Properties

Label 3025.2.a.bl.1.7
Level $3025$
Weight $2$
Character 3025.1
Self dual yes
Analytic conductor $24.155$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3025,2,Mod(1,3025)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3025, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3025.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3025 = 5^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3025.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(24.1547466114\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.8.1480160000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 9x^{6} + 27x^{4} - 31x^{2} + 11 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 55)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(1.65458\) of defining polynomial
Character \(\chi\) \(=\) 3025.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.65458 q^{2} -1.97479 q^{3} +0.737640 q^{4} -3.26745 q^{6} -2.24307 q^{7} -2.08868 q^{8} +0.899788 q^{9} +O(q^{10})\) \(q+1.65458 q^{2} -1.97479 q^{3} +0.737640 q^{4} -3.26745 q^{6} -2.24307 q^{7} -2.08868 q^{8} +0.899788 q^{9} -1.45668 q^{12} -3.69976 q^{13} -3.71135 q^{14} -4.93117 q^{16} -2.22461 q^{17} +1.48877 q^{18} +5.28684 q^{19} +4.42960 q^{21} -3.85415 q^{23} +4.12469 q^{24} -6.12155 q^{26} +4.14747 q^{27} -1.65458 q^{28} +0.188439 q^{29} +0.686867 q^{31} -3.98166 q^{32} -3.68079 q^{34} +0.663720 q^{36} +2.59316 q^{37} +8.74751 q^{38} +7.30624 q^{39} +7.91604 q^{41} +7.32913 q^{42} +8.41368 q^{43} -6.37701 q^{46} -12.0132 q^{47} +9.73801 q^{48} -1.96862 q^{49} +4.39313 q^{51} -2.72909 q^{52} +12.6566 q^{53} +6.86233 q^{54} +4.68506 q^{56} -10.4404 q^{57} +0.311788 q^{58} -0.343688 q^{59} +1.73338 q^{61} +1.13648 q^{62} -2.01829 q^{63} +3.27435 q^{64} +0.650461 q^{67} -1.64096 q^{68} +7.61114 q^{69} +4.64760 q^{71} -1.87937 q^{72} -8.85841 q^{73} +4.29059 q^{74} +3.89979 q^{76} +12.0888 q^{78} -7.23426 q^{79} -10.8897 q^{81} +13.0977 q^{82} +3.18165 q^{83} +3.26745 q^{84} +13.9211 q^{86} -0.372127 q^{87} +9.92195 q^{89} +8.29883 q^{91} -2.84298 q^{92} -1.35642 q^{93} -19.8768 q^{94} +7.86294 q^{96} +2.26811 q^{97} -3.25724 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{4} + 6 q^{6} + 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 2 q^{4} + 6 q^{6} + 4 q^{9} - 4 q^{14} - 22 q^{16} + 12 q^{19} + 4 q^{21} + 2 q^{24} + 10 q^{26} + 24 q^{29} + 14 q^{31} + 8 q^{34} + 20 q^{36} + 30 q^{39} + 34 q^{41} + 24 q^{46} - 30 q^{49} + 54 q^{51} + 20 q^{54} - 10 q^{56} - 6 q^{59} + 20 q^{61} + 14 q^{64} + 32 q^{69} - 42 q^{71} - 4 q^{74} + 28 q^{76} + 16 q^{79} - 36 q^{81} - 6 q^{84} + 46 q^{86} - 12 q^{89} + 20 q^{91} - 42 q^{94} - 8 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.65458 1.16997 0.584983 0.811046i \(-0.301101\pi\)
0.584983 + 0.811046i \(0.301101\pi\)
\(3\) −1.97479 −1.14014 −0.570072 0.821595i \(-0.693085\pi\)
−0.570072 + 0.821595i \(0.693085\pi\)
\(4\) 0.737640 0.368820
\(5\) 0 0
\(6\) −3.26745 −1.33393
\(7\) −2.24307 −0.847802 −0.423901 0.905708i \(-0.639340\pi\)
−0.423901 + 0.905708i \(0.639340\pi\)
\(8\) −2.08868 −0.738459
\(9\) 0.899788 0.299929
\(10\) 0 0
\(11\) 0 0
\(12\) −1.45668 −0.420508
\(13\) −3.69976 −1.02613 −0.513064 0.858350i \(-0.671490\pi\)
−0.513064 + 0.858350i \(0.671490\pi\)
\(14\) −3.71135 −0.991900
\(15\) 0 0
\(16\) −4.93117 −1.23279
\(17\) −2.22461 −0.539546 −0.269773 0.962924i \(-0.586949\pi\)
−0.269773 + 0.962924i \(0.586949\pi\)
\(18\) 1.48877 0.350907
\(19\) 5.28684 1.21288 0.606442 0.795127i \(-0.292596\pi\)
0.606442 + 0.795127i \(0.292596\pi\)
\(20\) 0 0
\(21\) 4.42960 0.966617
\(22\) 0 0
\(23\) −3.85415 −0.803647 −0.401823 0.915717i \(-0.631623\pi\)
−0.401823 + 0.915717i \(0.631623\pi\)
\(24\) 4.12469 0.841950
\(25\) 0 0
\(26\) −6.12155 −1.20053
\(27\) 4.14747 0.798182
\(28\) −1.65458 −0.312687
\(29\) 0.188439 0.0349922 0.0174961 0.999847i \(-0.494431\pi\)
0.0174961 + 0.999847i \(0.494431\pi\)
\(30\) 0 0
\(31\) 0.686867 0.123365 0.0616824 0.998096i \(-0.480353\pi\)
0.0616824 + 0.998096i \(0.480353\pi\)
\(32\) −3.98166 −0.703866
\(33\) 0 0
\(34\) −3.68079 −0.631251
\(35\) 0 0
\(36\) 0.663720 0.110620
\(37\) 2.59316 0.426313 0.213156 0.977018i \(-0.431626\pi\)
0.213156 + 0.977018i \(0.431626\pi\)
\(38\) 8.74751 1.41903
\(39\) 7.30624 1.16993
\(40\) 0 0
\(41\) 7.91604 1.23628 0.618139 0.786069i \(-0.287887\pi\)
0.618139 + 0.786069i \(0.287887\pi\)
\(42\) 7.32913 1.13091
\(43\) 8.41368 1.28307 0.641537 0.767092i \(-0.278297\pi\)
0.641537 + 0.767092i \(0.278297\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) −6.37701 −0.940239
\(47\) −12.0132 −1.75230 −0.876151 0.482037i \(-0.839897\pi\)
−0.876151 + 0.482037i \(0.839897\pi\)
\(48\) 9.73801 1.40556
\(49\) −1.96862 −0.281231
\(50\) 0 0
\(51\) 4.39313 0.615161
\(52\) −2.72909 −0.378457
\(53\) 12.6566 1.73851 0.869257 0.494360i \(-0.164597\pi\)
0.869257 + 0.494360i \(0.164597\pi\)
\(54\) 6.86233 0.933845
\(55\) 0 0
\(56\) 4.68506 0.626067
\(57\) −10.4404 −1.38286
\(58\) 0.311788 0.0409397
\(59\) −0.343688 −0.0447444 −0.0223722 0.999750i \(-0.507122\pi\)
−0.0223722 + 0.999750i \(0.507122\pi\)
\(60\) 0 0
\(61\) 1.73338 0.221936 0.110968 0.993824i \(-0.464605\pi\)
0.110968 + 0.993824i \(0.464605\pi\)
\(62\) 1.13648 0.144333
\(63\) −2.01829 −0.254281
\(64\) 3.27435 0.409293
\(65\) 0 0
\(66\) 0 0
\(67\) 0.650461 0.0794664 0.0397332 0.999210i \(-0.487349\pi\)
0.0397332 + 0.999210i \(0.487349\pi\)
\(68\) −1.64096 −0.198996
\(69\) 7.61114 0.916273
\(70\) 0 0
\(71\) 4.64760 0.551569 0.275785 0.961219i \(-0.411062\pi\)
0.275785 + 0.961219i \(0.411062\pi\)
\(72\) −1.87937 −0.221485
\(73\) −8.85841 −1.03680 −0.518399 0.855139i \(-0.673472\pi\)
−0.518399 + 0.855139i \(0.673472\pi\)
\(74\) 4.29059 0.498772
\(75\) 0 0
\(76\) 3.89979 0.447336
\(77\) 0 0
\(78\) 12.0888 1.36878
\(79\) −7.23426 −0.813918 −0.406959 0.913447i \(-0.633411\pi\)
−0.406959 + 0.913447i \(0.633411\pi\)
\(80\) 0 0
\(81\) −10.8897 −1.20997
\(82\) 13.0977 1.44640
\(83\) 3.18165 0.349232 0.174616 0.984637i \(-0.444132\pi\)
0.174616 + 0.984637i \(0.444132\pi\)
\(84\) 3.26745 0.356508
\(85\) 0 0
\(86\) 13.9211 1.50115
\(87\) −0.372127 −0.0398962
\(88\) 0 0
\(89\) 9.92195 1.05172 0.525862 0.850570i \(-0.323743\pi\)
0.525862 + 0.850570i \(0.323743\pi\)
\(90\) 0 0
\(91\) 8.29883 0.869954
\(92\) −2.84298 −0.296401
\(93\) −1.35642 −0.140654
\(94\) −19.8768 −2.05013
\(95\) 0 0
\(96\) 7.86294 0.802508
\(97\) 2.26811 0.230292 0.115146 0.993349i \(-0.463266\pi\)
0.115146 + 0.993349i \(0.463266\pi\)
\(98\) −3.25724 −0.329031
\(99\) 0 0
\(100\) 0 0
\(101\) 9.89686 0.984774 0.492387 0.870376i \(-0.336124\pi\)
0.492387 + 0.870376i \(0.336124\pi\)
\(102\) 7.26879 0.719717
\(103\) 10.2411 1.00909 0.504544 0.863386i \(-0.331661\pi\)
0.504544 + 0.863386i \(0.331661\pi\)
\(104\) 7.72760 0.757753
\(105\) 0 0
\(106\) 20.9413 2.03400
\(107\) 10.0468 0.971261 0.485631 0.874164i \(-0.338590\pi\)
0.485631 + 0.874164i \(0.338590\pi\)
\(108\) 3.05934 0.294386
\(109\) −8.80173 −0.843053 −0.421527 0.906816i \(-0.638506\pi\)
−0.421527 + 0.906816i \(0.638506\pi\)
\(110\) 0 0
\(111\) −5.12094 −0.486058
\(112\) 11.0610 1.04516
\(113\) 0.231352 0.0217638 0.0108819 0.999941i \(-0.496536\pi\)
0.0108819 + 0.999941i \(0.496536\pi\)
\(114\) −17.2745 −1.61790
\(115\) 0 0
\(116\) 0.139000 0.0129058
\(117\) −3.32900 −0.307766
\(118\) −0.568660 −0.0523494
\(119\) 4.98996 0.457429
\(120\) 0 0
\(121\) 0 0
\(122\) 2.86801 0.259658
\(123\) −15.6325 −1.40953
\(124\) 0.506660 0.0454995
\(125\) 0 0
\(126\) −3.33943 −0.297500
\(127\) −2.43034 −0.215658 −0.107829 0.994169i \(-0.534390\pi\)
−0.107829 + 0.994169i \(0.534390\pi\)
\(128\) 13.3810 1.18272
\(129\) −16.6152 −1.46289
\(130\) 0 0
\(131\) 1.58846 0.138785 0.0693924 0.997589i \(-0.477894\pi\)
0.0693924 + 0.997589i \(0.477894\pi\)
\(132\) 0 0
\(133\) −11.8588 −1.02829
\(134\) 1.07624 0.0929730
\(135\) 0 0
\(136\) 4.64649 0.398433
\(137\) −18.7019 −1.59781 −0.798905 0.601457i \(-0.794587\pi\)
−0.798905 + 0.601457i \(0.794587\pi\)
\(138\) 12.5932 1.07201
\(139\) 11.6274 0.986222 0.493111 0.869966i \(-0.335860\pi\)
0.493111 + 0.869966i \(0.335860\pi\)
\(140\) 0 0
\(141\) 23.7235 1.99788
\(142\) 7.68984 0.645317
\(143\) 0 0
\(144\) −4.43700 −0.369750
\(145\) 0 0
\(146\) −14.6570 −1.21302
\(147\) 3.88761 0.320644
\(148\) 1.91282 0.157233
\(149\) 5.91553 0.484619 0.242309 0.970199i \(-0.422095\pi\)
0.242309 + 0.970199i \(0.422095\pi\)
\(150\) 0 0
\(151\) 12.7779 1.03985 0.519924 0.854213i \(-0.325960\pi\)
0.519924 + 0.854213i \(0.325960\pi\)
\(152\) −11.0425 −0.895665
\(153\) −2.00167 −0.161826
\(154\) 0 0
\(155\) 0 0
\(156\) 5.38937 0.431495
\(157\) 14.3487 1.14515 0.572574 0.819853i \(-0.305945\pi\)
0.572574 + 0.819853i \(0.305945\pi\)
\(158\) −11.9697 −0.952256
\(159\) −24.9941 −1.98216
\(160\) 0 0
\(161\) 8.64515 0.681333
\(162\) −18.0180 −1.41563
\(163\) −3.62716 −0.284101 −0.142051 0.989859i \(-0.545370\pi\)
−0.142051 + 0.989859i \(0.545370\pi\)
\(164\) 5.83919 0.455964
\(165\) 0 0
\(166\) 5.26430 0.408589
\(167\) −3.82070 −0.295655 −0.147827 0.989013i \(-0.547228\pi\)
−0.147827 + 0.989013i \(0.547228\pi\)
\(168\) −9.25199 −0.713807
\(169\) 0.688202 0.0529386
\(170\) 0 0
\(171\) 4.75703 0.363779
\(172\) 6.20627 0.473224
\(173\) 2.10714 0.160203 0.0801016 0.996787i \(-0.474476\pi\)
0.0801016 + 0.996787i \(0.474476\pi\)
\(174\) −0.615714 −0.0466772
\(175\) 0 0
\(176\) 0 0
\(177\) 0.678711 0.0510151
\(178\) 16.4167 1.23048
\(179\) 5.02397 0.375509 0.187755 0.982216i \(-0.439879\pi\)
0.187755 + 0.982216i \(0.439879\pi\)
\(180\) 0 0
\(181\) −15.6476 −1.16308 −0.581539 0.813519i \(-0.697549\pi\)
−0.581539 + 0.813519i \(0.697549\pi\)
\(182\) 13.7311 1.01782
\(183\) −3.42305 −0.253039
\(184\) 8.05008 0.593460
\(185\) 0 0
\(186\) −2.24430 −0.164560
\(187\) 0 0
\(188\) −8.86140 −0.646284
\(189\) −9.30309 −0.676700
\(190\) 0 0
\(191\) 3.11585 0.225455 0.112728 0.993626i \(-0.464041\pi\)
0.112728 + 0.993626i \(0.464041\pi\)
\(192\) −6.46614 −0.466653
\(193\) −9.63638 −0.693642 −0.346821 0.937931i \(-0.612739\pi\)
−0.346821 + 0.937931i \(0.612739\pi\)
\(194\) 3.75277 0.269433
\(195\) 0 0
\(196\) −1.45213 −0.103724
\(197\) 14.3974 1.02577 0.512885 0.858457i \(-0.328577\pi\)
0.512885 + 0.858457i \(0.328577\pi\)
\(198\) 0 0
\(199\) 14.7978 1.04899 0.524493 0.851415i \(-0.324255\pi\)
0.524493 + 0.851415i \(0.324255\pi\)
\(200\) 0 0
\(201\) −1.28452 −0.0906032
\(202\) 16.3752 1.15215
\(203\) −0.422682 −0.0296665
\(204\) 3.24055 0.226884
\(205\) 0 0
\(206\) 16.9448 1.18060
\(207\) −3.46792 −0.241037
\(208\) 18.2441 1.26500
\(209\) 0 0
\(210\) 0 0
\(211\) −6.77147 −0.466167 −0.233084 0.972457i \(-0.574882\pi\)
−0.233084 + 0.972457i \(0.574882\pi\)
\(212\) 9.33600 0.641199
\(213\) −9.17803 −0.628868
\(214\) 16.6233 1.13634
\(215\) 0 0
\(216\) −8.66273 −0.589424
\(217\) −1.54069 −0.104589
\(218\) −14.5632 −0.986344
\(219\) 17.4935 1.18210
\(220\) 0 0
\(221\) 8.23051 0.553644
\(222\) −8.47302 −0.568672
\(223\) 8.71727 0.583752 0.291876 0.956456i \(-0.405721\pi\)
0.291876 + 0.956456i \(0.405721\pi\)
\(224\) 8.93117 0.596739
\(225\) 0 0
\(226\) 0.382791 0.0254629
\(227\) −3.80744 −0.252708 −0.126354 0.991985i \(-0.540328\pi\)
−0.126354 + 0.991985i \(0.540328\pi\)
\(228\) −7.70125 −0.510028
\(229\) −2.71367 −0.179324 −0.0896621 0.995972i \(-0.528579\pi\)
−0.0896621 + 0.995972i \(0.528579\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −0.393588 −0.0258403
\(233\) 10.5108 0.688584 0.344292 0.938863i \(-0.388119\pi\)
0.344292 + 0.938863i \(0.388119\pi\)
\(234\) −5.50809 −0.360075
\(235\) 0 0
\(236\) −0.253518 −0.0165026
\(237\) 14.2861 0.927984
\(238\) 8.25629 0.535176
\(239\) 20.0396 1.29625 0.648127 0.761532i \(-0.275552\pi\)
0.648127 + 0.761532i \(0.275552\pi\)
\(240\) 0 0
\(241\) 28.4450 1.83230 0.916152 0.400832i \(-0.131279\pi\)
0.916152 + 0.400832i \(0.131279\pi\)
\(242\) 0 0
\(243\) 9.06251 0.581361
\(244\) 1.27861 0.0818545
\(245\) 0 0
\(246\) −25.8652 −1.64911
\(247\) −19.5600 −1.24457
\(248\) −1.43464 −0.0910999
\(249\) −6.28309 −0.398175
\(250\) 0 0
\(251\) −23.8370 −1.50458 −0.752289 0.658833i \(-0.771050\pi\)
−0.752289 + 0.658833i \(0.771050\pi\)
\(252\) −1.48877 −0.0937838
\(253\) 0 0
\(254\) −4.02120 −0.252313
\(255\) 0 0
\(256\) 15.5913 0.974454
\(257\) −24.6763 −1.53927 −0.769633 0.638486i \(-0.779561\pi\)
−0.769633 + 0.638486i \(0.779561\pi\)
\(258\) −27.4913 −1.71153
\(259\) −5.81665 −0.361429
\(260\) 0 0
\(261\) 0.169555 0.0104952
\(262\) 2.62824 0.162373
\(263\) −5.44098 −0.335505 −0.167753 0.985829i \(-0.553651\pi\)
−0.167753 + 0.985829i \(0.553651\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −19.6213 −1.20306
\(267\) −19.5937 −1.19912
\(268\) 0.479806 0.0293088
\(269\) −6.70557 −0.408846 −0.204423 0.978883i \(-0.565532\pi\)
−0.204423 + 0.978883i \(0.565532\pi\)
\(270\) 0 0
\(271\) −5.05983 −0.307363 −0.153681 0.988120i \(-0.549113\pi\)
−0.153681 + 0.988120i \(0.549113\pi\)
\(272\) 10.9699 0.665148
\(273\) −16.3884 −0.991873
\(274\) −30.9438 −1.86938
\(275\) 0 0
\(276\) 5.61428 0.337940
\(277\) 10.6937 0.642522 0.321261 0.946991i \(-0.395893\pi\)
0.321261 + 0.946991i \(0.395893\pi\)
\(278\) 19.2385 1.15385
\(279\) 0.618034 0.0370007
\(280\) 0 0
\(281\) −13.7197 −0.818450 −0.409225 0.912434i \(-0.634201\pi\)
−0.409225 + 0.912434i \(0.634201\pi\)
\(282\) 39.2524 2.33745
\(283\) 21.9693 1.30594 0.652969 0.757385i \(-0.273523\pi\)
0.652969 + 0.757385i \(0.273523\pi\)
\(284\) 3.42826 0.203430
\(285\) 0 0
\(286\) 0 0
\(287\) −17.7563 −1.04812
\(288\) −3.58265 −0.211110
\(289\) −12.0511 −0.708890
\(290\) 0 0
\(291\) −4.47903 −0.262566
\(292\) −6.53432 −0.382392
\(293\) −14.0380 −0.820110 −0.410055 0.912061i \(-0.634491\pi\)
−0.410055 + 0.912061i \(0.634491\pi\)
\(294\) 6.43236 0.375143
\(295\) 0 0
\(296\) −5.41627 −0.314815
\(297\) 0 0
\(298\) 9.78772 0.566988
\(299\) 14.2594 0.824644
\(300\) 0 0
\(301\) −18.8725 −1.08779
\(302\) 21.1420 1.21659
\(303\) −19.5442 −1.12278
\(304\) −26.0703 −1.49523
\(305\) 0 0
\(306\) −3.31193 −0.189331
\(307\) 6.86951 0.392064 0.196032 0.980598i \(-0.437194\pi\)
0.196032 + 0.980598i \(0.437194\pi\)
\(308\) 0 0
\(309\) −20.2241 −1.15051
\(310\) 0 0
\(311\) −5.50157 −0.311966 −0.155983 0.987760i \(-0.549854\pi\)
−0.155983 + 0.987760i \(0.549854\pi\)
\(312\) −15.2604 −0.863948
\(313\) −14.2320 −0.804440 −0.402220 0.915543i \(-0.631761\pi\)
−0.402220 + 0.915543i \(0.631761\pi\)
\(314\) 23.7411 1.33979
\(315\) 0 0
\(316\) −5.33628 −0.300189
\(317\) −18.6864 −1.04953 −0.524767 0.851246i \(-0.675847\pi\)
−0.524767 + 0.851246i \(0.675847\pi\)
\(318\) −41.3547 −2.31906
\(319\) 0 0
\(320\) 0 0
\(321\) −19.8403 −1.10738
\(322\) 14.3041 0.797137
\(323\) −11.7611 −0.654408
\(324\) −8.03271 −0.446262
\(325\) 0 0
\(326\) −6.00143 −0.332389
\(327\) 17.3816 0.961202
\(328\) −16.5340 −0.912940
\(329\) 26.9464 1.48560
\(330\) 0 0
\(331\) 0.468249 0.0257373 0.0128686 0.999917i \(-0.495904\pi\)
0.0128686 + 0.999917i \(0.495904\pi\)
\(332\) 2.34691 0.128804
\(333\) 2.33329 0.127864
\(334\) −6.32166 −0.345906
\(335\) 0 0
\(336\) −21.8431 −1.19164
\(337\) −34.0872 −1.85685 −0.928424 0.371522i \(-0.878836\pi\)
−0.928424 + 0.371522i \(0.878836\pi\)
\(338\) 1.13869 0.0619363
\(339\) −0.456871 −0.0248139
\(340\) 0 0
\(341\) 0 0
\(342\) 7.87090 0.425610
\(343\) 20.1173 1.08623
\(344\) −17.5735 −0.947498
\(345\) 0 0
\(346\) 3.48644 0.187432
\(347\) −3.59292 −0.192878 −0.0964391 0.995339i \(-0.530745\pi\)
−0.0964391 + 0.995339i \(0.530745\pi\)
\(348\) −0.274496 −0.0147145
\(349\) −6.37110 −0.341037 −0.170519 0.985354i \(-0.554544\pi\)
−0.170519 + 0.985354i \(0.554544\pi\)
\(350\) 0 0
\(351\) −15.3446 −0.819037
\(352\) 0 0
\(353\) 12.1971 0.649186 0.324593 0.945854i \(-0.394773\pi\)
0.324593 + 0.945854i \(0.394773\pi\)
\(354\) 1.12298 0.0596859
\(355\) 0 0
\(356\) 7.31883 0.387897
\(357\) −9.85411 −0.521535
\(358\) 8.31257 0.439333
\(359\) 24.1149 1.27273 0.636367 0.771386i \(-0.280436\pi\)
0.636367 + 0.771386i \(0.280436\pi\)
\(360\) 0 0
\(361\) 8.95069 0.471089
\(362\) −25.8902 −1.36076
\(363\) 0 0
\(364\) 6.12155 0.320856
\(365\) 0 0
\(366\) −5.66372 −0.296047
\(367\) 20.3899 1.06435 0.532173 0.846636i \(-0.321376\pi\)
0.532173 + 0.846636i \(0.321376\pi\)
\(368\) 19.0055 0.990729
\(369\) 7.12275 0.370796
\(370\) 0 0
\(371\) −28.3896 −1.47392
\(372\) −1.00055 −0.0518759
\(373\) −7.51997 −0.389369 −0.194685 0.980866i \(-0.562368\pi\)
−0.194685 + 0.980866i \(0.562368\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 25.0916 1.29400
\(377\) −0.697178 −0.0359065
\(378\) −15.3927 −0.791716
\(379\) 23.1912 1.19125 0.595627 0.803261i \(-0.296904\pi\)
0.595627 + 0.803261i \(0.296904\pi\)
\(380\) 0 0
\(381\) 4.79942 0.245881
\(382\) 5.15543 0.263775
\(383\) −2.44039 −0.124698 −0.0623491 0.998054i \(-0.519859\pi\)
−0.0623491 + 0.998054i \(0.519859\pi\)
\(384\) −26.4246 −1.34848
\(385\) 0 0
\(386\) −15.9442 −0.811537
\(387\) 7.57053 0.384832
\(388\) 1.67305 0.0849362
\(389\) 33.9732 1.72251 0.861254 0.508175i \(-0.169680\pi\)
0.861254 + 0.508175i \(0.169680\pi\)
\(390\) 0 0
\(391\) 8.57398 0.433605
\(392\) 4.11181 0.207678
\(393\) −3.13688 −0.158235
\(394\) 23.8216 1.20012
\(395\) 0 0
\(396\) 0 0
\(397\) 27.4961 1.37999 0.689995 0.723814i \(-0.257613\pi\)
0.689995 + 0.723814i \(0.257613\pi\)
\(398\) 24.4841 1.22728
\(399\) 23.4186 1.17239
\(400\) 0 0
\(401\) −1.88743 −0.0942535 −0.0471268 0.998889i \(-0.515006\pi\)
−0.0471268 + 0.998889i \(0.515006\pi\)
\(402\) −2.12535 −0.106003
\(403\) −2.54124 −0.126588
\(404\) 7.30032 0.363205
\(405\) 0 0
\(406\) −0.699363 −0.0347088
\(407\) 0 0
\(408\) −9.17582 −0.454271
\(409\) 13.5575 0.670374 0.335187 0.942152i \(-0.391201\pi\)
0.335187 + 0.942152i \(0.391201\pi\)
\(410\) 0 0
\(411\) 36.9323 1.82173
\(412\) 7.55427 0.372172
\(413\) 0.770918 0.0379344
\(414\) −5.73796 −0.282005
\(415\) 0 0
\(416\) 14.7312 0.722256
\(417\) −22.9616 −1.12444
\(418\) 0 0
\(419\) −22.1368 −1.08145 −0.540727 0.841198i \(-0.681851\pi\)
−0.540727 + 0.841198i \(0.681851\pi\)
\(420\) 0 0
\(421\) 17.9026 0.872517 0.436259 0.899821i \(-0.356303\pi\)
0.436259 + 0.899821i \(0.356303\pi\)
\(422\) −11.2040 −0.545400
\(423\) −10.8093 −0.525566
\(424\) −26.4355 −1.28382
\(425\) 0 0
\(426\) −15.1858 −0.735755
\(427\) −3.88809 −0.188158
\(428\) 7.41093 0.358221
\(429\) 0 0
\(430\) 0 0
\(431\) 33.4457 1.61102 0.805510 0.592582i \(-0.201891\pi\)
0.805510 + 0.592582i \(0.201891\pi\)
\(432\) −20.4519 −0.983992
\(433\) −31.4914 −1.51338 −0.756690 0.653774i \(-0.773185\pi\)
−0.756690 + 0.653774i \(0.773185\pi\)
\(434\) −2.54920 −0.122366
\(435\) 0 0
\(436\) −6.49251 −0.310935
\(437\) −20.3763 −0.974731
\(438\) 28.9444 1.38302
\(439\) 35.6208 1.70009 0.850045 0.526710i \(-0.176575\pi\)
0.850045 + 0.526710i \(0.176575\pi\)
\(440\) 0 0
\(441\) −1.77134 −0.0843495
\(442\) 13.6180 0.647744
\(443\) −23.4876 −1.11593 −0.557964 0.829865i \(-0.688417\pi\)
−0.557964 + 0.829865i \(0.688417\pi\)
\(444\) −3.77741 −0.179268
\(445\) 0 0
\(446\) 14.4234 0.682970
\(447\) −11.6819 −0.552535
\(448\) −7.34460 −0.347000
\(449\) −31.3920 −1.48148 −0.740740 0.671792i \(-0.765525\pi\)
−0.740740 + 0.671792i \(0.765525\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0.170655 0.00802692
\(453\) −25.2336 −1.18558
\(454\) −6.29971 −0.295660
\(455\) 0 0
\(456\) 21.8066 1.02119
\(457\) −39.1106 −1.82952 −0.914759 0.404000i \(-0.867620\pi\)
−0.914759 + 0.404000i \(0.867620\pi\)
\(458\) −4.48999 −0.209803
\(459\) −9.22650 −0.430656
\(460\) 0 0
\(461\) −8.88399 −0.413769 −0.206884 0.978365i \(-0.566332\pi\)
−0.206884 + 0.978365i \(0.566332\pi\)
\(462\) 0 0
\(463\) −4.21081 −0.195693 −0.0978464 0.995202i \(-0.531195\pi\)
−0.0978464 + 0.995202i \(0.531195\pi\)
\(464\) −0.929224 −0.0431381
\(465\) 0 0
\(466\) 17.3909 0.805620
\(467\) 6.72844 0.311355 0.155677 0.987808i \(-0.450244\pi\)
0.155677 + 0.987808i \(0.450244\pi\)
\(468\) −2.45560 −0.113510
\(469\) −1.45903 −0.0673718
\(470\) 0 0
\(471\) −28.3356 −1.30564
\(472\) 0.717854 0.0330419
\(473\) 0 0
\(474\) 23.6376 1.08571
\(475\) 0 0
\(476\) 3.68079 0.168709
\(477\) 11.3882 0.521431
\(478\) 33.1572 1.51657
\(479\) 20.8094 0.950806 0.475403 0.879768i \(-0.342302\pi\)
0.475403 + 0.879768i \(0.342302\pi\)
\(480\) 0 0
\(481\) −9.59406 −0.437452
\(482\) 47.0646 2.14373
\(483\) −17.0723 −0.776818
\(484\) 0 0
\(485\) 0 0
\(486\) 14.9947 0.680172
\(487\) 15.7794 0.715032 0.357516 0.933907i \(-0.383624\pi\)
0.357516 + 0.933907i \(0.383624\pi\)
\(488\) −3.62047 −0.163891
\(489\) 7.16287 0.323916
\(490\) 0 0
\(491\) 19.3303 0.872366 0.436183 0.899858i \(-0.356330\pi\)
0.436183 + 0.899858i \(0.356330\pi\)
\(492\) −11.5312 −0.519865
\(493\) −0.419203 −0.0188799
\(494\) −32.3637 −1.45611
\(495\) 0 0
\(496\) −3.38705 −0.152083
\(497\) −10.4249 −0.467622
\(498\) −10.3959 −0.465851
\(499\) −41.4596 −1.85599 −0.927994 0.372594i \(-0.878468\pi\)
−0.927994 + 0.372594i \(0.878468\pi\)
\(500\) 0 0
\(501\) 7.54507 0.337089
\(502\) −39.4403 −1.76031
\(503\) 32.6613 1.45630 0.728148 0.685420i \(-0.240381\pi\)
0.728148 + 0.685420i \(0.240381\pi\)
\(504\) 4.21556 0.187776
\(505\) 0 0
\(506\) 0 0
\(507\) −1.35905 −0.0603576
\(508\) −1.79272 −0.0795391
\(509\) 16.6452 0.737785 0.368892 0.929472i \(-0.379737\pi\)
0.368892 + 0.929472i \(0.379737\pi\)
\(510\) 0 0
\(511\) 19.8701 0.879000
\(512\) −0.964978 −0.0426464
\(513\) 21.9270 0.968102
\(514\) −40.8290 −1.80089
\(515\) 0 0
\(516\) −12.2561 −0.539543
\(517\) 0 0
\(518\) −9.62412 −0.422860
\(519\) −4.16116 −0.182655
\(520\) 0 0
\(521\) 14.0563 0.615816 0.307908 0.951416i \(-0.400371\pi\)
0.307908 + 0.951416i \(0.400371\pi\)
\(522\) 0.280543 0.0122790
\(523\) 15.6677 0.685101 0.342550 0.939499i \(-0.388709\pi\)
0.342550 + 0.939499i \(0.388709\pi\)
\(524\) 1.17171 0.0511866
\(525\) 0 0
\(526\) −9.00255 −0.392530
\(527\) −1.52801 −0.0665611
\(528\) 0 0
\(529\) −8.14550 −0.354152
\(530\) 0 0
\(531\) −0.309246 −0.0134202
\(532\) −8.74751 −0.379253
\(533\) −29.2874 −1.26858
\(534\) −32.4195 −1.40293
\(535\) 0 0
\(536\) −1.35860 −0.0586827
\(537\) −9.92128 −0.428135
\(538\) −11.0949 −0.478336
\(539\) 0 0
\(540\) 0 0
\(541\) −39.6384 −1.70419 −0.852094 0.523389i \(-0.824667\pi\)
−0.852094 + 0.523389i \(0.824667\pi\)
\(542\) −8.37190 −0.359604
\(543\) 30.9007 1.32608
\(544\) 8.85764 0.379768
\(545\) 0 0
\(546\) −27.1160 −1.16046
\(547\) 41.1664 1.76015 0.880075 0.474835i \(-0.157492\pi\)
0.880075 + 0.474835i \(0.157492\pi\)
\(548\) −13.7953 −0.589305
\(549\) 1.55967 0.0665651
\(550\) 0 0
\(551\) 0.996247 0.0424415
\(552\) −15.8972 −0.676630
\(553\) 16.2270 0.690041
\(554\) 17.6936 0.751728
\(555\) 0 0
\(556\) 8.57683 0.363739
\(557\) 29.8760 1.26589 0.632943 0.774199i \(-0.281847\pi\)
0.632943 + 0.774199i \(0.281847\pi\)
\(558\) 1.02259 0.0432896
\(559\) −31.1286 −1.31660
\(560\) 0 0
\(561\) 0 0
\(562\) −22.7004 −0.957558
\(563\) 2.15779 0.0909401 0.0454701 0.998966i \(-0.485521\pi\)
0.0454701 + 0.998966i \(0.485521\pi\)
\(564\) 17.4994 0.736857
\(565\) 0 0
\(566\) 36.3500 1.52790
\(567\) 24.4265 1.02582
\(568\) −9.70734 −0.407311
\(569\) 0.717288 0.0300703 0.0150351 0.999887i \(-0.495214\pi\)
0.0150351 + 0.999887i \(0.495214\pi\)
\(570\) 0 0
\(571\) −21.6311 −0.905235 −0.452617 0.891705i \(-0.649510\pi\)
−0.452617 + 0.891705i \(0.649510\pi\)
\(572\) 0 0
\(573\) −6.15315 −0.257051
\(574\) −29.3792 −1.22626
\(575\) 0 0
\(576\) 2.94622 0.122759
\(577\) 23.4276 0.975303 0.487652 0.873038i \(-0.337854\pi\)
0.487652 + 0.873038i \(0.337854\pi\)
\(578\) −19.9396 −0.829377
\(579\) 19.0298 0.790852
\(580\) 0 0
\(581\) −7.13668 −0.296079
\(582\) −7.41093 −0.307193
\(583\) 0 0
\(584\) 18.5023 0.765633
\(585\) 0 0
\(586\) −23.2271 −0.959501
\(587\) −2.24734 −0.0927576 −0.0463788 0.998924i \(-0.514768\pi\)
−0.0463788 + 0.998924i \(0.514768\pi\)
\(588\) 2.86766 0.118260
\(589\) 3.63135 0.149627
\(590\) 0 0
\(591\) −28.4318 −1.16953
\(592\) −12.7873 −0.525555
\(593\) 25.4034 1.04319 0.521596 0.853193i \(-0.325337\pi\)
0.521596 + 0.853193i \(0.325337\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 4.36353 0.178737
\(597\) −29.2224 −1.19600
\(598\) 23.5934 0.964806
\(599\) −18.2253 −0.744667 −0.372333 0.928099i \(-0.621442\pi\)
−0.372333 + 0.928099i \(0.621442\pi\)
\(600\) 0 0
\(601\) −34.6398 −1.41299 −0.706494 0.707719i \(-0.749724\pi\)
−0.706494 + 0.707719i \(0.749724\pi\)
\(602\) −31.2261 −1.27268
\(603\) 0.585276 0.0238343
\(604\) 9.42547 0.383517
\(605\) 0 0
\(606\) −32.3375 −1.31362
\(607\) 25.4482 1.03291 0.516456 0.856314i \(-0.327251\pi\)
0.516456 + 0.856314i \(0.327251\pi\)
\(608\) −21.0504 −0.853708
\(609\) 0.834708 0.0338241
\(610\) 0 0
\(611\) 44.4458 1.79809
\(612\) −1.47652 −0.0596846
\(613\) −37.0616 −1.49690 −0.748452 0.663189i \(-0.769203\pi\)
−0.748452 + 0.663189i \(0.769203\pi\)
\(614\) 11.3662 0.458701
\(615\) 0 0
\(616\) 0 0
\(617\) −27.5937 −1.11088 −0.555439 0.831557i \(-0.687450\pi\)
−0.555439 + 0.831557i \(0.687450\pi\)
\(618\) −33.4624 −1.34605
\(619\) 20.4435 0.821694 0.410847 0.911704i \(-0.365233\pi\)
0.410847 + 0.911704i \(0.365233\pi\)
\(620\) 0 0
\(621\) −15.9850 −0.641456
\(622\) −9.10280 −0.364989
\(623\) −22.2557 −0.891654
\(624\) −36.0283 −1.44229
\(625\) 0 0
\(626\) −23.5480 −0.941167
\(627\) 0 0
\(628\) 10.5842 0.422354
\(629\) −5.76876 −0.230016
\(630\) 0 0
\(631\) 0.759137 0.0302208 0.0151104 0.999886i \(-0.495190\pi\)
0.0151104 + 0.999886i \(0.495190\pi\)
\(632\) 15.1100 0.601045
\(633\) 13.3722 0.531498
\(634\) −30.9182 −1.22792
\(635\) 0 0
\(636\) −18.4366 −0.731060
\(637\) 7.28342 0.288579
\(638\) 0 0
\(639\) 4.18186 0.165432
\(640\) 0 0
\(641\) −14.9050 −0.588712 −0.294356 0.955696i \(-0.595105\pi\)
−0.294356 + 0.955696i \(0.595105\pi\)
\(642\) −32.8274 −1.29559
\(643\) 27.6346 1.08980 0.544900 0.838501i \(-0.316568\pi\)
0.544900 + 0.838501i \(0.316568\pi\)
\(644\) 6.37701 0.251289
\(645\) 0 0
\(646\) −19.4598 −0.765635
\(647\) 24.9785 0.982008 0.491004 0.871157i \(-0.336630\pi\)
0.491004 + 0.871157i \(0.336630\pi\)
\(648\) 22.7452 0.893514
\(649\) 0 0
\(650\) 0 0
\(651\) 3.04254 0.119247
\(652\) −2.67554 −0.104782
\(653\) 27.7630 1.08645 0.543225 0.839587i \(-0.317203\pi\)
0.543225 + 0.839587i \(0.317203\pi\)
\(654\) 28.7592 1.12457
\(655\) 0 0
\(656\) −39.0353 −1.52407
\(657\) −7.97068 −0.310966
\(658\) 44.5851 1.73811
\(659\) −21.5863 −0.840883 −0.420442 0.907320i \(-0.638125\pi\)
−0.420442 + 0.907320i \(0.638125\pi\)
\(660\) 0 0
\(661\) −16.0174 −0.623003 −0.311502 0.950246i \(-0.600832\pi\)
−0.311502 + 0.950246i \(0.600832\pi\)
\(662\) 0.774756 0.0301118
\(663\) −16.2535 −0.631234
\(664\) −6.64544 −0.257893
\(665\) 0 0
\(666\) 3.86062 0.149596
\(667\) −0.726273 −0.0281214
\(668\) −2.81830 −0.109043
\(669\) −17.2148 −0.665561
\(670\) 0 0
\(671\) 0 0
\(672\) −17.6372 −0.680368
\(673\) 31.3469 1.20834 0.604168 0.796857i \(-0.293506\pi\)
0.604168 + 0.796857i \(0.293506\pi\)
\(674\) −56.4001 −2.17245
\(675\) 0 0
\(676\) 0.507645 0.0195248
\(677\) −30.6664 −1.17860 −0.589302 0.807913i \(-0.700597\pi\)
−0.589302 + 0.807913i \(0.700597\pi\)
\(678\) −0.755931 −0.0290314
\(679\) −5.08754 −0.195242
\(680\) 0 0
\(681\) 7.51888 0.288124
\(682\) 0 0
\(683\) −3.27236 −0.125213 −0.0626066 0.998038i \(-0.519941\pi\)
−0.0626066 + 0.998038i \(0.519941\pi\)
\(684\) 3.50898 0.134169
\(685\) 0 0
\(686\) 33.2857 1.27085
\(687\) 5.35892 0.204456
\(688\) −41.4893 −1.58176
\(689\) −46.8263 −1.78394
\(690\) 0 0
\(691\) −36.4946 −1.38832 −0.694160 0.719821i \(-0.744224\pi\)
−0.694160 + 0.719821i \(0.744224\pi\)
\(692\) 1.55431 0.0590862
\(693\) 0 0
\(694\) −5.94478 −0.225661
\(695\) 0 0
\(696\) 0.777253 0.0294617
\(697\) −17.6101 −0.667029
\(698\) −10.5415 −0.399002
\(699\) −20.7566 −0.785085
\(700\) 0 0
\(701\) 46.5607 1.75857 0.879286 0.476293i \(-0.158020\pi\)
0.879286 + 0.476293i \(0.158020\pi\)
\(702\) −25.3890 −0.958245
\(703\) 13.7096 0.517068
\(704\) 0 0
\(705\) 0 0
\(706\) 20.1811 0.759525
\(707\) −22.1994 −0.834894
\(708\) 0.500645 0.0188154
\(709\) −35.5966 −1.33686 −0.668429 0.743776i \(-0.733033\pi\)
−0.668429 + 0.743776i \(0.733033\pi\)
\(710\) 0 0
\(711\) −6.50930 −0.244118
\(712\) −20.7237 −0.776655
\(713\) −2.64729 −0.0991418
\(714\) −16.3044 −0.610178
\(715\) 0 0
\(716\) 3.70588 0.138495
\(717\) −39.5740 −1.47792
\(718\) 39.9000 1.48906
\(719\) 22.0913 0.823866 0.411933 0.911214i \(-0.364854\pi\)
0.411933 + 0.911214i \(0.364854\pi\)
\(720\) 0 0
\(721\) −22.9716 −0.855507
\(722\) 14.8097 0.551158
\(723\) −56.1728 −2.08909
\(724\) −11.5423 −0.428966
\(725\) 0 0
\(726\) 0 0
\(727\) 45.5415 1.68904 0.844521 0.535522i \(-0.179885\pi\)
0.844521 + 0.535522i \(0.179885\pi\)
\(728\) −17.3336 −0.642425
\(729\) 14.7727 0.547137
\(730\) 0 0
\(731\) −18.7171 −0.692278
\(732\) −2.52498 −0.0933260
\(733\) 11.3789 0.420289 0.210145 0.977670i \(-0.432607\pi\)
0.210145 + 0.977670i \(0.432607\pi\)
\(734\) 33.7368 1.24525
\(735\) 0 0
\(736\) 15.3459 0.565659
\(737\) 0 0
\(738\) 11.7852 0.433818
\(739\) −4.33778 −0.159568 −0.0797838 0.996812i \(-0.525423\pi\)
−0.0797838 + 0.996812i \(0.525423\pi\)
\(740\) 0 0
\(741\) 38.6269 1.41900
\(742\) −46.9730 −1.72443
\(743\) 17.2945 0.634473 0.317237 0.948346i \(-0.397245\pi\)
0.317237 + 0.948346i \(0.397245\pi\)
\(744\) 2.83311 0.103867
\(745\) 0 0
\(746\) −12.4424 −0.455549
\(747\) 2.86281 0.104745
\(748\) 0 0
\(749\) −22.5357 −0.823437
\(750\) 0 0
\(751\) −31.5130 −1.14993 −0.574963 0.818179i \(-0.694984\pi\)
−0.574963 + 0.818179i \(0.694984\pi\)
\(752\) 59.2390 2.16022
\(753\) 47.0730 1.71544
\(754\) −1.15354 −0.0420094
\(755\) 0 0
\(756\) −6.86233 −0.249581
\(757\) 9.27739 0.337192 0.168596 0.985685i \(-0.446077\pi\)
0.168596 + 0.985685i \(0.446077\pi\)
\(758\) 38.3718 1.39373
\(759\) 0 0
\(760\) 0 0
\(761\) −4.15810 −0.150731 −0.0753655 0.997156i \(-0.524012\pi\)
−0.0753655 + 0.997156i \(0.524012\pi\)
\(762\) 7.94102 0.287673
\(763\) 19.7429 0.714742
\(764\) 2.29838 0.0831524
\(765\) 0 0
\(766\) −4.03783 −0.145893
\(767\) 1.27156 0.0459135
\(768\) −30.7894 −1.11102
\(769\) 16.8800 0.608709 0.304355 0.952559i \(-0.401559\pi\)
0.304355 + 0.952559i \(0.401559\pi\)
\(770\) 0 0
\(771\) 48.7305 1.75499
\(772\) −7.10818 −0.255829
\(773\) −8.47760 −0.304918 −0.152459 0.988310i \(-0.548719\pi\)
−0.152459 + 0.988310i \(0.548719\pi\)
\(774\) 12.5261 0.450240
\(775\) 0 0
\(776\) −4.73735 −0.170061
\(777\) 11.4866 0.412081
\(778\) 56.2114 2.01527
\(779\) 41.8508 1.49946
\(780\) 0 0
\(781\) 0 0
\(782\) 14.1863 0.507303
\(783\) 0.781546 0.0279302
\(784\) 9.70760 0.346700
\(785\) 0 0
\(786\) −5.19022 −0.185129
\(787\) 53.6166 1.91122 0.955612 0.294628i \(-0.0951958\pi\)
0.955612 + 0.294628i \(0.0951958\pi\)
\(788\) 10.6201 0.378325
\(789\) 10.7448 0.382525
\(790\) 0 0
\(791\) −0.518940 −0.0184514
\(792\) 0 0
\(793\) −6.41307 −0.227735
\(794\) 45.4946 1.61454
\(795\) 0 0
\(796\) 10.9154 0.386887
\(797\) 28.5448 1.01111 0.505554 0.862795i \(-0.331288\pi\)
0.505554 + 0.862795i \(0.331288\pi\)
\(798\) 38.7479 1.37166
\(799\) 26.7246 0.945448
\(800\) 0 0
\(801\) 8.92765 0.315443
\(802\) −3.12290 −0.110273
\(803\) 0 0
\(804\) −0.947515 −0.0334163
\(805\) 0 0
\(806\) −4.20469 −0.148104
\(807\) 13.2421 0.466143
\(808\) −20.6713 −0.727215
\(809\) 36.9460 1.29895 0.649477 0.760382i \(-0.274988\pi\)
0.649477 + 0.760382i \(0.274988\pi\)
\(810\) 0 0
\(811\) −38.3768 −1.34759 −0.673795 0.738918i \(-0.735337\pi\)
−0.673795 + 0.738918i \(0.735337\pi\)
\(812\) −0.311788 −0.0109416
\(813\) 9.99209 0.350438
\(814\) 0 0
\(815\) 0 0
\(816\) −21.6632 −0.758365
\(817\) 44.4818 1.55622
\(818\) 22.4319 0.784314
\(819\) 7.46718 0.260924
\(820\) 0 0
\(821\) −10.2496 −0.357715 −0.178858 0.983875i \(-0.557240\pi\)
−0.178858 + 0.983875i \(0.557240\pi\)
\(822\) 61.1074 2.13137
\(823\) 25.2296 0.879448 0.439724 0.898133i \(-0.355076\pi\)
0.439724 + 0.898133i \(0.355076\pi\)
\(824\) −21.3904 −0.745170
\(825\) 0 0
\(826\) 1.27555 0.0443820
\(827\) −18.3485 −0.638041 −0.319020 0.947748i \(-0.603354\pi\)
−0.319020 + 0.947748i \(0.603354\pi\)
\(828\) −2.55808 −0.0888993
\(829\) 24.3826 0.846842 0.423421 0.905933i \(-0.360829\pi\)
0.423421 + 0.905933i \(0.360829\pi\)
\(830\) 0 0
\(831\) −21.1178 −0.732567
\(832\) −12.1143 −0.419987
\(833\) 4.37941 0.151737
\(834\) −37.9919 −1.31555
\(835\) 0 0
\(836\) 0 0
\(837\) 2.84876 0.0984676
\(838\) −36.6272 −1.26526
\(839\) −42.2808 −1.45970 −0.729848 0.683609i \(-0.760409\pi\)
−0.729848 + 0.683609i \(0.760409\pi\)
\(840\) 0 0
\(841\) −28.9645 −0.998776
\(842\) 29.6212 1.02082
\(843\) 27.0935 0.933151
\(844\) −4.99491 −0.171932
\(845\) 0 0
\(846\) −17.8849 −0.614895
\(847\) 0 0
\(848\) −62.4117 −2.14323
\(849\) −43.3847 −1.48896
\(850\) 0 0
\(851\) −9.99444 −0.342605
\(852\) −6.77009 −0.231939
\(853\) 15.3885 0.526891 0.263445 0.964674i \(-0.415141\pi\)
0.263445 + 0.964674i \(0.415141\pi\)
\(854\) −6.43317 −0.220138
\(855\) 0 0
\(856\) −20.9845 −0.717236
\(857\) 36.1038 1.23328 0.616641 0.787245i \(-0.288493\pi\)
0.616641 + 0.787245i \(0.288493\pi\)
\(858\) 0 0
\(859\) 48.3509 1.64971 0.824855 0.565344i \(-0.191257\pi\)
0.824855 + 0.565344i \(0.191257\pi\)
\(860\) 0 0
\(861\) 35.0648 1.19501
\(862\) 55.3386 1.88484
\(863\) 37.1887 1.26592 0.632959 0.774186i \(-0.281840\pi\)
0.632959 + 0.774186i \(0.281840\pi\)
\(864\) −16.5139 −0.561813
\(865\) 0 0
\(866\) −52.1051 −1.77060
\(867\) 23.7984 0.808237
\(868\) −1.13648 −0.0385745
\(869\) 0 0
\(870\) 0 0
\(871\) −2.40655 −0.0815427
\(872\) 18.3840 0.622560
\(873\) 2.04082 0.0690712
\(874\) −33.7143 −1.14040
\(875\) 0 0
\(876\) 12.9039 0.435982
\(877\) −25.7932 −0.870976 −0.435488 0.900195i \(-0.643424\pi\)
−0.435488 + 0.900195i \(0.643424\pi\)
\(878\) 58.9376 1.98905
\(879\) 27.7221 0.935044
\(880\) 0 0
\(881\) −45.6820 −1.53906 −0.769532 0.638608i \(-0.779511\pi\)
−0.769532 + 0.638608i \(0.779511\pi\)
\(882\) −2.93083 −0.0986861
\(883\) −4.96631 −0.167130 −0.0835648 0.996502i \(-0.526631\pi\)
−0.0835648 + 0.996502i \(0.526631\pi\)
\(884\) 6.07115 0.204195
\(885\) 0 0
\(886\) −38.8621 −1.30560
\(887\) 28.9232 0.971147 0.485573 0.874196i \(-0.338611\pi\)
0.485573 + 0.874196i \(0.338611\pi\)
\(888\) 10.6960 0.358934
\(889\) 5.45144 0.182836
\(890\) 0 0
\(891\) 0 0
\(892\) 6.43021 0.215299
\(893\) −63.5117 −2.12534
\(894\) −19.3287 −0.646448
\(895\) 0 0
\(896\) −30.0146 −1.00272
\(897\) −28.1594 −0.940213
\(898\) −51.9406 −1.73328
\(899\) 0.129432 0.00431681
\(900\) 0 0
\(901\) −28.1559 −0.938010
\(902\) 0 0
\(903\) 37.2692 1.24024
\(904\) −0.483220 −0.0160717
\(905\) 0 0
\(906\) −41.7510 −1.38708
\(907\) −13.2527 −0.440049 −0.220024 0.975494i \(-0.570614\pi\)
−0.220024 + 0.975494i \(0.570614\pi\)
\(908\) −2.80852 −0.0932040
\(909\) 8.90507 0.295363
\(910\) 0 0
\(911\) 13.7326 0.454982 0.227491 0.973780i \(-0.426948\pi\)
0.227491 + 0.973780i \(0.426948\pi\)
\(912\) 51.4833 1.70478
\(913\) 0 0
\(914\) −64.7117 −2.14047
\(915\) 0 0
\(916\) −2.00171 −0.0661384
\(917\) −3.56304 −0.117662
\(918\) −15.2660 −0.503853
\(919\) 59.3800 1.95876 0.979382 0.202016i \(-0.0647493\pi\)
0.979382 + 0.202016i \(0.0647493\pi\)
\(920\) 0 0
\(921\) −13.5658 −0.447009
\(922\) −14.6993 −0.484095
\(923\) −17.1950 −0.565981
\(924\) 0 0
\(925\) 0 0
\(926\) −6.96713 −0.228954
\(927\) 9.21484 0.302655
\(928\) −0.750301 −0.0246298
\(929\) 19.5881 0.642664 0.321332 0.946967i \(-0.395869\pi\)
0.321332 + 0.946967i \(0.395869\pi\)
\(930\) 0 0
\(931\) −10.4078 −0.341101
\(932\) 7.75317 0.253964
\(933\) 10.8644 0.355686
\(934\) 11.1327 0.364275
\(935\) 0 0
\(936\) 6.95320 0.227272
\(937\) 40.5452 1.32455 0.662277 0.749259i \(-0.269590\pi\)
0.662277 + 0.749259i \(0.269590\pi\)
\(938\) −2.41409 −0.0788227
\(939\) 28.1052 0.917178
\(940\) 0 0
\(941\) −0.409691 −0.0133556 −0.00667778 0.999978i \(-0.502126\pi\)
−0.00667778 + 0.999978i \(0.502126\pi\)
\(942\) −46.8835 −1.52755
\(943\) −30.5096 −0.993530
\(944\) 1.69478 0.0551605
\(945\) 0 0
\(946\) 0 0
\(947\) 2.45729 0.0798511 0.0399256 0.999203i \(-0.487288\pi\)
0.0399256 + 0.999203i \(0.487288\pi\)
\(948\) 10.5380 0.342259
\(949\) 32.7739 1.06389
\(950\) 0 0
\(951\) 36.9017 1.19662
\(952\) −10.4224 −0.337792
\(953\) 61.0264 1.97684 0.988420 0.151744i \(-0.0484888\pi\)
0.988420 + 0.151744i \(0.0484888\pi\)
\(954\) 18.8428 0.610057
\(955\) 0 0
\(956\) 14.7820 0.478085
\(957\) 0 0
\(958\) 34.4309 1.11241
\(959\) 41.9497 1.35463
\(960\) 0 0
\(961\) −30.5282 −0.984781
\(962\) −15.8742 −0.511803
\(963\) 9.03999 0.291310
\(964\) 20.9822 0.675790
\(965\) 0 0
\(966\) −28.2476 −0.908851
\(967\) 17.1997 0.553106 0.276553 0.960999i \(-0.410808\pi\)
0.276553 + 0.960999i \(0.410808\pi\)
\(968\) 0 0
\(969\) 23.2258 0.746119
\(970\) 0 0
\(971\) 27.2090 0.873177 0.436589 0.899661i \(-0.356187\pi\)
0.436589 + 0.899661i \(0.356187\pi\)
\(972\) 6.68488 0.214417
\(973\) −26.0811 −0.836121
\(974\) 26.1083 0.836563
\(975\) 0 0
\(976\) −8.54757 −0.273601
\(977\) −19.1722 −0.613374 −0.306687 0.951810i \(-0.599220\pi\)
−0.306687 + 0.951810i \(0.599220\pi\)
\(978\) 11.8516 0.378971
\(979\) 0 0
\(980\) 0 0
\(981\) −7.91969 −0.252856
\(982\) 31.9836 1.02064
\(983\) −24.1305 −0.769642 −0.384821 0.922991i \(-0.625737\pi\)
−0.384821 + 0.922991i \(0.625737\pi\)
\(984\) 32.6512 1.04088
\(985\) 0 0
\(986\) −0.693605 −0.0220889
\(987\) −53.2135 −1.69380
\(988\) −14.4283 −0.459024
\(989\) −32.4276 −1.03114
\(990\) 0 0
\(991\) 27.7081 0.880177 0.440089 0.897954i \(-0.354947\pi\)
0.440089 + 0.897954i \(0.354947\pi\)
\(992\) −2.73487 −0.0868323
\(993\) −0.924692 −0.0293442
\(994\) −17.2489 −0.547101
\(995\) 0 0
\(996\) −4.63466 −0.146855
\(997\) 33.4912 1.06068 0.530339 0.847786i \(-0.322065\pi\)
0.530339 + 0.847786i \(0.322065\pi\)
\(998\) −68.5984 −2.17144
\(999\) 10.7551 0.340275
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3025.2.a.bl.1.7 8
5.2 odd 4 605.2.b.g.364.7 8
5.3 odd 4 605.2.b.g.364.2 8
5.4 even 2 inner 3025.2.a.bl.1.2 8
11.3 even 5 275.2.h.d.251.4 16
11.4 even 5 275.2.h.d.126.4 16
11.10 odd 2 3025.2.a.bk.1.2 8
55.2 even 20 605.2.j.g.444.1 16
55.3 odd 20 55.2.j.a.9.1 16
55.4 even 10 275.2.h.d.126.1 16
55.7 even 20 605.2.j.d.269.4 16
55.8 even 20 605.2.j.d.9.4 16
55.13 even 20 605.2.j.g.444.4 16
55.14 even 10 275.2.h.d.251.1 16
55.17 even 20 605.2.j.g.124.4 16
55.18 even 20 605.2.j.d.269.1 16
55.27 odd 20 605.2.j.h.124.1 16
55.28 even 20 605.2.j.g.124.1 16
55.32 even 4 605.2.b.f.364.2 8
55.37 odd 20 55.2.j.a.49.1 yes 16
55.38 odd 20 605.2.j.h.124.4 16
55.42 odd 20 605.2.j.h.444.4 16
55.43 even 4 605.2.b.f.364.7 8
55.47 odd 20 55.2.j.a.9.4 yes 16
55.48 odd 20 55.2.j.a.49.4 yes 16
55.52 even 20 605.2.j.d.9.1 16
55.53 odd 20 605.2.j.h.444.1 16
55.54 odd 2 3025.2.a.bk.1.7 8
165.47 even 20 495.2.ba.a.64.1 16
165.92 even 20 495.2.ba.a.379.4 16
165.113 even 20 495.2.ba.a.64.4 16
165.158 even 20 495.2.ba.a.379.1 16
220.3 even 20 880.2.cd.c.449.1 16
220.47 even 20 880.2.cd.c.449.4 16
220.103 even 20 880.2.cd.c.49.4 16
220.147 even 20 880.2.cd.c.49.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.j.a.9.1 16 55.3 odd 20
55.2.j.a.9.4 yes 16 55.47 odd 20
55.2.j.a.49.1 yes 16 55.37 odd 20
55.2.j.a.49.4 yes 16 55.48 odd 20
275.2.h.d.126.1 16 55.4 even 10
275.2.h.d.126.4 16 11.4 even 5
275.2.h.d.251.1 16 55.14 even 10
275.2.h.d.251.4 16 11.3 even 5
495.2.ba.a.64.1 16 165.47 even 20
495.2.ba.a.64.4 16 165.113 even 20
495.2.ba.a.379.1 16 165.158 even 20
495.2.ba.a.379.4 16 165.92 even 20
605.2.b.f.364.2 8 55.32 even 4
605.2.b.f.364.7 8 55.43 even 4
605.2.b.g.364.2 8 5.3 odd 4
605.2.b.g.364.7 8 5.2 odd 4
605.2.j.d.9.1 16 55.52 even 20
605.2.j.d.9.4 16 55.8 even 20
605.2.j.d.269.1 16 55.18 even 20
605.2.j.d.269.4 16 55.7 even 20
605.2.j.g.124.1 16 55.28 even 20
605.2.j.g.124.4 16 55.17 even 20
605.2.j.g.444.1 16 55.2 even 20
605.2.j.g.444.4 16 55.13 even 20
605.2.j.h.124.1 16 55.27 odd 20
605.2.j.h.124.4 16 55.38 odd 20
605.2.j.h.444.1 16 55.53 odd 20
605.2.j.h.444.4 16 55.42 odd 20
880.2.cd.c.49.1 16 220.147 even 20
880.2.cd.c.49.4 16 220.103 even 20
880.2.cd.c.449.1 16 220.3 even 20
880.2.cd.c.449.4 16 220.47 even 20
3025.2.a.bk.1.2 8 11.10 odd 2
3025.2.a.bk.1.7 8 55.54 odd 2
3025.2.a.bl.1.2 8 5.4 even 2 inner
3025.2.a.bl.1.7 8 1.1 even 1 trivial