$ (as 12T1) |
trivial |
$2$ |
$11$ |
$59483998.235$ |
12.0.767...000.1 |
$x^{12} - 4 x^{11} + 95 x^{10} - 310 x^{9} + 4086 x^{8} - 9940 x^{7} + 95129 x^{6} - 167270 x^{5} + 1290821 x^{4} - 1290920 x^{3} + 10911490 x^{2} - 2712134 x + 42149801$ |
$12$ |
[0,6] |
$2^{12}\cdot 5^{9}\cdot 7^{6}\cdot 13^{8}$ |
$4$ |
$97.8217483143$ |
$97.8217483143001$ |
✓ |
✓ |
? |
$C_{12}$ (as 12T1) |
$[2, 2, 2, 2402]$ |
$2$ |
$5$ |
$615.54450504$ |
12.0.803...000.1 |
$x^{12} + 195 x^{10} + 11115 x^{8} + 245700 x^{6} + 2395575 x^{4} + 10266750 x^{2} + 15400125$ |
$12$ |
[0,6] |
$2^{12}\cdot 3^{6}\cdot 5^{9}\cdot 13^{10}$ |
$4$ |
$98.1983641729$ |
$98.19836417286318$ |
✓ |
✓ |
? |
$C_{12}$ (as 12T1) |
$[2, 2, 2, 2, 1570]$ |
$2$ |
$5$ |
$615.54450504$ |
12.0.108...728.1 |
$x^{12} + 299 x^{10} + 34385 x^{8} + 1898052 x^{6} + 50931062 x^{4} + 585707213 x^{2} + 1924466557$ |
$12$ |
[0,6] |
$2^{12}\cdot 13^{11}\cdot 23^{6}$ |
$3$ |
$100.69517321$ |
$100.69517320952251$ |
✓ |
✓ |
? |
$C_{12}$ (as 12T1) |
$[2, 4, 4516]$ |
$2$ |
$5$ |
$120.784031363$ |
12.12.111...000.1 |
$x^{12} - 4 x^{11} - 257 x^{10} + 874 x^{9} + 25914 x^{8} - 71452 x^{7} - 1309383 x^{6} + 2723614 x^{5} + 34749905 x^{4} - 47923684 x^{3} - 453217430 x^{2} + 304232502 x + 2215713361$ |
$12$ |
[12,0] |
$2^{12}\cdot 5^{9}\cdot 7^{8}\cdot 17^{6}$ |
$4$ |
$100.897557468$ |
$100.89755746835681$ |
|
✓ |
? |
$C_{12}$ (as 12T1) |
$[2]$ |
$2$ |
$11$ |
$54495459.0657$ |
12.12.153...000.1 |
$x^{12} - 4 x^{11} - 89 x^{10} + 322 x^{9} + 2678 x^{8} - 8572 x^{7} - 32455 x^{6} + 88578 x^{5} + 174741 x^{4} - 362144 x^{3} - 421366 x^{2} + 465750 x + 396581$ |
$12$ |
[12,0] |
$2^{12}\cdot 5^{9}\cdot 61^{8}$ |
$3$ |
$103.628065018$ |
$103.62806501849069$ |
|
✓ |
? |
$C_{12}$ (as 12T1) |
trivial |
$2$ |
$11$ |
$104353287.037$ |
12.12.166...000.1 |
$x^{12} - 207 x^{10} - 4 x^{9} + 16434 x^{8} + 36 x^{7} - 637037 x^{6} + 16272 x^{5} + 12549855 x^{4} - 755976 x^{3} - 115834236 x^{2} + 10394682 x + 366872221$ |
$12$ |
[12,0] |
$2^{12}\cdot 3^{16}\cdot 5^{9}\cdot 13^{6}$ |
$4$ |
$104.32558965$ |
$104.32558964964244$ |
|
✓ |
? |
$C_{12}$ (as 12T1) |
$[2]$ |
$2$ |
$11$ |
$60912458.8577$ |