Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [224,2,Mod(29,224)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(224, base_ring=CyclotomicField(8))
chi = DirichletCharacter(H, H._module([0, 3, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("224.29");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 224 = 2^{5} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 224.u (of order \(8\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(1.78864900528\) |
Analytic rank: | \(0\) |
Dimension: | \(40\) |
Relative dimension: | \(10\) over \(\Q(\zeta_{8})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{8}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
29.1 | −1.39530 | − | 0.230541i | −3.03470 | − | 1.25702i | 1.89370 | + | 0.643346i | 0.551446 | + | 1.33131i | 3.94452 | + | 2.45353i | −0.707107 | + | 0.707107i | −2.49396 | − | 1.33423i | 5.50802 | + | 5.50802i | −0.462509 | − | 1.98470i |
29.2 | −1.32480 | + | 0.494880i | 0.0422763 | + | 0.0175114i | 1.51019 | − | 1.31123i | 1.39396 | + | 3.36532i | −0.0646737 | − | 0.00227744i | −0.707107 | + | 0.707107i | −1.35179 | + | 2.48448i | −2.11984 | − | 2.11984i | −3.51215 | − | 3.76853i |
29.3 | −0.533524 | + | 1.30971i | −0.910708 | − | 0.377228i | −1.43070 | − | 1.39753i | −0.227513 | − | 0.549265i | 0.979945 | − | 0.991507i | −0.707107 | + | 0.707107i | 2.59368 | − | 1.12820i | −1.43423 | − | 1.43423i | 0.840764 | − | 0.00493097i |
29.4 | −0.420598 | − | 1.35022i | 2.28471 | + | 0.946358i | −1.64619 | + | 1.13580i | 0.446012 | + | 1.07677i | 0.316848 | − | 3.48290i | −0.707107 | + | 0.707107i | 2.22597 | + | 1.74501i | 2.20299 | + | 2.20299i | 1.26628 | − | 1.05510i |
29.5 | 0.146191 | + | 1.40664i | 2.41040 | + | 0.998422i | −1.95726 | + | 0.411276i | 0.0734640 | + | 0.177358i | −1.05204 | + | 3.53652i | −0.707107 | + | 0.707107i | −0.864649 | − | 2.69302i | 2.69188 | + | 2.69188i | −0.238738 | + | 0.129265i |
29.6 | 0.270256 | − | 1.38815i | 0.350600 | + | 0.145223i | −1.85392 | − | 0.750313i | −1.27761 | − | 3.08441i | 0.296344 | − | 0.447438i | −0.707107 | + | 0.707107i | −1.54258 | + | 2.37075i | −2.01949 | − | 2.01949i | −4.62691 | + | 0.939927i |
29.7 | 0.461048 | + | 1.33695i | −1.66728 | − | 0.690611i | −1.57487 | + | 1.23280i | 0.923458 | + | 2.22943i | 0.154616 | − | 2.54748i | −0.707107 | + | 0.707107i | −2.37428 | − | 1.53715i | 0.181564 | + | 0.181564i | −2.55487 | + | 2.26249i |
29.8 | 1.16944 | − | 0.795236i | 1.29558 | + | 0.536647i | 0.735199 | − | 1.85997i | 0.937867 | + | 2.26421i | 1.94187 | − | 0.402713i | −0.707107 | + | 0.707107i | −0.619339 | − | 2.75979i | −0.730784 | − | 0.730784i | 2.89737 | + | 1.90204i |
29.9 | 1.27165 | + | 0.618795i | 2.04641 | + | 0.847650i | 1.23419 | + | 1.57378i | −1.31439 | − | 3.17322i | 2.07779 | + | 2.34422i | −0.707107 | + | 0.707107i | 0.595604 | + | 2.76501i | 1.34795 | + | 1.34795i | 0.292129 | − | 4.84857i |
29.10 | 1.35563 | − | 0.402828i | −1.81729 | − | 0.752744i | 1.67546 | − | 1.09217i | −0.920909 | − | 2.22327i | −2.76679 | − | 0.288389i | −0.707107 | + | 0.707107i | 1.83135 | − | 2.15550i | 0.614581 | + | 0.614581i | −2.14401 | − | 2.64296i |
85.1 | −1.39530 | + | 0.230541i | −3.03470 | + | 1.25702i | 1.89370 | − | 0.643346i | 0.551446 | − | 1.33131i | 3.94452 | − | 2.45353i | −0.707107 | − | 0.707107i | −2.49396 | + | 1.33423i | 5.50802 | − | 5.50802i | −0.462509 | + | 1.98470i |
85.2 | −1.32480 | − | 0.494880i | 0.0422763 | − | 0.0175114i | 1.51019 | + | 1.31123i | 1.39396 | − | 3.36532i | −0.0646737 | + | 0.00227744i | −0.707107 | − | 0.707107i | −1.35179 | − | 2.48448i | −2.11984 | + | 2.11984i | −3.51215 | + | 3.76853i |
85.3 | −0.533524 | − | 1.30971i | −0.910708 | + | 0.377228i | −1.43070 | + | 1.39753i | −0.227513 | + | 0.549265i | 0.979945 | + | 0.991507i | −0.707107 | − | 0.707107i | 2.59368 | + | 1.12820i | −1.43423 | + | 1.43423i | 0.840764 | + | 0.00493097i |
85.4 | −0.420598 | + | 1.35022i | 2.28471 | − | 0.946358i | −1.64619 | − | 1.13580i | 0.446012 | − | 1.07677i | 0.316848 | + | 3.48290i | −0.707107 | − | 0.707107i | 2.22597 | − | 1.74501i | 2.20299 | − | 2.20299i | 1.26628 | + | 1.05510i |
85.5 | 0.146191 | − | 1.40664i | 2.41040 | − | 0.998422i | −1.95726 | − | 0.411276i | 0.0734640 | − | 0.177358i | −1.05204 | − | 3.53652i | −0.707107 | − | 0.707107i | −0.864649 | + | 2.69302i | 2.69188 | − | 2.69188i | −0.238738 | − | 0.129265i |
85.6 | 0.270256 | + | 1.38815i | 0.350600 | − | 0.145223i | −1.85392 | + | 0.750313i | −1.27761 | + | 3.08441i | 0.296344 | + | 0.447438i | −0.707107 | − | 0.707107i | −1.54258 | − | 2.37075i | −2.01949 | + | 2.01949i | −4.62691 | − | 0.939927i |
85.7 | 0.461048 | − | 1.33695i | −1.66728 | + | 0.690611i | −1.57487 | − | 1.23280i | 0.923458 | − | 2.22943i | 0.154616 | + | 2.54748i | −0.707107 | − | 0.707107i | −2.37428 | + | 1.53715i | 0.181564 | − | 0.181564i | −2.55487 | − | 2.26249i |
85.8 | 1.16944 | + | 0.795236i | 1.29558 | − | 0.536647i | 0.735199 | + | 1.85997i | 0.937867 | − | 2.26421i | 1.94187 | + | 0.402713i | −0.707107 | − | 0.707107i | −0.619339 | + | 2.75979i | −0.730784 | + | 0.730784i | 2.89737 | − | 1.90204i |
85.9 | 1.27165 | − | 0.618795i | 2.04641 | − | 0.847650i | 1.23419 | − | 1.57378i | −1.31439 | + | 3.17322i | 2.07779 | − | 2.34422i | −0.707107 | − | 0.707107i | 0.595604 | − | 2.76501i | 1.34795 | − | 1.34795i | 0.292129 | + | 4.84857i |
85.10 | 1.35563 | + | 0.402828i | −1.81729 | + | 0.752744i | 1.67546 | + | 1.09217i | −0.920909 | + | 2.22327i | −2.76679 | + | 0.288389i | −0.707107 | − | 0.707107i | 1.83135 | + | 2.15550i | 0.614581 | − | 0.614581i | −2.14401 | + | 2.64296i |
See all 40 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
32.g | even | 8 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 224.2.u.b | ✓ | 40 |
4.b | odd | 2 | 1 | 896.2.u.b | 40 | ||
32.g | even | 8 | 1 | inner | 224.2.u.b | ✓ | 40 |
32.h | odd | 8 | 1 | 896.2.u.b | 40 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
224.2.u.b | ✓ | 40 | 1.a | even | 1 | 1 | trivial |
224.2.u.b | ✓ | 40 | 32.g | even | 8 | 1 | inner |
896.2.u.b | 40 | 4.b | odd | 2 | 1 | ||
896.2.u.b | 40 | 32.h | odd | 8 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{40} - 4 T_{3}^{39} + 4 T_{3}^{38} + 24 T_{3}^{37} - 88 T_{3}^{36} - 40 T_{3}^{35} + 872 T_{3}^{34} + \cdots + 256 \) acting on \(S_{2}^{\mathrm{new}}(224, [\chi])\).