Learn more

Refine search


Results (50 matches)

  displayed columns for results
Label Class Conductor Rank* Torsion End0(JQ)\textrm{End}^0(J_{\overline\Q}) Igusa-Clebsch invariants Igusa invariants G2-invariants Equation
256.a.512.1 256.a 28 2^{8} 00 Z/2ZZ/10Z\Z/2\Z\oplus\Z/10\Z M2(Q)\mathrm{M}_2(\Q) [26,2,40,2][26,-2,40,2] [52,118,36,3949,512][52,118,-36,-3949,512] [742586,129623/4,1521/8][742586,129623/4,-1521/8] y2+y=2x53x4+x3+x2xy^2 + y = 2x^5 - 3x^4 + x^3 + x^2 - x
400.a.409600.1 400.a 2452 2^{4} \cdot 5^{2} 00 Z/3ZZ/6Z\Z/3\Z\oplus\Z/6\Z M2(Q)\mathrm{M}_2(\Q) [248,181,14873,50][248,181,14873,50] [992,39072,1945600,100853504,409600][992,39072,1945600,100853504,409600] [58632501248/25,2327987904/25,4674304][58632501248/25,2327987904/25,4674304] y2=x6+4x4+4x2+1y^2 = x^6 + 4x^4 + 4x^2 + 1
576.a.576.1 576.a 2632 2^{6} \cdot 3^{2} 00 Z/10Z\Z/10\Z M2(Q)\mathrm{M}_2(\Q) [68,124,2616,72][68,124,2616,72] [68,110,36,3637,576][68,110,-36,-3637,576] [22717712/9,540430/9,289][22717712/9,540430/9,-289] y2+(x3+x2+x+1)y=x3xy^2 + (x^3 + x^2 + x + 1)y = -x^3 - x
576.b.147456.1 576.b 2632 2^{6} \cdot 3^{2} 00 Z/4ZZ/4Z\Z/4\Z\oplus\Z/4\Z M2(Q)\mathrm{M}_2(\Q) [152,109,5469,18][152,109,5469,18] [608,14240,405504,10942208,147456][608,14240,405504,10942208,147456] [5071050752/9,195344320/9,1016576][5071050752/9,195344320/9,1016576] y2=x6+2x4+2x2+1y^2 = x^6 + 2x^4 + 2x^2 + 1
1152.a.147456.1 1152.a 2732 2^{7} \cdot 3^{2} 00 Z/8Z\Z/8\Z M2(Q)\mathrm{M}_2(\Q) [152,109,5469,18][152,109,5469,18] [608,14240,405504,10942208,147456][608,14240,405504,10942208,147456] [5071050752/9,195344320/9,1016576][5071050752/9,195344320/9,1016576] y2=x62x4+2x21y^2 = x^6 - 2x^4 + 2x^2 - 1
1600.b.409600.1 1600.b 2652 2^{6} \cdot 5^{2} 00 Z/2ZZ/6Z\Z/2\Z\oplus\Z/6\Z M2(Q)\mathrm{M}_2(\Q) [248,181,14873,50][248,181,14873,50] [992,39072,1945600,100853504,409600][992,39072,1945600,100853504,409600] [58632501248/25,2327987904/25,4674304][58632501248/25,2327987904/25,4674304] y2=x64x4+4x21y^2 = x^6 - 4x^4 + 4x^2 - 1
2304.b.147456.1 2304.b 2832 2^{8} \cdot 3^{2} 00 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z M2(Q)\mathrm{M}_2(\Q) [152,109,5469,18][152,109,5469,18] [608,14240,405504,10942208,147456][608,14240,405504,10942208,147456] [5071050752/9,195344320/9,1016576][5071050752/9,195344320/9,1016576] y2=x62x42x21y^2 = -x^6 - 2x^4 - 2x^2 - 1
4096.e.524288.1 4096.e 212 2^{12} 00 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z M2(Q)\mathrm{M}_2(\Q) [26,2,40,2][26,-2,40,2] [208,1888,2304,1010944,524288][208,1888,-2304,-1010944,524288] [742586,129623/4,1521/8][742586,129623/4,-1521/8] y2=x52x42x2xy^2 = x^5 - 2x^4 - 2x^2 - x
4608.a.4608.1 4608.a 2932 2^{9} \cdot 3^{2} 00 Z/4Z\Z/4\Z M2(Q)\mathrm{M}_2(\Q) [152,109,5469,18][152,109,5469,18] [304,3560,50688,683888,4608][304,3560,50688,683888,4608] [5071050752/9,195344320/9,1016576][5071050752/9,195344320/9,1016576] y2+x3y=x4+2x2+2y^2 + x^3y = x^4 + 2x^2 + 2
4608.b.4608.1 4608.b 2932 2^{9} \cdot 3^{2} 00 Z/4Z\Z/4\Z M2(Q)\mathrm{M}_2(\Q) [152,109,5469,18][152,109,5469,18] [304,3560,50688,683888,4608][304,3560,50688,683888,4608] [5071050752/9,195344320/9,1016576][5071050752/9,195344320/9,1016576] y2+x3y=x4+2x22y^2 + x^3y = -x^4 + 2x^2 - 2
4608.c.27648.1 4608.c 2932 2^{9} \cdot 3^{2} 00 Z/2ZZ/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z\oplus\Z/2\Z M2(Q)\mathrm{M}_2(\Q) [24,72,180,108][24,-72,-180,108] [48,288,1024,33024,27648][48,288,-1024,-33024,27648] [9216,1152,256/3][9216,1152,-256/3] y2=x5x4+x2xy^2 = x^5 - x^4 + x^2 - x
6400.b.12800.1 6400.b 2852 2^{8} \cdot 5^{2} 00 Z/6Z\Z/6\Z M2(Q)\mathrm{M}_2(\Q) [248,181,14873,50][248,181,14873,50] [496,9768,243200,6303344,12800][496,9768,243200,6303344,12800] [58632501248/25,2327987904/25,4674304][58632501248/25,2327987904/25,4674304] y2+x3y=2x4+4x2+2y^2 + x^3y = 2x^4 + 4x^2 + 2
6400.d.12800.1 6400.d 2852 2^{8} \cdot 5^{2} 11 Z/6Z\Z/6\Z M2(Q)\mathrm{M}_2(\Q) [248,181,14873,50][248,181,14873,50] [496,9768,243200,6303344,12800][496,9768,243200,6303344,12800] [58632501248/25,2327987904/25,4674304][58632501248/25,2327987904/25,4674304] y2+x3y=2x4+4x22y^2 + x^3y = -2x^4 + 4x^2 - 2
6400.f.64000.1 6400.f 2852 2^{8} \cdot 5^{2} 22 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z M2(Q)\mathrm{M}_2(\Q) [154,310,19480,250][154,310,19480,250] [308,3126,164,2455597,64000][308,3126,-164,-2455597,64000] [5413568314/125,713561079/500,243089/1000][5413568314/125,713561079/500,-243089/1000] y2+x3y=2x43x3+x2+6x+4y^2 + x^3y = -2x^4 - 3x^3 + x^2 + 6x + 4
6400.g.64000.1 6400.g 2852 2^{8} \cdot 5^{2} 00 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z M2(Q)\mathrm{M}_2(\Q) [154,310,19480,250][154,310,19480,250] [308,3126,164,2455597,64000][308,3126,-164,-2455597,64000] [5413568314/125,713561079/500,243089/1000][5413568314/125,713561079/500,-243089/1000] y2+(x3+x2+x+1)y=x6x3x1y^2 + (x^3 + x^2 + x + 1)y = -x^6 - x^3 - x - 1
6400.i.409600.1 6400.i 2852 2^{8} \cdot 5^{2} 00 Z/2Z\Z/2\Z M2(Q)\mathrm{M}_2(\Q) [248,181,14873,50][248,181,14873,50] [992,39072,1945600,100853504,409600][992,39072,1945600,100853504,409600] [58632501248/25,2327987904/25,4674304][58632501248/25,2327987904/25,4674304] y2=x64x44x21y^2 = -x^6 - 4x^4 - 4x^2 - 1
8192.a.32768.1 8192.a 213 2^{13} 00 Z/2ZZ/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z\oplus\Z/2\Z M2(Q)\mathrm{M}_2(\Q) [67,82,1930,4][67,82,1930,4] [268,2118,124,1129789,32768][268,2118,-124,-1129789,32768] [1350125107/32,318508017/256,139159/512][1350125107/32,318508017/256,-139159/512] y2=x53x3+2xy^2 = x^5 - 3x^3 + 2x
8192.b.131072.1 8192.b 213 2^{13} 00 Z/2ZZ/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z\oplus\Z/2\Z M2(Q)\mathrm{M}_2(\Q) [64,76,1552,16][64,76,1552,16] [256,1920,8192,397312,131072][256,1920,8192,-397312,131072] [8388608,245760,4096][8388608,245760,4096] y2=x53x4+6x24xy^2 = x^5 - 3x^4 + 6x^2 - 4x
9216.a.36864.1 9216.a 21032 2^{10} \cdot 3^{2} 00 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z M2(Q)\mathrm{M}_2(\Q) [46,44,72,144][46,-44,-72,144] [92,470,684,70957,36864][92,470,-684,-70957,36864] [6436343/36,2859245/288,10051/64][6436343/36,2859245/288,-10051/64] y2=x5+x3+xy^2 = x^5 + x^3 + x
12544.d.25088.1 12544.d 2872 2^{8} \cdot 7^{2} 22 Z/2Z\Z/2\Z M2(Q)\mathrm{M}_2(\Q) [74,142,3272,98][74,142,3272,98] [148,534,196,78541,25088][148,534,-196,-78541,25088] [138687914/49,13524351/196,1369/8][138687914/49,13524351/196,-1369/8] y2+(x3+x2+x+1)y=x4x3+x2xy^2 + (x^3 + x^2 + x + 1)y = x^4 - x^3 + x^2 - x
12544.g.175616.1 12544.g 2872 2^{8} \cdot 7^{2} 11 Z/2Z\Z/2\Z M2(Q)\mathrm{M}_2(\Q) [8,203,455,686][8,-203,455,686] [16,552,5632,98704,175616][16,552,-5632,-98704,175616] [2048/343,4416/343,2816/343][2048/343,4416/343,-2816/343] y2+x3y=x5+x42x24x2y^2 + x^3y = x^5 + x^4 - 2x^2 - 4x - 2
12800.c.128000.1 12800.c 2952 2^{9} \cdot 5^{2} 00 Z/2ZZ/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z\oplus\Z/2\Z M2(Q)\mathrm{M}_2(\Q) [104,280,9140,500][104,280,9140,500] [208,1056,1024,332032,128000][208,1056,-1024,-332032,128000] [380204032/125,9280128/125,43264/125][380204032/125,9280128/125,-43264/125] y2=x53x4+3x2xy^2 = x^5 - 3x^4 + 3x^2 - x
16384.a.32768.1 16384.a 214 2^{14} 00 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z M2(Q)\mathrm{M}_2(\Q) [67,82,1930,4][67,82,1930,4] [268,2118,124,1129789,32768][268,2118,-124,-1129789,32768] [1350125107/32,318508017/256,139159/512][1350125107/32,318508017/256,-139159/512] y2=x5+3x3+2xy^2 = x^5 + 3x^3 + 2x
25600.a.102400.1 25600.a 21052 2^{10} \cdot 5^{2} 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z M2(Q)\mathrm{M}_2(\Q) [94,244,7096,400][94,244,7096,400] [188,822,1100,220621,102400][188,822,-1100,-220621,102400] [229345007/100,42671253/800,24299/64][229345007/100,42671253/800,-24299/64] y2=x53x3+xy^2 = x^5 - 3x^3 + x
25600.d.128000.1 25600.d 21052 2^{10} \cdot 5^{2} 00 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z M2(Q)\mathrm{M}_2(\Q) [56,80,260,500][56,-80,-260,500] [112,736,1536,178432,128000][112,736,-1536,-178432,128000] [17210368/125,1009792/125,18816/125][17210368/125,1009792/125,-18816/125] y2=x5+x4+x2xy^2 = x^5 + x^4 + x^2 - x
25600.e.128000.1 25600.e 21052 2^{10} \cdot 5^{2} 00 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z M2(Q)\mathrm{M}_2(\Q) [56,80,260,500][56,-80,-260,500] [112,736,1536,178432,128000][112,736,-1536,-178432,128000] [17210368/125,1009792/125,18816/125][17210368/125,1009792/125,-18816/125] y2=x5x4x2xy^2 = x^5 - x^4 - x^2 - x
36864.b.36864.1 36864.b 21232 2^{12} \cdot 3^{2} 11 Z/2Z\Z/2\Z M2(Q)\mathrm{M}_2(\Q) [46,44,72,144][46,-44,-72,144] [92,470,684,70957,36864][92,470,-684,-70957,36864] [6436343/36,2859245/288,10051/64][6436343/36,2859245/288,-10051/64] y2=x5x3+xy^2 = x^5 - x^3 + x
69696.c.627264.1 69696.c 2632112 2^{6} \cdot 3^{2} \cdot 11^{2} 00 Z/2Z\Z/2\Z M2(Q)\mathrm{M}_2(\Q) [1220,3580,1448760,78408][1220,3580,1448760,78408] [1220,59630,3724380,247001675,627264][1220,59630,3724380,247001675,627264] [42229815050000/9801,1691859628750/9801,8837375][42229815050000/9801,1691859628750/9801,8837375] y2+(x3+x2+x+1)y=x6+3x4x3+3x2x+1y^2 + (x^3 + x^2 + x + 1)y = x^6 + 3x^4 - x^3 + 3x^2 - x + 1
73728.c.884736.1 73728.c 21332 2^{13} \cdot 3^{2} 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z M2(Q)\mathrm{M}_2(\Q) [195,630,44910,108][195,630,44910,108] [780,18630,380,86843325,884736][780,18630,-380,-86843325,884736] [10442615625/32,2558131875/256,401375/1536][10442615625/32,2558131875/256,-401375/1536] y2=x5+5x3+6xy^2 = x^5 + 5x^3 + 6x
73728.d.884736.1 73728.d 21332 2^{13} \cdot 3^{2} 00 Z/2ZZ/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z\oplus\Z/2\Z M2(Q)\mathrm{M}_2(\Q) [195,630,44910,108][195,630,44910,108] [780,18630,380,86843325,884736][780,18630,-380,-86843325,884736] [10442615625/32,2558131875/256,401375/1536][10442615625/32,2558131875/256,-401375/1536] y2=2x55x3+3xy^2 = 2x^5 - 5x^3 + 3x
78400.a.78400.1 78400.a 265272 2^{6} \cdot 5^{2} \cdot 7^{2} 00 Z/2Z\Z/2\Z M2(Q)\mathrm{M}_2(\Q) [452,1276,189752,9800][452,1276,189752,9800] [452,7662,151900,2488139,78400][452,7662,151900,2488139,78400] [294789628688/1225,11055476814/1225,395839][294789628688/1225,11055476814/1225,395839] y2+(x3+x2+x+1)y=x63x4x33x2x1y^2 + (x^3 + x^2 + x + 1)y = -x^6 - 3x^4 - x^3 - 3x^2 - x - 1
102400.b.102400.1 102400.b 21252 2^{12} \cdot 5^{2} 11 Z/2Z\Z/2\Z M2(Q)\mathrm{M}_2(\Q) [34,116,424,400][34,-116,-424,400] [68,502,2100,98701,102400][68,502,-2100,-98701,102400] [1419857/100,1233163/800,6069/64][1419857/100,1233163/800,-6069/64] y2=x5x3xy^2 = x^5 - x^3 - x
102400.e.102400.1 102400.e 21252 2^{12} \cdot 5^{2} 00 Z/2Z\Z/2\Z M2(Q)\mathrm{M}_2(\Q) [94,244,7096,400][94,244,7096,400] [188,822,1100,220621,102400][188,822,-1100,-220621,102400] [229345007/100,42671253/800,24299/64][229345007/100,42671253/800,-24299/64] y2=x5+3x3+xy^2 = x^5 + 3x^3 + x
135424.l.270848.1 135424.l 28232 2^{8} \cdot 23^{2} 00 Z/2Z\Z/2\Z M2(Q)\mathrm{M}_2(\Q) [170,430,23560,1058][170,430,23560,1058] [340,3670,31740,669325,270848][340,3670,31740,-669325,270848] [8874106250/529,1126919375/2116,108375/8][8874106250/529,1126919375/2116,108375/8] y2+(x3+x2+x+1)y=x62x4x32x2x1y^2 + (x^3 + x^2 + x + 1)y = -x^6 - 2x^4 - x^3 - 2x^2 - x - 1
147456.c.884736.1 147456.c 21432 2^{14} \cdot 3^{2} 00 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z M2(Q)\mathrm{M}_2(\Q) [195,630,44910,108][195,630,44910,108] [780,18630,380,86843325,884736][780,18630,-380,-86843325,884736] [10442615625/32,2558131875/256,401375/1536][10442615625/32,2558131875/256,-401375/1536] y2=2x5+5x3+3xy^2 = 2x^5 + 5x^3 + 3x
147456.e.884736.1 147456.e 21432 2^{14} \cdot 3^{2} 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z M2(Q)\mathrm{M}_2(\Q) [195,630,44910,108][195,630,44910,108] [780,18630,380,86843325,884736][780,18630,-380,-86843325,884736] [10442615625/32,2558131875/256,401375/1536][10442615625/32,2558131875/256,-401375/1536] y2=x55x3+6xy^2 = x^5 - 5x^3 + 6x
193600.d.968000.1 193600.d 2652112 2^{6} \cdot 5^{2} \cdot 11^{2} 00 Z/2Z\Z/2\Z M2(Q)\mathrm{M}_2(\Q) [292,2380,214520,121000][292,2380,214520,121000] [292,1966,4356,1284277,968000][292,1966,-4356,-1284277,968000] [33169145488/15125,764807422/15125,47961/125][33169145488/15125,764807422/15125,-47961/125] y2+(x3+x2+x+1)y=x6x4x3x2x1y^2 + (x^3 + x^2 + x + 1)y = -x^6 - x^4 - x^3 - x^2 - x - 1
193600.e.968000.1 193600.e 2652112 2^{6} \cdot 5^{2} \cdot 11^{2} 22 Z/2Z\Z/2\Z M2(Q)\mathrm{M}_2(\Q) [292,2380,214520,121000][292,2380,214520,121000] [292,1966,4356,1284277,968000][292,1966,-4356,-1284277,968000] [33169145488/15125,764807422/15125,47961/125][33169145488/15125,764807422/15125,-47961/125] y2+(x3+x2+x+1)y=2x4x3+2x2xy^2 + (x^3 + x^2 + x + 1)y = 2x^4 - x^3 + 2x^2 - x
262144.a.262144.1 262144.a 218 2^{18} 11 Z/2Z\Z/2\Z M2(Q)\mathrm{M}_2(\Q) [4,14,2,1][4,-14,2,1] [32,640,6144,151552,262144][32,640,-6144,-151552,262144] [128,80,24][128,80,-24] y2=x52x3xy^2 = x^5 - 2x^3 - x
262144.b.524288.1 262144.b 218 2^{18} 11 Z/2Z\Z/2\Z M2(Q)\mathrm{M}_2(\Q) [26,2,40,2][26,-2,40,2] [208,1888,2304,1010944,524288][208,1888,-2304,-1010944,524288] [742586,129623/4,1521/8][742586,129623/4,-1521/8] y2=x5+2x3+2xy^2 = x^5 + 2x^3 + 2x
262144.c.524288.1 262144.c 218 2^{18} 11 Z/2Z\Z/2\Z M2(Q)\mathrm{M}_2(\Q) [26,2,40,2][26,-2,40,2] [208,1888,2304,1010944,524288][208,1888,-2304,-1010944,524288] [742586,129623/4,1521/8][742586,129623/4,-1521/8] y2=x52x3+2xy^2 = x^5 - 2x^3 + 2x
278784.a.557568.1 278784.a 2832112 2^{8} \cdot 3^{2} \cdot 11^{2} 00 Z/2Z\Z/2\Z M2(Q)\mathrm{M}_2(\Q) [1592,1189,630369,2178][1592,1189,630369,2178] [3184,419240,73041408,14200416368,557568][3184,419240,73041408,14200416368,557568] [639139022845952/1089,26430898598080/1089,1328059136][639139022845952/1089,26430898598080/1089,1328059136] y2+y=6x68x4+4x21y^2 + y = 6x^6 - 8x^4 + 4x^2 - 1
278784.b.557568.1 278784.b 2832112 2^{8} \cdot 3^{2} \cdot 11^{2} 11 Z/2Z\Z/2\Z M2(Q)\mathrm{M}_2(\Q) [1592,1189,630369,2178][1592,1189,630369,2178] [3184,419240,73041408,14200416368,557568][3184,419240,73041408,14200416368,557568] [639139022845952/1089,26430898598080/1089,1328059136][639139022845952/1089,26430898598080/1089,1328059136] y2+y=6x68x44x21y^2 + y = -6x^6 - 8x^4 - 4x^2 - 1
331776.e.995328.1 331776.e 21234 2^{12} \cdot 3^{4} 00 Z/2Z\Z/2\Z M2(Q)\mathrm{M}_2(\Q) [58,28,856,16][58,28,856,16] [348,4374,1836,4942701,995328][348,4374,-1836,-4942701,995328] [20511149/4,5926527/32,14297/64][20511149/4,5926527/32,-14297/64] y2=x5+3x3+3xy^2 = x^5 + 3x^3 + 3x
331776.g.995328.1 331776.g 21234 2^{12} \cdot 3^{4} 11 Z/2Z\Z/2\Z M2(Q)\mathrm{M}_2(\Q) [58,28,856,16][58,28,856,16] [348,4374,1836,4942701,995328][348,4374,-1836,-4942701,995328] [20511149/4,5926527/32,14297/64][20511149/4,5926527/32,-14297/64] y2=x53x3+3xy^2 = x^5 - 3x^3 + 3x
589824.a.589824.1 589824.a 21632 2^{16} \cdot 3^{2} 00 Z/2Z\Z/2\Z M2(Q)\mathrm{M}_2(\Q) [68,124,2616,72][68,124,2616,72] [272,1760,2304,931072,589824][272,1760,-2304,-931072,589824] [22717712/9,540430/9,289][22717712/9,540430/9,-289] y2=x54x3+xy^2 = x^5 - 4x^3 + x
589824.b.589824.1 589824.b 21632 2^{16} \cdot 3^{2} 22 Z/2Z\Z/2\Z M2(Q)\mathrm{M}_2(\Q) [68,124,2616,72][68,124,2616,72] [272,1760,2304,931072,589824][272,1760,-2304,-931072,589824] [22717712/9,540430/9,289][22717712/9,540430/9,-289] y2=x5+4x3+xy^2 = x^5 + 4x^3 + x
692224.a.692224.1 692224.a 212132 2^{12} \cdot 13^{2} 00 Z/2Z\Z/2\Z M2(Q)\mathrm{M}_2(\Q) [14,404,3928,2704][14,-404,-3928,-2704] [28,1110,19604,170797,692224][28,1110,19604,-170797,-692224] [16807/676,190365/5408,1421/64][-16807/676,-190365/5408,-1421/64] y2=x53x3xy^2 = x^5 - 3x^3 - x
778752.b.778752.1 778752.b 2932132 2^{9} \cdot 3^{2} \cdot 13^{2} 22 Z/2Z\Z/2\Z M2(Q)\mathrm{M}_2(\Q) [1880,1405,879765,3042][1880,1405,879765,3042] [3760,585320,120706560,27814290800,778752][3760,585320,120706560,27814290800,778752] [1467808044800000/1521,60769678360000/1521,2191328000][1467808044800000/1521,60769678360000/1521,2191328000] y2+y=6x610x4+5x21y^2 + y = 6x^6 - 10x^4 + 5x^2 - 1
778752.c.778752.1 778752.c 2932132 2^{9} \cdot 3^{2} \cdot 13^{2} 22 Z/2Z\Z/2\Z M2(Q)\mathrm{M}_2(\Q) [1880,1405,879765,3042][1880,1405,879765,3042] [3760,585320,120706560,27814290800,778752][3760,585320,120706560,27814290800,778752] [1467808044800000/1521,60769678360000/1521,2191328000][1467808044800000/1521,60769678360000/1521,2191328000] y2+y=6x610x45x21y^2 + y = -6x^6 - 10x^4 - 5x^2 - 1
  displayed columns for results