Learn more

Refine search


Results (36 matches)

  displayed columns for results
Orbit label Conrey labels Modulus Conductor Order Value field Parity Real Primitive Minimal
8788.a

\(\chi_{8788}(1, \cdot)\)

$8788$ $1$ $1$ \(\Q\) even
8788.b

\(\chi_{8788}(8787, \cdot)\)

$8788$ $52$ $2$ \(\Q\) odd
8788.c

\(\chi_{8788}(4395, \cdot)\)

$8788$ $4$ $2$ \(\Q\) odd
8788.d

\(\chi_{8788}(4393, \cdot)\)

$8788$ $13$ $2$ \(\Q\) even
8788.e

\(\chi_{8788}(3233, \cdot)\)$,$ \(\chi_{8788}(3357, \cdot)\)

$8788$ $13$ $3$ \(\mathbb{Q}(\zeta_3)\) even
8788.f

\(\chi_{8788}(239, \cdot)\)$,$ \(\chi_{8788}(4155, \cdot)\)

$8788$ $52$ $4$ \(\mathbb{Q}(i)\) even
8788.g

\(\chi_{8788}(4633, \cdot)\)$,$ \(\chi_{8788}(8549, \cdot)\)

$8788$ $13$ $4$ \(\mathbb{Q}(i)\) odd
8788.h

\(\chi_{8788}(1037, \cdot)\)$,$ \(\chi_{8788}(1161, \cdot)\)

$8788$ $13$ $6$ \(\mathbb{Q}(\zeta_3)\) even
8788.i

\(\chi_{8788}(5431, \cdot)\)$,$ \(\chi_{8788}(5555, \cdot)\)

$8788$ $52$ $6$ \(\mathbb{Q}(\zeta_3)\) odd
8788.j

\(\chi_{8788}(7627, \cdot)\)$,$ \(\chi_{8788}(7751, \cdot)\)

$8788$ $52$ $6$ \(\mathbb{Q}(\zeta_3)\) odd
8788.k

\(\chi_{8788}(657, \cdot)\)$, \cdots ,$\(\chi_{8788}(7009, \cdot)\)

$8788$ $13$ $12$ \(\Q(\zeta_{12})\) odd
8788.l

\(\chi_{8788}(1779, \cdot)\)$, \cdots ,$\(\chi_{8788}(8131, \cdot)\)

$8788$ $52$ $12$ \(\Q(\zeta_{12})\) even
8788.m

\(\chi_{8788}(677, \cdot)\)$, \cdots ,$\(\chi_{8788}(8113, \cdot)\)

$8788$ $169$ $13$ \(\Q(\zeta_{13})\) even
8788.n

\(\chi_{8788}(337, \cdot)\)$, \cdots ,$\(\chi_{8788}(8449, \cdot)\)

$8788$ $169$ $26$ \(\Q(\zeta_{13})\) even
8788.o

\(\chi_{8788}(339, \cdot)\)$, \cdots ,$\(\chi_{8788}(8451, \cdot)\)

$8788$ $676$ $26$ \(\Q(\zeta_{13})\) odd
8788.p

\(\chi_{8788}(675, \cdot)\)$, \cdots ,$\(\chi_{8788}(8111, \cdot)\)

$8788$ $676$ $26$ \(\Q(\zeta_{13})\) odd
8788.q

\(\chi_{8788}(529, \cdot)\)$, \cdots ,$\(\chi_{8788}(8765, \cdot)\)

$8788$ $169$ $39$ $\Q(\zeta_{39})$ even
8788.r

\(\chi_{8788}(437, \cdot)\)$, \cdots ,$\(\chi_{8788}(8689, \cdot)\)

$8788$ $169$ $52$ $\Q(\zeta_{52})$ odd
8788.s

\(\chi_{8788}(99, \cdot)\)$, \cdots ,$\(\chi_{8788}(8351, \cdot)\)

$8788$ $676$ $52$ $\Q(\zeta_{52})$ even
8788.t

\(\chi_{8788}(191, \cdot)\)$, \cdots ,$\(\chi_{8788}(8427, \cdot)\)

$8788$ $676$ $78$ $\Q(\zeta_{39})$ odd
8788.u

\(\chi_{8788}(23, \cdot)\)$, \cdots ,$\(\chi_{8788}(8259, \cdot)\)

$8788$ $676$ $78$ $\Q(\zeta_{39})$ odd
8788.v

\(\chi_{8788}(361, \cdot)\)$, \cdots ,$\(\chi_{8788}(8597, \cdot)\)

$8788$ $169$ $78$ $\Q(\zeta_{39})$ even
8788.w

\(\chi_{8788}(19, \cdot)\)$, \cdots ,$\(\chi_{8788}(8699, \cdot)\)

$8788$ $676$ $156$ $\Q(\zeta_{156})$ even
8788.x

\(\chi_{8788}(89, \cdot)\)$, \cdots ,$\(\chi_{8788}(8769, \cdot)\)

$8788$ $169$ $156$ $\Q(\zeta_{156})$ odd
8788.y

\(\chi_{8788}(53, \cdot)\)$, \cdots ,$\(\chi_{8788}(8737, \cdot)\)

$8788$ $2197$ $169$ $\Q(\zeta_{169})$ even
8788.z

\(\chi_{8788}(51, \cdot)\)$, \cdots ,$\(\chi_{8788}(8735, \cdot)\)

$8788$ $8788$ $338$ $\Q(\zeta_{169})$ odd
8788.ba

\(\chi_{8788}(25, \cdot)\)$, \cdots ,$\(\chi_{8788}(8761, \cdot)\)

$8788$ $2197$ $338$ $\Q(\zeta_{169})$ even
8788.bb

\(\chi_{8788}(27, \cdot)\)$, \cdots ,$\(\chi_{8788}(8763, \cdot)\)

$8788$ $8788$ $338$ $\Q(\zeta_{169})$ odd
8788.bc

\(\chi_{8788}(9, \cdot)\)$, \cdots ,$\(\chi_{8788}(8745, \cdot)\)

$8788$ $2197$ $507$ $\Q(\zeta_{507})$ even
8788.bd

\(\chi_{8788}(31, \cdot)\)$, \cdots ,$\(\chi_{8788}(8783, \cdot)\)

$8788$ $8788$ $676$ $\Q(\zeta_{676})$ even
8788.be

\(\chi_{8788}(5, \cdot)\)$, \cdots ,$\(\chi_{8788}(8757, \cdot)\)

$8788$ $2197$ $676$ $\Q(\zeta_{676})$ odd
8788.bf

\(\chi_{8788}(3, \cdot)\)$, \cdots ,$\(\chi_{8788}(8771, \cdot)\)

$8788$ $8788$ $1014$ $\Q(\zeta_{507})$ odd
8788.bg

\(\chi_{8788}(17, \cdot)\)$, \cdots ,$\(\chi_{8788}(8785, \cdot)\)

$8788$ $2197$ $1014$ $\Q(\zeta_{507})$ even
8788.bh

\(\chi_{8788}(43, \cdot)\)$, \cdots ,$\(\chi_{8788}(8779, \cdot)\)

$8788$ $8788$ $1014$ $\Q(\zeta_{507})$ odd
8788.bi

\(\chi_{8788}(33, \cdot)\)$, \cdots ,$\(\chi_{8788}(8781, \cdot)\)

$8788$ $2197$ $2028$ $\Q(\zeta_{2028})$ odd
8788.bj

\(\chi_{8788}(7, \cdot)\)$, \cdots ,$\(\chi_{8788}(8755, \cdot)\)

$8788$ $8788$ $2028$ $\Q(\zeta_{2028})$ even
  displayed columns for results