Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1859,4,Mod(1,1859)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1859, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1859.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 1859 = 11 \cdot 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 1859.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(109.684550701\) |
Analytic rank: | \(1\) |
Dimension: | \(39\) |
Twist minimal: | yes |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 | −5.49304 | −8.44279 | 22.1734 | 19.5698 | 46.3765 | 18.0683 | −77.8552 | 44.2807 | −107.497 | ||||||||||||||||||
1.2 | −5.13075 | 4.07791 | 18.3246 | 9.39838 | −20.9227 | 18.3779 | −52.9729 | −10.3707 | −48.2207 | ||||||||||||||||||
1.3 | −5.06016 | −3.81429 | 17.6052 | 13.6056 | 19.3009 | −15.5193 | −48.6040 | −12.4512 | −68.8465 | ||||||||||||||||||
1.4 | −4.86773 | −7.77085 | 15.6948 | −6.79003 | 37.8264 | 12.1965 | −37.4563 | 33.3861 | 33.0520 | ||||||||||||||||||
1.5 | −4.62264 | 0.223641 | 13.3688 | −5.07801 | −1.03381 | 13.5633 | −24.8183 | −26.9500 | 23.4738 | ||||||||||||||||||
1.6 | −3.79953 | 4.80997 | 6.43642 | 1.29866 | −18.2756 | −1.62019 | 5.94086 | −3.86420 | −4.93429 | ||||||||||||||||||
1.7 | −3.55980 | −3.90055 | 4.67220 | −19.3357 | 13.8852 | 18.4314 | 11.8463 | −11.7857 | 68.8313 | ||||||||||||||||||
1.8 | −3.48032 | −2.00729 | 4.11265 | −5.42082 | 6.98601 | −27.8265 | 13.5292 | −22.9708 | 18.8662 | ||||||||||||||||||
1.9 | −3.20015 | −9.16277 | 2.24095 | −10.3410 | 29.3222 | 5.43136 | 18.4298 | 56.9564 | 33.0929 | ||||||||||||||||||
1.10 | −2.90122 | 6.23880 | 0.417058 | 15.8001 | −18.1001 | −9.46578 | 21.9998 | 11.9227 | −45.8396 | ||||||||||||||||||
1.11 | −2.83656 | 8.17655 | 0.0460816 | −2.30923 | −23.1933 | 3.15838 | 22.5618 | 39.8559 | 6.55028 | ||||||||||||||||||
1.12 | −2.40771 | −4.57703 | −2.20293 | 18.4699 | 11.0201 | 11.7306 | 24.5657 | −6.05084 | −44.4701 | ||||||||||||||||||
1.13 | −2.02818 | −9.13071 | −3.88650 | −2.96871 | 18.5187 | −15.4258 | 24.1079 | 56.3698 | 6.02107 | ||||||||||||||||||
1.14 | −1.78462 | −0.436688 | −4.81514 | 13.8087 | 0.779321 | −6.26730 | 22.8701 | −26.8093 | −24.6433 | ||||||||||||||||||
1.15 | −1.63650 | −2.06438 | −5.32187 | −14.3735 | 3.37836 | −27.7797 | 21.8012 | −22.7383 | 23.5223 | ||||||||||||||||||
1.16 | −1.18198 | −2.60560 | −6.60292 | −7.12046 | 3.07976 | 33.7625 | 17.2604 | −20.2109 | 8.41624 | ||||||||||||||||||
1.17 | −1.12752 | 9.49735 | −6.72870 | 7.22240 | −10.7085 | −1.17565 | 16.6069 | 63.1996 | −8.14341 | ||||||||||||||||||
1.18 | −1.00172 | −3.02985 | −6.99655 | 20.0383 | 3.03507 | −1.63570 | 15.0224 | −17.8200 | −20.0728 | ||||||||||||||||||
1.19 | −0.532806 | 1.85539 | −7.71612 | −18.1107 | −0.988563 | −20.2803 | 8.37365 | −23.5575 | 9.64951 | ||||||||||||||||||
1.20 | −0.169295 | 6.82637 | −7.97134 | −1.80831 | −1.15567 | 16.1277 | 2.70387 | 19.5993 | 0.306138 | ||||||||||||||||||
See all 39 embeddings |
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(11\) | \( +1 \) |
\(13\) | \( -1 \) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1859.4.a.o | yes | 39 |
13.b | even | 2 | 1 | 1859.4.a.n | ✓ | 39 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1859.4.a.n | ✓ | 39 | 13.b | even | 2 | 1 | |
1859.4.a.o | yes | 39 | 1.a | even | 1 | 1 | trivial |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{39} - 213 T_{2}^{37} + 7 T_{2}^{36} + 20695 T_{2}^{35} - 1070 T_{2}^{34} - 1215940 T_{2}^{33} + \cdots - 91431516471296 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1859))\).