Properties

Label 3025.2.a.bl.1.7
Level 30253025
Weight 22
Character 3025.1
Self dual yes
Analytic conductor 24.15524.155
Analytic rank 00
Dimension 88
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3025,2,Mod(1,3025)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3025, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3025.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 3025=52112 3025 = 5^{2} \cdot 11^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3025.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 24.154746611424.1547466114
Analytic rank: 00
Dimension: 88
Coefficient field: 8.8.1480160000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x89x6+27x431x2+11 x^{8} - 9x^{6} + 27x^{4} - 31x^{2} + 11 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 55)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.7
Root 1.654581.65458 of defining polynomial
Character χ\chi == 3025.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+1.65458q21.97479q3+0.737640q43.26745q62.24307q72.08868q8+0.899788q91.45668q123.69976q133.71135q144.93117q162.22461q17+1.48877q18+5.28684q19+4.42960q213.85415q23+4.12469q246.12155q26+4.14747q271.65458q28+0.188439q29+0.686867q313.98166q323.68079q34+0.663720q36+2.59316q37+8.74751q38+7.30624q39+7.91604q41+7.32913q42+8.41368q436.37701q4612.0132q47+9.73801q481.96862q49+4.39313q512.72909q52+12.6566q53+6.86233q54+4.68506q5610.4404q57+0.311788q580.343688q59+1.73338q61+1.13648q622.01829q63+3.27435q64+0.650461q671.64096q68+7.61114q69+4.64760q711.87937q728.85841q73+4.29059q74+3.89979q76+12.0888q787.23426q7910.8897q81+13.0977q82+3.18165q83+3.26745q84+13.9211q860.372127q87+9.92195q89+8.29883q912.84298q921.35642q9319.8768q94+7.86294q96+2.26811q973.25724q98+O(q100)q+1.65458 q^{2} -1.97479 q^{3} +0.737640 q^{4} -3.26745 q^{6} -2.24307 q^{7} -2.08868 q^{8} +0.899788 q^{9} -1.45668 q^{12} -3.69976 q^{13} -3.71135 q^{14} -4.93117 q^{16} -2.22461 q^{17} +1.48877 q^{18} +5.28684 q^{19} +4.42960 q^{21} -3.85415 q^{23} +4.12469 q^{24} -6.12155 q^{26} +4.14747 q^{27} -1.65458 q^{28} +0.188439 q^{29} +0.686867 q^{31} -3.98166 q^{32} -3.68079 q^{34} +0.663720 q^{36} +2.59316 q^{37} +8.74751 q^{38} +7.30624 q^{39} +7.91604 q^{41} +7.32913 q^{42} +8.41368 q^{43} -6.37701 q^{46} -12.0132 q^{47} +9.73801 q^{48} -1.96862 q^{49} +4.39313 q^{51} -2.72909 q^{52} +12.6566 q^{53} +6.86233 q^{54} +4.68506 q^{56} -10.4404 q^{57} +0.311788 q^{58} -0.343688 q^{59} +1.73338 q^{61} +1.13648 q^{62} -2.01829 q^{63} +3.27435 q^{64} +0.650461 q^{67} -1.64096 q^{68} +7.61114 q^{69} +4.64760 q^{71} -1.87937 q^{72} -8.85841 q^{73} +4.29059 q^{74} +3.89979 q^{76} +12.0888 q^{78} -7.23426 q^{79} -10.8897 q^{81} +13.0977 q^{82} +3.18165 q^{83} +3.26745 q^{84} +13.9211 q^{86} -0.372127 q^{87} +9.92195 q^{89} +8.29883 q^{91} -2.84298 q^{92} -1.35642 q^{93} -19.8768 q^{94} +7.86294 q^{96} +2.26811 q^{97} -3.25724 q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+2q4+6q6+4q94q1422q16+12q19+4q21+2q24+10q26+24q29+14q31+8q34+20q36+30q39+34q41+24q4630q49+54q51+8q96+O(q100) 8 q + 2 q^{4} + 6 q^{6} + 4 q^{9} - 4 q^{14} - 22 q^{16} + 12 q^{19} + 4 q^{21} + 2 q^{24} + 10 q^{26} + 24 q^{29} + 14 q^{31} + 8 q^{34} + 20 q^{36} + 30 q^{39} + 34 q^{41} + 24 q^{46} - 30 q^{49} + 54 q^{51}+ \cdots - 8 q^{96}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 1.65458 1.16997 0.584983 0.811046i 0.301101π-0.301101\pi
0.584983 + 0.811046i 0.301101π0.301101\pi
33 −1.97479 −1.14014 −0.570072 0.821595i 0.693085π-0.693085\pi
−0.570072 + 0.821595i 0.693085π0.693085\pi
44 0.737640 0.368820
55 0 0
66 −3.26745 −1.33393
77 −2.24307 −0.847802 −0.423901 0.905708i 0.639340π-0.639340\pi
−0.423901 + 0.905708i 0.639340π0.639340\pi
88 −2.08868 −0.738459
99 0.899788 0.299929
1010 0 0
1111 0 0
1212 −1.45668 −0.420508
1313 −3.69976 −1.02613 −0.513064 0.858350i 0.671490π-0.671490\pi
−0.513064 + 0.858350i 0.671490π0.671490\pi
1414 −3.71135 −0.991900
1515 0 0
1616 −4.93117 −1.23279
1717 −2.22461 −0.539546 −0.269773 0.962924i 0.586949π-0.586949\pi
−0.269773 + 0.962924i 0.586949π0.586949\pi
1818 1.48877 0.350907
1919 5.28684 1.21288 0.606442 0.795127i 0.292596π-0.292596\pi
0.606442 + 0.795127i 0.292596π0.292596\pi
2020 0 0
2121 4.42960 0.966617
2222 0 0
2323 −3.85415 −0.803647 −0.401823 0.915717i 0.631623π-0.631623\pi
−0.401823 + 0.915717i 0.631623π0.631623\pi
2424 4.12469 0.841950
2525 0 0
2626 −6.12155 −1.20053
2727 4.14747 0.798182
2828 −1.65458 −0.312687
2929 0.188439 0.0349922 0.0174961 0.999847i 0.494431π-0.494431\pi
0.0174961 + 0.999847i 0.494431π0.494431\pi
3030 0 0
3131 0.686867 0.123365 0.0616824 0.998096i 0.480353π-0.480353\pi
0.0616824 + 0.998096i 0.480353π0.480353\pi
3232 −3.98166 −0.703866
3333 0 0
3434 −3.68079 −0.631251
3535 0 0
3636 0.663720 0.110620
3737 2.59316 0.426313 0.213156 0.977018i 0.431626π-0.431626\pi
0.213156 + 0.977018i 0.431626π0.431626\pi
3838 8.74751 1.41903
3939 7.30624 1.16993
4040 0 0
4141 7.91604 1.23628 0.618139 0.786069i 0.287887π-0.287887\pi
0.618139 + 0.786069i 0.287887π0.287887\pi
4242 7.32913 1.13091
4343 8.41368 1.28307 0.641537 0.767092i 0.278297π-0.278297\pi
0.641537 + 0.767092i 0.278297π0.278297\pi
4444 0 0
4545 0 0
4646 −6.37701 −0.940239
4747 −12.0132 −1.75230 −0.876151 0.482037i 0.839897π-0.839897\pi
−0.876151 + 0.482037i 0.839897π0.839897\pi
4848 9.73801 1.40556
4949 −1.96862 −0.281231
5050 0 0
5151 4.39313 0.615161
5252 −2.72909 −0.378457
5353 12.6566 1.73851 0.869257 0.494360i 0.164597π-0.164597\pi
0.869257 + 0.494360i 0.164597π0.164597\pi
5454 6.86233 0.933845
5555 0 0
5656 4.68506 0.626067
5757 −10.4404 −1.38286
5858 0.311788 0.0409397
5959 −0.343688 −0.0447444 −0.0223722 0.999750i 0.507122π-0.507122\pi
−0.0223722 + 0.999750i 0.507122π0.507122\pi
6060 0 0
6161 1.73338 0.221936 0.110968 0.993824i 0.464605π-0.464605\pi
0.110968 + 0.993824i 0.464605π0.464605\pi
6262 1.13648 0.144333
6363 −2.01829 −0.254281
6464 3.27435 0.409293
6565 0 0
6666 0 0
6767 0.650461 0.0794664 0.0397332 0.999210i 0.487349π-0.487349\pi
0.0397332 + 0.999210i 0.487349π0.487349\pi
6868 −1.64096 −0.198996
6969 7.61114 0.916273
7070 0 0
7171 4.64760 0.551569 0.275785 0.961219i 0.411062π-0.411062\pi
0.275785 + 0.961219i 0.411062π0.411062\pi
7272 −1.87937 −0.221485
7373 −8.85841 −1.03680 −0.518399 0.855139i 0.673472π-0.673472\pi
−0.518399 + 0.855139i 0.673472π0.673472\pi
7474 4.29059 0.498772
7575 0 0
7676 3.89979 0.447336
7777 0 0
7878 12.0888 1.36878
7979 −7.23426 −0.813918 −0.406959 0.913447i 0.633411π-0.633411\pi
−0.406959 + 0.913447i 0.633411π0.633411\pi
8080 0 0
8181 −10.8897 −1.20997
8282 13.0977 1.44640
8383 3.18165 0.349232 0.174616 0.984637i 0.444132π-0.444132\pi
0.174616 + 0.984637i 0.444132π0.444132\pi
8484 3.26745 0.356508
8585 0 0
8686 13.9211 1.50115
8787 −0.372127 −0.0398962
8888 0 0
8989 9.92195 1.05172 0.525862 0.850570i 0.323743π-0.323743\pi
0.525862 + 0.850570i 0.323743π0.323743\pi
9090 0 0
9191 8.29883 0.869954
9292 −2.84298 −0.296401
9393 −1.35642 −0.140654
9494 −19.8768 −2.05013
9595 0 0
9696 7.86294 0.802508
9797 2.26811 0.230292 0.115146 0.993349i 0.463266π-0.463266\pi
0.115146 + 0.993349i 0.463266π0.463266\pi
9898 −3.25724 −0.329031
9999 0 0
100100 0 0
101101 9.89686 0.984774 0.492387 0.870376i 0.336124π-0.336124\pi
0.492387 + 0.870376i 0.336124π0.336124\pi
102102 7.26879 0.719717
103103 10.2411 1.00909 0.504544 0.863386i 0.331661π-0.331661\pi
0.504544 + 0.863386i 0.331661π0.331661\pi
104104 7.72760 0.757753
105105 0 0
106106 20.9413 2.03400
107107 10.0468 0.971261 0.485631 0.874164i 0.338590π-0.338590\pi
0.485631 + 0.874164i 0.338590π0.338590\pi
108108 3.05934 0.294386
109109 −8.80173 −0.843053 −0.421527 0.906816i 0.638506π-0.638506\pi
−0.421527 + 0.906816i 0.638506π0.638506\pi
110110 0 0
111111 −5.12094 −0.486058
112112 11.0610 1.04516
113113 0.231352 0.0217638 0.0108819 0.999941i 0.496536π-0.496536\pi
0.0108819 + 0.999941i 0.496536π0.496536\pi
114114 −17.2745 −1.61790
115115 0 0
116116 0.139000 0.0129058
117117 −3.32900 −0.307766
118118 −0.568660 −0.0523494
119119 4.98996 0.457429
120120 0 0
121121 0 0
122122 2.86801 0.259658
123123 −15.6325 −1.40953
124124 0.506660 0.0454995
125125 0 0
126126 −3.33943 −0.297500
127127 −2.43034 −0.215658 −0.107829 0.994169i 0.534390π-0.534390\pi
−0.107829 + 0.994169i 0.534390π0.534390\pi
128128 13.3810 1.18272
129129 −16.6152 −1.46289
130130 0 0
131131 1.58846 0.138785 0.0693924 0.997589i 0.477894π-0.477894\pi
0.0693924 + 0.997589i 0.477894π0.477894\pi
132132 0 0
133133 −11.8588 −1.02829
134134 1.07624 0.0929730
135135 0 0
136136 4.64649 0.398433
137137 −18.7019 −1.59781 −0.798905 0.601457i 0.794587π-0.794587\pi
−0.798905 + 0.601457i 0.794587π0.794587\pi
138138 12.5932 1.07201
139139 11.6274 0.986222 0.493111 0.869966i 0.335860π-0.335860\pi
0.493111 + 0.869966i 0.335860π0.335860\pi
140140 0 0
141141 23.7235 1.99788
142142 7.68984 0.645317
143143 0 0
144144 −4.43700 −0.369750
145145 0 0
146146 −14.6570 −1.21302
147147 3.88761 0.320644
148148 1.91282 0.157233
149149 5.91553 0.484619 0.242309 0.970199i 0.422095π-0.422095\pi
0.242309 + 0.970199i 0.422095π0.422095\pi
150150 0 0
151151 12.7779 1.03985 0.519924 0.854213i 0.325960π-0.325960\pi
0.519924 + 0.854213i 0.325960π0.325960\pi
152152 −11.0425 −0.895665
153153 −2.00167 −0.161826
154154 0 0
155155 0 0
156156 5.38937 0.431495
157157 14.3487 1.14515 0.572574 0.819853i 0.305945π-0.305945\pi
0.572574 + 0.819853i 0.305945π0.305945\pi
158158 −11.9697 −0.952256
159159 −24.9941 −1.98216
160160 0 0
161161 8.64515 0.681333
162162 −18.0180 −1.41563
163163 −3.62716 −0.284101 −0.142051 0.989859i 0.545370π-0.545370\pi
−0.142051 + 0.989859i 0.545370π0.545370\pi
164164 5.83919 0.455964
165165 0 0
166166 5.26430 0.408589
167167 −3.82070 −0.295655 −0.147827 0.989013i 0.547228π-0.547228\pi
−0.147827 + 0.989013i 0.547228π0.547228\pi
168168 −9.25199 −0.713807
169169 0.688202 0.0529386
170170 0 0
171171 4.75703 0.363779
172172 6.20627 0.473224
173173 2.10714 0.160203 0.0801016 0.996787i 0.474476π-0.474476\pi
0.0801016 + 0.996787i 0.474476π0.474476\pi
174174 −0.615714 −0.0466772
175175 0 0
176176 0 0
177177 0.678711 0.0510151
178178 16.4167 1.23048
179179 5.02397 0.375509 0.187755 0.982216i 0.439879π-0.439879\pi
0.187755 + 0.982216i 0.439879π0.439879\pi
180180 0 0
181181 −15.6476 −1.16308 −0.581539 0.813519i 0.697549π-0.697549\pi
−0.581539 + 0.813519i 0.697549π0.697549\pi
182182 13.7311 1.01782
183183 −3.42305 −0.253039
184184 8.05008 0.593460
185185 0 0
186186 −2.24430 −0.164560
187187 0 0
188188 −8.86140 −0.646284
189189 −9.30309 −0.676700
190190 0 0
191191 3.11585 0.225455 0.112728 0.993626i 0.464041π-0.464041\pi
0.112728 + 0.993626i 0.464041π0.464041\pi
192192 −6.46614 −0.466653
193193 −9.63638 −0.693642 −0.346821 0.937931i 0.612739π-0.612739\pi
−0.346821 + 0.937931i 0.612739π0.612739\pi
194194 3.75277 0.269433
195195 0 0
196196 −1.45213 −0.103724
197197 14.3974 1.02577 0.512885 0.858457i 0.328577π-0.328577\pi
0.512885 + 0.858457i 0.328577π0.328577\pi
198198 0 0
199199 14.7978 1.04899 0.524493 0.851415i 0.324255π-0.324255\pi
0.524493 + 0.851415i 0.324255π0.324255\pi
200200 0 0
201201 −1.28452 −0.0906032
202202 16.3752 1.15215
203203 −0.422682 −0.0296665
204204 3.24055 0.226884
205205 0 0
206206 16.9448 1.18060
207207 −3.46792 −0.241037
208208 18.2441 1.26500
209209 0 0
210210 0 0
211211 −6.77147 −0.466167 −0.233084 0.972457i 0.574882π-0.574882\pi
−0.233084 + 0.972457i 0.574882π0.574882\pi
212212 9.33600 0.641199
213213 −9.17803 −0.628868
214214 16.6233 1.13634
215215 0 0
216216 −8.66273 −0.589424
217217 −1.54069 −0.104589
218218 −14.5632 −0.986344
219219 17.4935 1.18210
220220 0 0
221221 8.23051 0.553644
222222 −8.47302 −0.568672
223223 8.71727 0.583752 0.291876 0.956456i 0.405721π-0.405721\pi
0.291876 + 0.956456i 0.405721π0.405721\pi
224224 8.93117 0.596739
225225 0 0
226226 0.382791 0.0254629
227227 −3.80744 −0.252708 −0.126354 0.991985i 0.540328π-0.540328\pi
−0.126354 + 0.991985i 0.540328π0.540328\pi
228228 −7.70125 −0.510028
229229 −2.71367 −0.179324 −0.0896621 0.995972i 0.528579π-0.528579\pi
−0.0896621 + 0.995972i 0.528579π0.528579\pi
230230 0 0
231231 0 0
232232 −0.393588 −0.0258403
233233 10.5108 0.688584 0.344292 0.938863i 0.388119π-0.388119\pi
0.344292 + 0.938863i 0.388119π0.388119\pi
234234 −5.50809 −0.360075
235235 0 0
236236 −0.253518 −0.0165026
237237 14.2861 0.927984
238238 8.25629 0.535176
239239 20.0396 1.29625 0.648127 0.761532i 0.275552π-0.275552\pi
0.648127 + 0.761532i 0.275552π0.275552\pi
240240 0 0
241241 28.4450 1.83230 0.916152 0.400832i 0.131279π-0.131279\pi
0.916152 + 0.400832i 0.131279π0.131279\pi
242242 0 0
243243 9.06251 0.581361
244244 1.27861 0.0818545
245245 0 0
246246 −25.8652 −1.64911
247247 −19.5600 −1.24457
248248 −1.43464 −0.0910999
249249 −6.28309 −0.398175
250250 0 0
251251 −23.8370 −1.50458 −0.752289 0.658833i 0.771050π-0.771050\pi
−0.752289 + 0.658833i 0.771050π0.771050\pi
252252 −1.48877 −0.0937838
253253 0 0
254254 −4.02120 −0.252313
255255 0 0
256256 15.5913 0.974454
257257 −24.6763 −1.53927 −0.769633 0.638486i 0.779561π-0.779561\pi
−0.769633 + 0.638486i 0.779561π0.779561\pi
258258 −27.4913 −1.71153
259259 −5.81665 −0.361429
260260 0 0
261261 0.169555 0.0104952
262262 2.62824 0.162373
263263 −5.44098 −0.335505 −0.167753 0.985829i 0.553651π-0.553651\pi
−0.167753 + 0.985829i 0.553651π0.553651\pi
264264 0 0
265265 0 0
266266 −19.6213 −1.20306
267267 −19.5937 −1.19912
268268 0.479806 0.0293088
269269 −6.70557 −0.408846 −0.204423 0.978883i 0.565532π-0.565532\pi
−0.204423 + 0.978883i 0.565532π0.565532\pi
270270 0 0
271271 −5.05983 −0.307363 −0.153681 0.988120i 0.549113π-0.549113\pi
−0.153681 + 0.988120i 0.549113π0.549113\pi
272272 10.9699 0.665148
273273 −16.3884 −0.991873
274274 −30.9438 −1.86938
275275 0 0
276276 5.61428 0.337940
277277 10.6937 0.642522 0.321261 0.946991i 0.395893π-0.395893\pi
0.321261 + 0.946991i 0.395893π0.395893\pi
278278 19.2385 1.15385
279279 0.618034 0.0370007
280280 0 0
281281 −13.7197 −0.818450 −0.409225 0.912434i 0.634201π-0.634201\pi
−0.409225 + 0.912434i 0.634201π0.634201\pi
282282 39.2524 2.33745
283283 21.9693 1.30594 0.652969 0.757385i 0.273523π-0.273523\pi
0.652969 + 0.757385i 0.273523π0.273523\pi
284284 3.42826 0.203430
285285 0 0
286286 0 0
287287 −17.7563 −1.04812
288288 −3.58265 −0.211110
289289 −12.0511 −0.708890
290290 0 0
291291 −4.47903 −0.262566
292292 −6.53432 −0.382392
293293 −14.0380 −0.820110 −0.410055 0.912061i 0.634491π-0.634491\pi
−0.410055 + 0.912061i 0.634491π0.634491\pi
294294 6.43236 0.375143
295295 0 0
296296 −5.41627 −0.314815
297297 0 0
298298 9.78772 0.566988
299299 14.2594 0.824644
300300 0 0
301301 −18.8725 −1.08779
302302 21.1420 1.21659
303303 −19.5442 −1.12278
304304 −26.0703 −1.49523
305305 0 0
306306 −3.31193 −0.189331
307307 6.86951 0.392064 0.196032 0.980598i 0.437194π-0.437194\pi
0.196032 + 0.980598i 0.437194π0.437194\pi
308308 0 0
309309 −20.2241 −1.15051
310310 0 0
311311 −5.50157 −0.311966 −0.155983 0.987760i 0.549854π-0.549854\pi
−0.155983 + 0.987760i 0.549854π0.549854\pi
312312 −15.2604 −0.863948
313313 −14.2320 −0.804440 −0.402220 0.915543i 0.631761π-0.631761\pi
−0.402220 + 0.915543i 0.631761π0.631761\pi
314314 23.7411 1.33979
315315 0 0
316316 −5.33628 −0.300189
317317 −18.6864 −1.04953 −0.524767 0.851246i 0.675847π-0.675847\pi
−0.524767 + 0.851246i 0.675847π0.675847\pi
318318 −41.3547 −2.31906
319319 0 0
320320 0 0
321321 −19.8403 −1.10738
322322 14.3041 0.797137
323323 −11.7611 −0.654408
324324 −8.03271 −0.446262
325325 0 0
326326 −6.00143 −0.332389
327327 17.3816 0.961202
328328 −16.5340 −0.912940
329329 26.9464 1.48560
330330 0 0
331331 0.468249 0.0257373 0.0128686 0.999917i 0.495904π-0.495904\pi
0.0128686 + 0.999917i 0.495904π0.495904\pi
332332 2.34691 0.128804
333333 2.33329 0.127864
334334 −6.32166 −0.345906
335335 0 0
336336 −21.8431 −1.19164
337337 −34.0872 −1.85685 −0.928424 0.371522i 0.878836π-0.878836\pi
−0.928424 + 0.371522i 0.878836π0.878836\pi
338338 1.13869 0.0619363
339339 −0.456871 −0.0248139
340340 0 0
341341 0 0
342342 7.87090 0.425610
343343 20.1173 1.08623
344344 −17.5735 −0.947498
345345 0 0
346346 3.48644 0.187432
347347 −3.59292 −0.192878 −0.0964391 0.995339i 0.530745π-0.530745\pi
−0.0964391 + 0.995339i 0.530745π0.530745\pi
348348 −0.274496 −0.0147145
349349 −6.37110 −0.341037 −0.170519 0.985354i 0.554544π-0.554544\pi
−0.170519 + 0.985354i 0.554544π0.554544\pi
350350 0 0
351351 −15.3446 −0.819037
352352 0 0
353353 12.1971 0.649186 0.324593 0.945854i 0.394773π-0.394773\pi
0.324593 + 0.945854i 0.394773π0.394773\pi
354354 1.12298 0.0596859
355355 0 0
356356 7.31883 0.387897
357357 −9.85411 −0.521535
358358 8.31257 0.439333
359359 24.1149 1.27273 0.636367 0.771386i 0.280436π-0.280436\pi
0.636367 + 0.771386i 0.280436π0.280436\pi
360360 0 0
361361 8.95069 0.471089
362362 −25.8902 −1.36076
363363 0 0
364364 6.12155 0.320856
365365 0 0
366366 −5.66372 −0.296047
367367 20.3899 1.06435 0.532173 0.846636i 0.321376π-0.321376\pi
0.532173 + 0.846636i 0.321376π0.321376\pi
368368 19.0055 0.990729
369369 7.12275 0.370796
370370 0 0
371371 −28.3896 −1.47392
372372 −1.00055 −0.0518759
373373 −7.51997 −0.389369 −0.194685 0.980866i 0.562368π-0.562368\pi
−0.194685 + 0.980866i 0.562368π0.562368\pi
374374 0 0
375375 0 0
376376 25.0916 1.29400
377377 −0.697178 −0.0359065
378378 −15.3927 −0.791716
379379 23.1912 1.19125 0.595627 0.803261i 0.296904π-0.296904\pi
0.595627 + 0.803261i 0.296904π0.296904\pi
380380 0 0
381381 4.79942 0.245881
382382 5.15543 0.263775
383383 −2.44039 −0.124698 −0.0623491 0.998054i 0.519859π-0.519859\pi
−0.0623491 + 0.998054i 0.519859π0.519859\pi
384384 −26.4246 −1.34848
385385 0 0
386386 −15.9442 −0.811537
387387 7.57053 0.384832
388388 1.67305 0.0849362
389389 33.9732 1.72251 0.861254 0.508175i 0.169680π-0.169680\pi
0.861254 + 0.508175i 0.169680π0.169680\pi
390390 0 0
391391 8.57398 0.433605
392392 4.11181 0.207678
393393 −3.13688 −0.158235
394394 23.8216 1.20012
395395 0 0
396396 0 0
397397 27.4961 1.37999 0.689995 0.723814i 0.257613π-0.257613\pi
0.689995 + 0.723814i 0.257613π0.257613\pi
398398 24.4841 1.22728
399399 23.4186 1.17239
400400 0 0
401401 −1.88743 −0.0942535 −0.0471268 0.998889i 0.515006π-0.515006\pi
−0.0471268 + 0.998889i 0.515006π0.515006\pi
402402 −2.12535 −0.106003
403403 −2.54124 −0.126588
404404 7.30032 0.363205
405405 0 0
406406 −0.699363 −0.0347088
407407 0 0
408408 −9.17582 −0.454271
409409 13.5575 0.670374 0.335187 0.942152i 0.391201π-0.391201\pi
0.335187 + 0.942152i 0.391201π0.391201\pi
410410 0 0
411411 36.9323 1.82173
412412 7.55427 0.372172
413413 0.770918 0.0379344
414414 −5.73796 −0.282005
415415 0 0
416416 14.7312 0.722256
417417 −22.9616 −1.12444
418418 0 0
419419 −22.1368 −1.08145 −0.540727 0.841198i 0.681851π-0.681851\pi
−0.540727 + 0.841198i 0.681851π0.681851\pi
420420 0 0
421421 17.9026 0.872517 0.436259 0.899821i 0.356303π-0.356303\pi
0.436259 + 0.899821i 0.356303π0.356303\pi
422422 −11.2040 −0.545400
423423 −10.8093 −0.525566
424424 −26.4355 −1.28382
425425 0 0
426426 −15.1858 −0.735755
427427 −3.88809 −0.188158
428428 7.41093 0.358221
429429 0 0
430430 0 0
431431 33.4457 1.61102 0.805510 0.592582i 0.201891π-0.201891\pi
0.805510 + 0.592582i 0.201891π0.201891\pi
432432 −20.4519 −0.983992
433433 −31.4914 −1.51338 −0.756690 0.653774i 0.773185π-0.773185\pi
−0.756690 + 0.653774i 0.773185π0.773185\pi
434434 −2.54920 −0.122366
435435 0 0
436436 −6.49251 −0.310935
437437 −20.3763 −0.974731
438438 28.9444 1.38302
439439 35.6208 1.70009 0.850045 0.526710i 0.176575π-0.176575\pi
0.850045 + 0.526710i 0.176575π0.176575\pi
440440 0 0
441441 −1.77134 −0.0843495
442442 13.6180 0.647744
443443 −23.4876 −1.11593 −0.557964 0.829865i 0.688417π-0.688417\pi
−0.557964 + 0.829865i 0.688417π0.688417\pi
444444 −3.77741 −0.179268
445445 0 0
446446 14.4234 0.682970
447447 −11.6819 −0.552535
448448 −7.34460 −0.347000
449449 −31.3920 −1.48148 −0.740740 0.671792i 0.765525π-0.765525\pi
−0.740740 + 0.671792i 0.765525π0.765525\pi
450450 0 0
451451 0 0
452452 0.170655 0.00802692
453453 −25.2336 −1.18558
454454 −6.29971 −0.295660
455455 0 0
456456 21.8066 1.02119
457457 −39.1106 −1.82952 −0.914759 0.404000i 0.867620π-0.867620\pi
−0.914759 + 0.404000i 0.867620π0.867620\pi
458458 −4.48999 −0.209803
459459 −9.22650 −0.430656
460460 0 0
461461 −8.88399 −0.413769 −0.206884 0.978365i 0.566332π-0.566332\pi
−0.206884 + 0.978365i 0.566332π0.566332\pi
462462 0 0
463463 −4.21081 −0.195693 −0.0978464 0.995202i 0.531195π-0.531195\pi
−0.0978464 + 0.995202i 0.531195π0.531195\pi
464464 −0.929224 −0.0431381
465465 0 0
466466 17.3909 0.805620
467467 6.72844 0.311355 0.155677 0.987808i 0.450244π-0.450244\pi
0.155677 + 0.987808i 0.450244π0.450244\pi
468468 −2.45560 −0.113510
469469 −1.45903 −0.0673718
470470 0 0
471471 −28.3356 −1.30564
472472 0.717854 0.0330419
473473 0 0
474474 23.6376 1.08571
475475 0 0
476476 3.68079 0.168709
477477 11.3882 0.521431
478478 33.1572 1.51657
479479 20.8094 0.950806 0.475403 0.879768i 0.342302π-0.342302\pi
0.475403 + 0.879768i 0.342302π0.342302\pi
480480 0 0
481481 −9.59406 −0.437452
482482 47.0646 2.14373
483483 −17.0723 −0.776818
484484 0 0
485485 0 0
486486 14.9947 0.680172
487487 15.7794 0.715032 0.357516 0.933907i 0.383624π-0.383624\pi
0.357516 + 0.933907i 0.383624π0.383624\pi
488488 −3.62047 −0.163891
489489 7.16287 0.323916
490490 0 0
491491 19.3303 0.872366 0.436183 0.899858i 0.356330π-0.356330\pi
0.436183 + 0.899858i 0.356330π0.356330\pi
492492 −11.5312 −0.519865
493493 −0.419203 −0.0188799
494494 −32.3637 −1.45611
495495 0 0
496496 −3.38705 −0.152083
497497 −10.4249 −0.467622
498498 −10.3959 −0.465851
499499 −41.4596 −1.85599 −0.927994 0.372594i 0.878468π-0.878468\pi
−0.927994 + 0.372594i 0.878468π0.878468\pi
500500 0 0
501501 7.54507 0.337089
502502 −39.4403 −1.76031
503503 32.6613 1.45630 0.728148 0.685420i 0.240381π-0.240381\pi
0.728148 + 0.685420i 0.240381π0.240381\pi
504504 4.21556 0.187776
505505 0 0
506506 0 0
507507 −1.35905 −0.0603576
508508 −1.79272 −0.0795391
509509 16.6452 0.737785 0.368892 0.929472i 0.379737π-0.379737\pi
0.368892 + 0.929472i 0.379737π0.379737\pi
510510 0 0
511511 19.8701 0.879000
512512 −0.964978 −0.0426464
513513 21.9270 0.968102
514514 −40.8290 −1.80089
515515 0 0
516516 −12.2561 −0.539543
517517 0 0
518518 −9.62412 −0.422860
519519 −4.16116 −0.182655
520520 0 0
521521 14.0563 0.615816 0.307908 0.951416i 0.400371π-0.400371\pi
0.307908 + 0.951416i 0.400371π0.400371\pi
522522 0.280543 0.0122790
523523 15.6677 0.685101 0.342550 0.939499i 0.388709π-0.388709\pi
0.342550 + 0.939499i 0.388709π0.388709\pi
524524 1.17171 0.0511866
525525 0 0
526526 −9.00255 −0.392530
527527 −1.52801 −0.0665611
528528 0 0
529529 −8.14550 −0.354152
530530 0 0
531531 −0.309246 −0.0134202
532532 −8.74751 −0.379253
533533 −29.2874 −1.26858
534534 −32.4195 −1.40293
535535 0 0
536536 −1.35860 −0.0586827
537537 −9.92128 −0.428135
538538 −11.0949 −0.478336
539539 0 0
540540 0 0
541541 −39.6384 −1.70419 −0.852094 0.523389i 0.824667π-0.824667\pi
−0.852094 + 0.523389i 0.824667π0.824667\pi
542542 −8.37190 −0.359604
543543 30.9007 1.32608
544544 8.85764 0.379768
545545 0 0
546546 −27.1160 −1.16046
547547 41.1664 1.76015 0.880075 0.474835i 0.157492π-0.157492\pi
0.880075 + 0.474835i 0.157492π0.157492\pi
548548 −13.7953 −0.589305
549549 1.55967 0.0665651
550550 0 0
551551 0.996247 0.0424415
552552 −15.8972 −0.676630
553553 16.2270 0.690041
554554 17.6936 0.751728
555555 0 0
556556 8.57683 0.363739
557557 29.8760 1.26589 0.632943 0.774199i 0.281847π-0.281847\pi
0.632943 + 0.774199i 0.281847π0.281847\pi
558558 1.02259 0.0432896
559559 −31.1286 −1.31660
560560 0 0
561561 0 0
562562 −22.7004 −0.957558
563563 2.15779 0.0909401 0.0454701 0.998966i 0.485521π-0.485521\pi
0.0454701 + 0.998966i 0.485521π0.485521\pi
564564 17.4994 0.736857
565565 0 0
566566 36.3500 1.52790
567567 24.4265 1.02582
568568 −9.70734 −0.407311
569569 0.717288 0.0300703 0.0150351 0.999887i 0.495214π-0.495214\pi
0.0150351 + 0.999887i 0.495214π0.495214\pi
570570 0 0
571571 −21.6311 −0.905235 −0.452617 0.891705i 0.649510π-0.649510\pi
−0.452617 + 0.891705i 0.649510π0.649510\pi
572572 0 0
573573 −6.15315 −0.257051
574574 −29.3792 −1.22626
575575 0 0
576576 2.94622 0.122759
577577 23.4276 0.975303 0.487652 0.873038i 0.337854π-0.337854\pi
0.487652 + 0.873038i 0.337854π0.337854\pi
578578 −19.9396 −0.829377
579579 19.0298 0.790852
580580 0 0
581581 −7.13668 −0.296079
582582 −7.41093 −0.307193
583583 0 0
584584 18.5023 0.765633
585585 0 0
586586 −23.2271 −0.959501
587587 −2.24734 −0.0927576 −0.0463788 0.998924i 0.514768π-0.514768\pi
−0.0463788 + 0.998924i 0.514768π0.514768\pi
588588 2.86766 0.118260
589589 3.63135 0.149627
590590 0 0
591591 −28.4318 −1.16953
592592 −12.7873 −0.525555
593593 25.4034 1.04319 0.521596 0.853193i 0.325337π-0.325337\pi
0.521596 + 0.853193i 0.325337π0.325337\pi
594594 0 0
595595 0 0
596596 4.36353 0.178737
597597 −29.2224 −1.19600
598598 23.5934 0.964806
599599 −18.2253 −0.744667 −0.372333 0.928099i 0.621442π-0.621442\pi
−0.372333 + 0.928099i 0.621442π0.621442\pi
600600 0 0
601601 −34.6398 −1.41299 −0.706494 0.707719i 0.749724π-0.749724\pi
−0.706494 + 0.707719i 0.749724π0.749724\pi
602602 −31.2261 −1.27268
603603 0.585276 0.0238343
604604 9.42547 0.383517
605605 0 0
606606 −32.3375 −1.31362
607607 25.4482 1.03291 0.516456 0.856314i 0.327251π-0.327251\pi
0.516456 + 0.856314i 0.327251π0.327251\pi
608608 −21.0504 −0.853708
609609 0.834708 0.0338241
610610 0 0
611611 44.4458 1.79809
612612 −1.47652 −0.0596846
613613 −37.0616 −1.49690 −0.748452 0.663189i 0.769203π-0.769203\pi
−0.748452 + 0.663189i 0.769203π0.769203\pi
614614 11.3662 0.458701
615615 0 0
616616 0 0
617617 −27.5937 −1.11088 −0.555439 0.831557i 0.687450π-0.687450\pi
−0.555439 + 0.831557i 0.687450π0.687450\pi
618618 −33.4624 −1.34605
619619 20.4435 0.821694 0.410847 0.911704i 0.365233π-0.365233\pi
0.410847 + 0.911704i 0.365233π0.365233\pi
620620 0 0
621621 −15.9850 −0.641456
622622 −9.10280 −0.364989
623623 −22.2557 −0.891654
624624 −36.0283 −1.44229
625625 0 0
626626 −23.5480 −0.941167
627627 0 0
628628 10.5842 0.422354
629629 −5.76876 −0.230016
630630 0 0
631631 0.759137 0.0302208 0.0151104 0.999886i 0.495190π-0.495190\pi
0.0151104 + 0.999886i 0.495190π0.495190\pi
632632 15.1100 0.601045
633633 13.3722 0.531498
634634 −30.9182 −1.22792
635635 0 0
636636 −18.4366 −0.731060
637637 7.28342 0.288579
638638 0 0
639639 4.18186 0.165432
640640 0 0
641641 −14.9050 −0.588712 −0.294356 0.955696i 0.595105π-0.595105\pi
−0.294356 + 0.955696i 0.595105π0.595105\pi
642642 −32.8274 −1.29559
643643 27.6346 1.08980 0.544900 0.838501i 0.316568π-0.316568\pi
0.544900 + 0.838501i 0.316568π0.316568\pi
644644 6.37701 0.251289
645645 0 0
646646 −19.4598 −0.765635
647647 24.9785 0.982008 0.491004 0.871157i 0.336630π-0.336630\pi
0.491004 + 0.871157i 0.336630π0.336630\pi
648648 22.7452 0.893514
649649 0 0
650650 0 0
651651 3.04254 0.119247
652652 −2.67554 −0.104782
653653 27.7630 1.08645 0.543225 0.839587i 0.317203π-0.317203\pi
0.543225 + 0.839587i 0.317203π0.317203\pi
654654 28.7592 1.12457
655655 0 0
656656 −39.0353 −1.52407
657657 −7.97068 −0.310966
658658 44.5851 1.73811
659659 −21.5863 −0.840883 −0.420442 0.907320i 0.638125π-0.638125\pi
−0.420442 + 0.907320i 0.638125π0.638125\pi
660660 0 0
661661 −16.0174 −0.623003 −0.311502 0.950246i 0.600832π-0.600832\pi
−0.311502 + 0.950246i 0.600832π0.600832\pi
662662 0.774756 0.0301118
663663 −16.2535 −0.631234
664664 −6.64544 −0.257893
665665 0 0
666666 3.86062 0.149596
667667 −0.726273 −0.0281214
668668 −2.81830 −0.109043
669669 −17.2148 −0.665561
670670 0 0
671671 0 0
672672 −17.6372 −0.680368
673673 31.3469 1.20834 0.604168 0.796857i 0.293506π-0.293506\pi
0.604168 + 0.796857i 0.293506π0.293506\pi
674674 −56.4001 −2.17245
675675 0 0
676676 0.507645 0.0195248
677677 −30.6664 −1.17860 −0.589302 0.807913i 0.700597π-0.700597\pi
−0.589302 + 0.807913i 0.700597π0.700597\pi
678678 −0.755931 −0.0290314
679679 −5.08754 −0.195242
680680 0 0
681681 7.51888 0.288124
682682 0 0
683683 −3.27236 −0.125213 −0.0626066 0.998038i 0.519941π-0.519941\pi
−0.0626066 + 0.998038i 0.519941π0.519941\pi
684684 3.50898 0.134169
685685 0 0
686686 33.2857 1.27085
687687 5.35892 0.204456
688688 −41.4893 −1.58176
689689 −46.8263 −1.78394
690690 0 0
691691 −36.4946 −1.38832 −0.694160 0.719821i 0.744224π-0.744224\pi
−0.694160 + 0.719821i 0.744224π0.744224\pi
692692 1.55431 0.0590862
693693 0 0
694694 −5.94478 −0.225661
695695 0 0
696696 0.777253 0.0294617
697697 −17.6101 −0.667029
698698 −10.5415 −0.399002
699699 −20.7566 −0.785085
700700 0 0
701701 46.5607 1.75857 0.879286 0.476293i 0.158020π-0.158020\pi
0.879286 + 0.476293i 0.158020π0.158020\pi
702702 −25.3890 −0.958245
703703 13.7096 0.517068
704704 0 0
705705 0 0
706706 20.1811 0.759525
707707 −22.1994 −0.834894
708708 0.500645 0.0188154
709709 −35.5966 −1.33686 −0.668429 0.743776i 0.733033π-0.733033\pi
−0.668429 + 0.743776i 0.733033π0.733033\pi
710710 0 0
711711 −6.50930 −0.244118
712712 −20.7237 −0.776655
713713 −2.64729 −0.0991418
714714 −16.3044 −0.610178
715715 0 0
716716 3.70588 0.138495
717717 −39.5740 −1.47792
718718 39.9000 1.48906
719719 22.0913 0.823866 0.411933 0.911214i 0.364854π-0.364854\pi
0.411933 + 0.911214i 0.364854π0.364854\pi
720720 0 0
721721 −22.9716 −0.855507
722722 14.8097 0.551158
723723 −56.1728 −2.08909
724724 −11.5423 −0.428966
725725 0 0
726726 0 0
727727 45.5415 1.68904 0.844521 0.535522i 0.179885π-0.179885\pi
0.844521 + 0.535522i 0.179885π0.179885\pi
728728 −17.3336 −0.642425
729729 14.7727 0.547137
730730 0 0
731731 −18.7171 −0.692278
732732 −2.52498 −0.0933260
733733 11.3789 0.420289 0.210145 0.977670i 0.432607π-0.432607\pi
0.210145 + 0.977670i 0.432607π0.432607\pi
734734 33.7368 1.24525
735735 0 0
736736 15.3459 0.565659
737737 0 0
738738 11.7852 0.433818
739739 −4.33778 −0.159568 −0.0797838 0.996812i 0.525423π-0.525423\pi
−0.0797838 + 0.996812i 0.525423π0.525423\pi
740740 0 0
741741 38.6269 1.41900
742742 −46.9730 −1.72443
743743 17.2945 0.634473 0.317237 0.948346i 0.397245π-0.397245\pi
0.317237 + 0.948346i 0.397245π0.397245\pi
744744 2.83311 0.103867
745745 0 0
746746 −12.4424 −0.455549
747747 2.86281 0.104745
748748 0 0
749749 −22.5357 −0.823437
750750 0 0
751751 −31.5130 −1.14993 −0.574963 0.818179i 0.694984π-0.694984\pi
−0.574963 + 0.818179i 0.694984π0.694984\pi
752752 59.2390 2.16022
753753 47.0730 1.71544
754754 −1.15354 −0.0420094
755755 0 0
756756 −6.86233 −0.249581
757757 9.27739 0.337192 0.168596 0.985685i 0.446077π-0.446077\pi
0.168596 + 0.985685i 0.446077π0.446077\pi
758758 38.3718 1.39373
759759 0 0
760760 0 0
761761 −4.15810 −0.150731 −0.0753655 0.997156i 0.524012π-0.524012\pi
−0.0753655 + 0.997156i 0.524012π0.524012\pi
762762 7.94102 0.287673
763763 19.7429 0.714742
764764 2.29838 0.0831524
765765 0 0
766766 −4.03783 −0.145893
767767 1.27156 0.0459135
768768 −30.7894 −1.11102
769769 16.8800 0.608709 0.304355 0.952559i 0.401559π-0.401559\pi
0.304355 + 0.952559i 0.401559π0.401559\pi
770770 0 0
771771 48.7305 1.75499
772772 −7.10818 −0.255829
773773 −8.47760 −0.304918 −0.152459 0.988310i 0.548719π-0.548719\pi
−0.152459 + 0.988310i 0.548719π0.548719\pi
774774 12.5261 0.450240
775775 0 0
776776 −4.73735 −0.170061
777777 11.4866 0.412081
778778 56.2114 2.01527
779779 41.8508 1.49946
780780 0 0
781781 0 0
782782 14.1863 0.507303
783783 0.781546 0.0279302
784784 9.70760 0.346700
785785 0 0
786786 −5.19022 −0.185129
787787 53.6166 1.91122 0.955612 0.294628i 0.0951958π-0.0951958\pi
0.955612 + 0.294628i 0.0951958π0.0951958\pi
788788 10.6201 0.378325
789789 10.7448 0.382525
790790 0 0
791791 −0.518940 −0.0184514
792792 0 0
793793 −6.41307 −0.227735
794794 45.4946 1.61454
795795 0 0
796796 10.9154 0.386887
797797 28.5448 1.01111 0.505554 0.862795i 0.331288π-0.331288\pi
0.505554 + 0.862795i 0.331288π0.331288\pi
798798 38.7479 1.37166
799799 26.7246 0.945448
800800 0 0
801801 8.92765 0.315443
802802 −3.12290 −0.110273
803803 0 0
804804 −0.947515 −0.0334163
805805 0 0
806806 −4.20469 −0.148104
807807 13.2421 0.466143
808808 −20.6713 −0.727215
809809 36.9460 1.29895 0.649477 0.760382i 0.274988π-0.274988\pi
0.649477 + 0.760382i 0.274988π0.274988\pi
810810 0 0
811811 −38.3768 −1.34759 −0.673795 0.738918i 0.735337π-0.735337\pi
−0.673795 + 0.738918i 0.735337π0.735337\pi
812812 −0.311788 −0.0109416
813813 9.99209 0.350438
814814 0 0
815815 0 0
816816 −21.6632 −0.758365
817817 44.4818 1.55622
818818 22.4319 0.784314
819819 7.46718 0.260924
820820 0 0
821821 −10.2496 −0.357715 −0.178858 0.983875i 0.557240π-0.557240\pi
−0.178858 + 0.983875i 0.557240π0.557240\pi
822822 61.1074 2.13137
823823 25.2296 0.879448 0.439724 0.898133i 0.355076π-0.355076\pi
0.439724 + 0.898133i 0.355076π0.355076\pi
824824 −21.3904 −0.745170
825825 0 0
826826 1.27555 0.0443820
827827 −18.3485 −0.638041 −0.319020 0.947748i 0.603354π-0.603354\pi
−0.319020 + 0.947748i 0.603354π0.603354\pi
828828 −2.55808 −0.0888993
829829 24.3826 0.846842 0.423421 0.905933i 0.360829π-0.360829\pi
0.423421 + 0.905933i 0.360829π0.360829\pi
830830 0 0
831831 −21.1178 −0.732567
832832 −12.1143 −0.419987
833833 4.37941 0.151737
834834 −37.9919 −1.31555
835835 0 0
836836 0 0
837837 2.84876 0.0984676
838838 −36.6272 −1.26526
839839 −42.2808 −1.45970 −0.729848 0.683609i 0.760409π-0.760409\pi
−0.729848 + 0.683609i 0.760409π0.760409\pi
840840 0 0
841841 −28.9645 −0.998776
842842 29.6212 1.02082
843843 27.0935 0.933151
844844 −4.99491 −0.171932
845845 0 0
846846 −17.8849 −0.614895
847847 0 0
848848 −62.4117 −2.14323
849849 −43.3847 −1.48896
850850 0 0
851851 −9.99444 −0.342605
852852 −6.77009 −0.231939
853853 15.3885 0.526891 0.263445 0.964674i 0.415141π-0.415141\pi
0.263445 + 0.964674i 0.415141π0.415141\pi
854854 −6.43317 −0.220138
855855 0 0
856856 −20.9845 −0.717236
857857 36.1038 1.23328 0.616641 0.787245i 0.288493π-0.288493\pi
0.616641 + 0.787245i 0.288493π0.288493\pi
858858 0 0
859859 48.3509 1.64971 0.824855 0.565344i 0.191257π-0.191257\pi
0.824855 + 0.565344i 0.191257π0.191257\pi
860860 0 0
861861 35.0648 1.19501
862862 55.3386 1.88484
863863 37.1887 1.26592 0.632959 0.774186i 0.281840π-0.281840\pi
0.632959 + 0.774186i 0.281840π0.281840\pi
864864 −16.5139 −0.561813
865865 0 0
866866 −52.1051 −1.77060
867867 23.7984 0.808237
868868 −1.13648 −0.0385745
869869 0 0
870870 0 0
871871 −2.40655 −0.0815427
872872 18.3840 0.622560
873873 2.04082 0.0690712
874874 −33.7143 −1.14040
875875 0 0
876876 12.9039 0.435982
877877 −25.7932 −0.870976 −0.435488 0.900195i 0.643424π-0.643424\pi
−0.435488 + 0.900195i 0.643424π0.643424\pi
878878 58.9376 1.98905
879879 27.7221 0.935044
880880 0 0
881881 −45.6820 −1.53906 −0.769532 0.638608i 0.779511π-0.779511\pi
−0.769532 + 0.638608i 0.779511π0.779511\pi
882882 −2.93083 −0.0986861
883883 −4.96631 −0.167130 −0.0835648 0.996502i 0.526631π-0.526631\pi
−0.0835648 + 0.996502i 0.526631π0.526631\pi
884884 6.07115 0.204195
885885 0 0
886886 −38.8621 −1.30560
887887 28.9232 0.971147 0.485573 0.874196i 0.338611π-0.338611\pi
0.485573 + 0.874196i 0.338611π0.338611\pi
888888 10.6960 0.358934
889889 5.45144 0.182836
890890 0 0
891891 0 0
892892 6.43021 0.215299
893893 −63.5117 −2.12534
894894 −19.3287 −0.646448
895895 0 0
896896 −30.0146 −1.00272
897897 −28.1594 −0.940213
898898 −51.9406 −1.73328
899899 0.129432 0.00431681
900900 0 0
901901 −28.1559 −0.938010
902902 0 0
903903 37.2692 1.24024
904904 −0.483220 −0.0160717
905905 0 0
906906 −41.7510 −1.38708
907907 −13.2527 −0.440049 −0.220024 0.975494i 0.570614π-0.570614\pi
−0.220024 + 0.975494i 0.570614π0.570614\pi
908908 −2.80852 −0.0932040
909909 8.90507 0.295363
910910 0 0
911911 13.7326 0.454982 0.227491 0.973780i 0.426948π-0.426948\pi
0.227491 + 0.973780i 0.426948π0.426948\pi
912912 51.4833 1.70478
913913 0 0
914914 −64.7117 −2.14047
915915 0 0
916916 −2.00171 −0.0661384
917917 −3.56304 −0.117662
918918 −15.2660 −0.503853
919919 59.3800 1.95876 0.979382 0.202016i 0.0647493π-0.0647493\pi
0.979382 + 0.202016i 0.0647493π0.0647493\pi
920920 0 0
921921 −13.5658 −0.447009
922922 −14.6993 −0.484095
923923 −17.1950 −0.565981
924924 0 0
925925 0 0
926926 −6.96713 −0.228954
927927 9.21484 0.302655
928928 −0.750301 −0.0246298
929929 19.5881 0.642664 0.321332 0.946967i 0.395869π-0.395869\pi
0.321332 + 0.946967i 0.395869π0.395869\pi
930930 0 0
931931 −10.4078 −0.341101
932932 7.75317 0.253964
933933 10.8644 0.355686
934934 11.1327 0.364275
935935 0 0
936936 6.95320 0.227272
937937 40.5452 1.32455 0.662277 0.749259i 0.269590π-0.269590\pi
0.662277 + 0.749259i 0.269590π0.269590\pi
938938 −2.41409 −0.0788227
939939 28.1052 0.917178
940940 0 0
941941 −0.409691 −0.0133556 −0.00667778 0.999978i 0.502126π-0.502126\pi
−0.00667778 + 0.999978i 0.502126π0.502126\pi
942942 −46.8835 −1.52755
943943 −30.5096 −0.993530
944944 1.69478 0.0551605
945945 0 0
946946 0 0
947947 2.45729 0.0798511 0.0399256 0.999203i 0.487288π-0.487288\pi
0.0399256 + 0.999203i 0.487288π0.487288\pi
948948 10.5380 0.342259
949949 32.7739 1.06389
950950 0 0
951951 36.9017 1.19662
952952 −10.4224 −0.337792
953953 61.0264 1.97684 0.988420 0.151744i 0.0484888π-0.0484888\pi
0.988420 + 0.151744i 0.0484888π0.0484888\pi
954954 18.8428 0.610057
955955 0 0
956956 14.7820 0.478085
957957 0 0
958958 34.4309 1.11241
959959 41.9497 1.35463
960960 0 0
961961 −30.5282 −0.984781
962962 −15.8742 −0.511803
963963 9.03999 0.291310
964964 20.9822 0.675790
965965 0 0
966966 −28.2476 −0.908851
967967 17.1997 0.553106 0.276553 0.960999i 0.410808π-0.410808\pi
0.276553 + 0.960999i 0.410808π0.410808\pi
968968 0 0
969969 23.2258 0.746119
970970 0 0
971971 27.2090 0.873177 0.436589 0.899661i 0.356187π-0.356187\pi
0.436589 + 0.899661i 0.356187π0.356187\pi
972972 6.68488 0.214417
973973 −26.0811 −0.836121
974974 26.1083 0.836563
975975 0 0
976976 −8.54757 −0.273601
977977 −19.1722 −0.613374 −0.306687 0.951810i 0.599220π-0.599220\pi
−0.306687 + 0.951810i 0.599220π0.599220\pi
978978 11.8516 0.378971
979979 0 0
980980 0 0
981981 −7.91969 −0.252856
982982 31.9836 1.02064
983983 −24.1305 −0.769642 −0.384821 0.922991i 0.625737π-0.625737\pi
−0.384821 + 0.922991i 0.625737π0.625737\pi
984984 32.6512 1.04088
985985 0 0
986986 −0.693605 −0.0220889
987987 −53.2135 −1.69380
988988 −14.4283 −0.459024
989989 −32.4276 −1.03114
990990 0 0
991991 27.7081 0.880177 0.440089 0.897954i 0.354947π-0.354947\pi
0.440089 + 0.897954i 0.354947π0.354947\pi
992992 −2.73487 −0.0868323
993993 −0.924692 −0.0293442
994994 −17.2489 −0.547101
995995 0 0
996996 −4.63466 −0.146855
997997 33.4912 1.06068 0.530339 0.847786i 0.322065π-0.322065\pi
0.530339 + 0.847786i 0.322065π0.322065\pi
998998 −68.5984 −2.17144
999999 10.7551 0.340275
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3025.2.a.bl.1.7 8
5.2 odd 4 605.2.b.g.364.7 8
5.3 odd 4 605.2.b.g.364.2 8
5.4 even 2 inner 3025.2.a.bl.1.2 8
11.3 even 5 275.2.h.d.251.4 16
11.4 even 5 275.2.h.d.126.4 16
11.10 odd 2 3025.2.a.bk.1.2 8
55.2 even 20 605.2.j.g.444.1 16
55.3 odd 20 55.2.j.a.9.1 16
55.4 even 10 275.2.h.d.126.1 16
55.7 even 20 605.2.j.d.269.4 16
55.8 even 20 605.2.j.d.9.4 16
55.13 even 20 605.2.j.g.444.4 16
55.14 even 10 275.2.h.d.251.1 16
55.17 even 20 605.2.j.g.124.4 16
55.18 even 20 605.2.j.d.269.1 16
55.27 odd 20 605.2.j.h.124.1 16
55.28 even 20 605.2.j.g.124.1 16
55.32 even 4 605.2.b.f.364.2 8
55.37 odd 20 55.2.j.a.49.1 yes 16
55.38 odd 20 605.2.j.h.124.4 16
55.42 odd 20 605.2.j.h.444.4 16
55.43 even 4 605.2.b.f.364.7 8
55.47 odd 20 55.2.j.a.9.4 yes 16
55.48 odd 20 55.2.j.a.49.4 yes 16
55.52 even 20 605.2.j.d.9.1 16
55.53 odd 20 605.2.j.h.444.1 16
55.54 odd 2 3025.2.a.bk.1.7 8
165.47 even 20 495.2.ba.a.64.1 16
165.92 even 20 495.2.ba.a.379.4 16
165.113 even 20 495.2.ba.a.64.4 16
165.158 even 20 495.2.ba.a.379.1 16
220.3 even 20 880.2.cd.c.449.1 16
220.47 even 20 880.2.cd.c.449.4 16
220.103 even 20 880.2.cd.c.49.4 16
220.147 even 20 880.2.cd.c.49.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.j.a.9.1 16 55.3 odd 20
55.2.j.a.9.4 yes 16 55.47 odd 20
55.2.j.a.49.1 yes 16 55.37 odd 20
55.2.j.a.49.4 yes 16 55.48 odd 20
275.2.h.d.126.1 16 55.4 even 10
275.2.h.d.126.4 16 11.4 even 5
275.2.h.d.251.1 16 55.14 even 10
275.2.h.d.251.4 16 11.3 even 5
495.2.ba.a.64.1 16 165.47 even 20
495.2.ba.a.64.4 16 165.113 even 20
495.2.ba.a.379.1 16 165.158 even 20
495.2.ba.a.379.4 16 165.92 even 20
605.2.b.f.364.2 8 55.32 even 4
605.2.b.f.364.7 8 55.43 even 4
605.2.b.g.364.2 8 5.3 odd 4
605.2.b.g.364.7 8 5.2 odd 4
605.2.j.d.9.1 16 55.52 even 20
605.2.j.d.9.4 16 55.8 even 20
605.2.j.d.269.1 16 55.18 even 20
605.2.j.d.269.4 16 55.7 even 20
605.2.j.g.124.1 16 55.28 even 20
605.2.j.g.124.4 16 55.17 even 20
605.2.j.g.444.1 16 55.2 even 20
605.2.j.g.444.4 16 55.13 even 20
605.2.j.h.124.1 16 55.27 odd 20
605.2.j.h.124.4 16 55.38 odd 20
605.2.j.h.444.1 16 55.53 odd 20
605.2.j.h.444.4 16 55.42 odd 20
880.2.cd.c.49.1 16 220.147 even 20
880.2.cd.c.49.4 16 220.103 even 20
880.2.cd.c.449.1 16 220.3 even 20
880.2.cd.c.449.4 16 220.47 even 20
3025.2.a.bk.1.2 8 11.10 odd 2
3025.2.a.bk.1.7 8 55.54 odd 2
3025.2.a.bl.1.2 8 5.4 even 2 inner
3025.2.a.bl.1.7 8 1.1 even 1 trivial