Properties

Label 1859.4.a.o
Level 18591859
Weight 44
Character orbit 1859.a
Self dual yes
Analytic conductor 109.685109.685
Analytic rank 11
Dimension 3939
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1859,4,Mod(1,1859)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1859, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1859.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 1859=11132 1859 = 11 \cdot 13^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 1859.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 109.684550701109.684550701
Analytic rank: 11
Dimension: 3939
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

The algebraic qq-expansion of this newform has not been computed, but we have computed the trace expansion.

Tr(f)(q)=\operatorname{Tr}(f)(q) = 39q23q3+114q4+23q5+77q64q721q8+260q9158q10429q11351q12176q14+30q15+230q16244q17+21q1870q19+366q20+2860q99+O(q100) 39 q - 23 q^{3} + 114 q^{4} + 23 q^{5} + 77 q^{6} - 4 q^{7} - 21 q^{8} + 260 q^{9} - 158 q^{10} - 429 q^{11} - 351 q^{12} - 176 q^{14} + 30 q^{15} + 230 q^{16} - 244 q^{17} + 21 q^{18} - 70 q^{19} + 366 q^{20}+ \cdots - 2860 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1 −5.49304 −8.44279 22.1734 19.5698 46.3765 18.0683 −77.8552 44.2807 −107.497
1.2 −5.13075 4.07791 18.3246 9.39838 −20.9227 18.3779 −52.9729 −10.3707 −48.2207
1.3 −5.06016 −3.81429 17.6052 13.6056 19.3009 −15.5193 −48.6040 −12.4512 −68.8465
1.4 −4.86773 −7.77085 15.6948 −6.79003 37.8264 12.1965 −37.4563 33.3861 33.0520
1.5 −4.62264 0.223641 13.3688 −5.07801 −1.03381 13.5633 −24.8183 −26.9500 23.4738
1.6 −3.79953 4.80997 6.43642 1.29866 −18.2756 −1.62019 5.94086 −3.86420 −4.93429
1.7 −3.55980 −3.90055 4.67220 −19.3357 13.8852 18.4314 11.8463 −11.7857 68.8313
1.8 −3.48032 −2.00729 4.11265 −5.42082 6.98601 −27.8265 13.5292 −22.9708 18.8662
1.9 −3.20015 −9.16277 2.24095 −10.3410 29.3222 5.43136 18.4298 56.9564 33.0929
1.10 −2.90122 6.23880 0.417058 15.8001 −18.1001 −9.46578 21.9998 11.9227 −45.8396
1.11 −2.83656 8.17655 0.0460816 −2.30923 −23.1933 3.15838 22.5618 39.8559 6.55028
1.12 −2.40771 −4.57703 −2.20293 18.4699 11.0201 11.7306 24.5657 −6.05084 −44.4701
1.13 −2.02818 −9.13071 −3.88650 −2.96871 18.5187 −15.4258 24.1079 56.3698 6.02107
1.14 −1.78462 −0.436688 −4.81514 13.8087 0.779321 −6.26730 22.8701 −26.8093 −24.6433
1.15 −1.63650 −2.06438 −5.32187 −14.3735 3.37836 −27.7797 21.8012 −22.7383 23.5223
1.16 −1.18198 −2.60560 −6.60292 −7.12046 3.07976 33.7625 17.2604 −20.2109 8.41624
1.17 −1.12752 9.49735 −6.72870 7.22240 −10.7085 −1.17565 16.6069 63.1996 −8.14341
1.18 −1.00172 −3.02985 −6.99655 20.0383 3.03507 −1.63570 15.0224 −17.8200 −20.0728
1.19 −0.532806 1.85539 −7.71612 −18.1107 −0.988563 −20.2803 8.37365 −23.5575 9.64951
1.20 −0.169295 6.82637 −7.97134 −1.80831 −1.15567 16.1277 2.70387 19.5993 0.306138
See all 39 embeddings
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.39
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
1111 +1 +1
1313 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1859.4.a.o yes 39
13.b even 2 1 1859.4.a.n 39
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1859.4.a.n 39 13.b even 2 1
1859.4.a.o yes 39 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T239213T237+7T236+20695T2351070T2341215940T233+91431516471296 T_{2}^{39} - 213 T_{2}^{37} + 7 T_{2}^{36} + 20695 T_{2}^{35} - 1070 T_{2}^{34} - 1215940 T_{2}^{33} + \cdots - 91431516471296 acting on S4new(Γ0(1859))S_{4}^{\mathrm{new}}(\Gamma_0(1859)). Copy content Toggle raw display